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We investigate the statistical mechanics of an inhomogeneous Coulomb fluid composed of charged
particles with static polarizability. We derive the weak- and the strong-coupling approximations
and evaluate the partition function in a planar dielectric slab geometry with charged bound-
aries. We investigate the density profiles and the disjoining pressure for both approximations.
Comparison to the case of non-polarizable counterions shows that polarizability brings impor-
tant differences in the counterion density distribution as well as the counterion mediated elec-
trostatic interactions between charged dielectric interfaces. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4763986]

I. INTRODUCTION

It has become clear by now that the standard Poisson-
Boltzmann (PB) theory used to describe and understand the
electrostatic interactions in colloidal systems has severe limi-
tations and can sometimes give qualitatively unreliable if not
outright wrong answers.1 There are several distinct reasons
why the PB theory cannot describe some salient features of
highly charged Coulomb systems.

First and most notably, the PB theory is a mean-field
theory, and thus completely misses the important effects of
ionic correlations that have recently been the focus of much
research in Coulomb fluids.2 The correlation effect, first ob-
served in simulations,3 exposes the limitations of the mean-
field ansatz in quite a drastic manner, since for highly charged
systems the interactions mediated by mobile ions between
equally charged interfaces can become attractive. However,
general theorems demand the interaction to be repulsive at the
mean-field level.4–6 Several lines of thought were spawned
by simulations and converged into a paradigm shift that al-
lowed for a simple conceptual understanding of why the
mean-field picture breaks down for highly charged systems
and how to formulate a theory that would be valid in these
circumstances.7 This paradigm shift led to a dichotomy be-
tween the weak and strong-coupling approaches that delimit
the exact behavior of a Coulomb system at any value of elec-
trostatic coupling.8

Another drawback of the PB theory is the physical model
on which it is based—point charged particles—that neglects
all ion-specific effects except for the ion valency. It is thus
a one parameter theory where the ions differ only in the
amount of charge they bear. One straightforward way to
amend this drawback, sharing some of the conceptual sim-
plicity with the original Poisson-Boltzmann formulation, is
to take into account the excess static ionic polarizability of

the ions9–11 proportional to the volume of the cavity created
by the ion in the solvent. Static excess ionic polarizability is
then a second parameter that differentiates between different
but equally charged ionic species and thus presents an im-
portant step towards more sophisticated models of Coulomb
fluids.

Studies of the excess ionic polarizability have a venera-
ble history and go all the way back to the classical book by
Debye on polar molecules (see discussion on pages 111–115
in Ref. 12), where he already discussed cavities around ions
having a different value of dielectric constant compared to the
surrounding solution. These cavities in fact represent excess
polarization of the ions in aqueous solvent. Since due to sat-
uration effects for most salts the interior dielectric constant
should be taken much smaller than the aqueous one, the cor-
responding (static) dielectric constant of the salt should then
be smaller than for pure solvent. This corresponds to nega-
tive excess ionic polarizability. While in Debye’s analysis the
effect scales as the volume of the ionic cavity, there are indi-
cations that for large enough solutes it should actually scale
with the area of the cavity.13

One of the moot points of Debye’s analysis is exactly how
to pick the right size of the cavity, an issue that has contin-
ued unabashed ever since.14 The changes in the effective di-
electric constant of ionic solutions due to ionic polarizability
were later picked up by Bikerman15 who, among other things,
acknowledged that a realistic treatment of ions in aqueous so-
lution should take their finite size into account (see also the
discussion in Ref. 16) as well as their excess polarizability.
The effects of ionic polarizability and the associated dielectric
decrement on the interactions between charged macromolec-
ular surfaces in the presence of mobile counterions have been
investigated in more recent times starting from the fundamen-
tal work of Netz17 and continuing with a steady stream of
works.9–11, 16
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Some facets of the ionic and colloid polarizability
were discussed starting from the weak-coupling level by
generalising the zero Matsubara frequency van der Waals
term and modifying the appropriately formulated linearised
Debye-Hückel theory.17, 18 Levin and co-workers19, 20 dealt
with polarizability in the context of (ideally) polarizable ions
in the vicinity of the dielectric interface. They also for-
mulated a theory of monovalent and multivalent counteri-
ons in suspensions of polarizable colloids or nanoparticles21

which in some respects complements our work where the
mono or polyvalent counterions themselves are treated as
polarizable.

The main conceptual fulcrum of our present work is the
dielectric decrement of ionic solutions that has been attributed
to various sources, which underlie the changes in the dielec-
tric response of the solution, but can be universally quanti-
fied by an excess ionic polarizability.9, 10 It is proportional to
the derivative of the (static) dielectric constant of a salt solu-
tion with respect to the concentration of the ions. Numerically
this last coefficient, β̃,9 turns out to be between −7 M−1 and
−20 M−1 for most of the common salts.22

Here we shall proceed with the analysis of effects of the
excess static ionic polarizability of ions by formulating con-
sistent weak- and strong-coupling approaches that will lead to
a two parameters—charge and static excess polarizability—
theory of a Coulomb fluid. We thus reformulate the basic
model of a Coulomb fluid and investigate its consequences.
This is accomplished by first incorporating the excess ionic
polarizability effect in a consistent way into a microscopic
model and then solving the corresponding theory at the mean-
field weak-coupling level as well as at the strong coupling
level. It further turns out that the radius of the ions (more
precisely of their hydration shell or cavity) must be intro-
duced, leading to a more sophisticated three parameters the-
ory. The presented theory has thus a very broad parameter
space that we cannot analyze in complete detail. We point to
some salient features and leave most of the details for future
endeavor.

II. MODEL

We are interested in the behavior of mobile charges
(counterions) immersed in a planar slab of thickness L filled
by aqueous solvent of permittivity εw. The slab is assumed to
be confined between two semi-infinite regions of permittivity
εext that bear fixed charges of opposite sign to the sign of the
mobile charges with surface charge density σ 0. Counterions
have a radius R, a charge e = qe0, where e0 is the elementary
charge of the electron and q is their valency, and an excess po-
larizability α. This latter quantity is defined precisely as the
difference between the aqueous solvent polarizability and the
proper ionic polarizability, and may thus be negative as sur-
mised by Debye.12 In fact experimentally this is the standard
behavior observed for many salts, see Ref. 9 for details. We
will denote the whole space as E and the volume of the slab as
V . A schematic representation of the geometry of our model
is given in Fig. 1.

FIG. 1. Polarizable counter-ions of excess polarizability α between two
charged plates. The solvent in between has a permittivity εw, while the two
semi-infinite regions 0 > z > L have permittivity εext. The two surfaces at
z = 0, L bear a surface charge of surface charge density σ . R is the radius
of the ions, or more precisely of their cavity.

A. Field-action

The partition function for N counterions is

ZN = 1

N !

∫
[dφ]

N∏
j=1

dxj

× exp

⎛
⎝−βε0

2

∫
E

ε(x)(∇φ(x))2dx + β
∑

j

[
ieφ(xj )

− α

2
(∇φ(xj ))2

]
+ iβ

∫
∂V

σ (x)φ(x)d ′x
)

, (1)

where β = (kBT)−1 and d ′x denotes the integration over the
bounding surfaces ∂V . The standard field-theoretical repre-
sentation of the Coulomb fluid partition function in terms
of the fluctuating electrostatic potential has been used,17, 23

properly extended by the fact that the counterion energy
in an electrostatic field contains the point charge contri-
bution ieφ(xj ) as well as the term due to its excess po-
larizability α

2 (∇φ(xj ))2. To deal with polarizable ions, this
field-theoretical representation is more convenient than the
classical one. The correspondence between these two repre-
sentations is detailed in Ref. 17 for non-polarizable ions.

Note that in this general expression, the surface charge
may not be uniform, although we will restrict ourselves to the
case σ (x) = σ0.

This model neglects all the polarization saturation effects
that could occur in very strong electric fields; the following
analysis is thus restricted to moderate field strengths.

The grand canonical partition function for a given fugac-
ity λ is then given by

Z =
∞∑

N=0

λNZN =
∫

exp(−βS[φ])[dφ], (2)
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where the field-action S[φ] is given by

βS[φ] = βε0

2

∫
E

ε(x)(∇φ(x))2dx

− λ

∫
V

exp
(
−β

[α

2
(∇φ(x))2

− ieφ(x)
])

dx − iβ

∫
∂V

σ (x)φ(x)d ′x. (3)

This is the fundamental expression that we will evaluate; we
will specifically concentrate on its dependence on the separa-
tion between charged plane-parallel boundaries.

B. Dimensionless field-action

The field-action can be rewritten in terms of dimen-
sionless parameters. Of course this analysis holds only in
3D; in other dimensions, the characteristic lengths that de-
fine the dimensionless parameters would have to be defined
differently.23 The dimensionless form of the action itself sug-
gests various approximations that allow an explicit and exact
evaluation of the grand canonical partition function.7

First, we recall the definition of the Bjerrum and
Gouy-Chapman lengths, lB = βe2

0/4πεwε0 and lGC

= 1/2πqlBσS , where σ 0 = e0σ S is chosen to be posi-
tive. The electrostatic “coupling constant” is then defined as
the ratio24


 = q2lB

lGC
= 2πq3l2

BσS = q3
0. (4)

Above we specifically decomposed the coupling parameter
into its q and σ S dependence. The dimensionless length,
field, permittivity, and surface charge can then be expressed
as x̃ = x/lGC, φ̃ = βeφ, ε̃(x) = ε(x)/εw, σ̃ (x) = −σ (x)/σ0,
respectively. The negative sign in the rescaled surface charge
allows to have both ions charge and surface charge positive.
One can also introduce a rescaled polarizability defined as

α̃ = β

(βqe0lGC)2
α. (5)

Usually instead of using the excess polarizability one can use
the dielectric decrement β̃ in units of inverse mole per liter,9

defined as α = ε0β̃. Typically the dielectric decrement for
various salts is negative.

The dimensionless polarizability represents an additional
independent parameter of the theory. Finally we define the
dimensionless fugacity as λ̃ = 2π
l3

GCλ.
We can estimate the numerical values for all these pa-

rameters and obtain typical values for monovalent counteri-
ons that are of the order: lB � 1 nm, 
 � 1, α̃ � 10−2, and
ε̃ext � 5 × 10−2.

We can now write the grand canonical partition function
in the form:

Z =
∫

exp

(
−S[φ]




)
[dφ], (6)

where the field action can be obtained as

S[φ] = 1

8π

∫
E

ε(x)(∇φ(x))2dx− λ

2π

∫
V

exp
(
−α

2
(∇φ(x))2

+ iφ(x)
)

dx + i

2π

∫
∂V

σ (x)φ(x)d ′x, (7)

Here, in order not to proliferate the notation we simply re-
named all the “˜” quantities back to their un-“˜” symbols,
because in what follows we will work only with the dimen-
sionless action. This expression is then the point of departure
for the evaluation of the free energy and pressure of the sys-
tem. One should note here that the partition function (6) de-
pends on two parameters: the coupling constant 
 as well as
the dimensionless polarizability α, i.e., it is a two-parameter
function.

C. Density and electroneutrality

In unscreened systems with long range Coulomb inter-
actions the stability is insured only if the system as a whole
is electroneutral. This is a particularity of long range inter-
actions that becomes irrelevant for all finite range interaction
potentials.25 Special care then needs to be taken in order to
stipulate this stability, that is given as a condition on the one-
particle ionic density. The latter is defined by the operator

n(x) = λ exp
(
−α

2
(∇φ(x))2 + iφ(x)

)
1V (x), (8)

where 1V (x) is the indicator function of the volume V defined
by

∫
f (x)1V (x)dx = ∫

V
f (x)dx. We will also use the indi-

cator function of the surface ∂V , given by
∫

f (x)1∂V (x)dx
= ∫

∂V
f (x)d ′x.

While the true density is actually given by n
2π


, the above
expression is easier to use in the mean field approximation
since it does not involve 
. We now impose average elec-
troneutrality in the system by stipulating that

N =
∫

〈n(x)〉dx =
∫

∂V

σ (x)d ′x. (9)

This zero-moment gauge condition insures that the system re-
mains stable for any configuration of the charges. Electroneu-
trality needs to be formulated as an additional condition on the
density function only for unscreened interactions, see Ref. 25
for details.

D. Grand potential, free energy, and pressure

The grand canonical thermodynamic potential is defined
by

Jλ = − lnZλ. (10)

We write explicitly the dependence on λ since it will feature
prominently in our analysis. The fugacity is not a physical pa-
rameter, so the pressure should not depend on it. To solve this
issue, we have to know how Jλ depends on λ; by differentiat-
ing (6), we get

dJλ

dλ
= − N

2π
λ
, (11)
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where N has no subscript λ because it does not depend on it
as a consequence of electroneutrality (9). Now, it is clear that
the free energy defined by

Fλ = Jλ + N

2π

ln λ (12)

does not depend on λ, i.e., Fλ = F, while ln λ is the chemical
potential. This means that the free energy can be safely used
to compute the pressure:

P = −∂F

∂L
. (13)

Note that all the energies defined above are energies per unit
area because of the transverse extensivity of our system. Fur-
thermore, the above pressure is in dimensionless units; the
physical pressure is thus p = P/(βl3

GC).

III. WEAK COUPLING APPROXIMATION

Depending on the strength of the Coulomb coupling
as parameterized by the coupling constant 
 the grand
canonical partition function exhibits two well defined lim-
iting laws.2, 24 For vanishing values of the coupling con-
stant, 
 → 0, the partition function can be well approxi-
mated by its saddle-point value and fluctuations around it. In
fact the saddle-point is known to correspond exactly to the
mean-field Poisson-Boltzmann expression while the Gaus-
sian fluctuations around the mean-field correspond to the
zero Matsubara frequency van der Waals or thermal Casimir
interactions.26

We will first derive the mean-field equations for our field-
action, equivalent to those derived elsewhere,10, 11 and then
evaluate the Gaussian fluctuations around the mean-field and
their dependence on the separation between the bounding
surfaces.

A. Mean-field

We start with the general saddle-point equation satisfied
at equilibrium

0 =
〈
δS

δφ

〉
= 1

2π

[
−∇ ·

〈[
ε(x)

2
+ αn(x)

]
∇φ(x)

〉
− i〈n(x)〉

+ iσ (x)1∂V (x)

]
. (14)

The mean-field is more often written in terms of the (real)
electrostatic potential proportional to ψ = −iφ, with the cor-
responding field-action S̃[ψ], than in terms of the fluctuating
potential φ. For this new variable, the mean-field configura-
tion is evaluated from the saddle-point condition:

δS̃[ψMF]

δψ(x)
= 0. (15)

The grand canonical potential is then approximated by

J � JMF = S̃[ψMF]



. (16)

From the saddle-point equation the mean-field equation can
be rewritten in its Poisson-Boltzmann form as10, 11

∇ ·
[(ε

2
+ αnMF

)
∇ψMF

]
= −nMF + σ1∂V , (17)

where the density is given by

nMF = λ exp
(α

2
(∇ψMF)2 − ψMF

)
1V . (18)

In these two equations, it is clear that the fugacity can be ab-
sorbed into the electrostatic potential: this change will mod-
ify the grand potential but not the free energy. We can thus
assume λ = 1 for the mean-field as well as for fluctuations
around it.

B. Pressure in the plane-parallel geometry

In 1D, which is also the case of two charged plane par-
allel surfaces since the mean potential depends only on the
transverse coordinate z, the Poisson-Boltzmann equation has
the form:[(ε

2
+ αnMF(z)

)
ψ ′

MF(z)
]′

= −nMF(z) + σ1∂V (z), (19)

with

nMF(z) = λ exp
(α

2
ψ ′

MF(z)2 − ψMF(z)
)

1V (z). (20)

We used the notation f ′(z) = df

dz
(z). In this case it can be

shown that the pressure in the system is a constant given by
the contact value theorem9

P = 1

2π


[
nMF(z) −

(ε

4
+ αnMF(z)

)
ψ ′

MF(z)2
]

= const.

(21)
It can be easily checked that this quantity is actually equal
to the pressure obtained equivalently by the standard thermo-
dynamic definition P = − 1




∂S̃[ψMF]
∂L

. The above form for the
interaction pressure contains an osmotic van’t Hoff term, the
first one in Eq. (21), that contains the effects of the polar-
izability implicitly, i.e., through the variation of the density
profile on the polarizability, and a Maxwell stress term, the
second one in Eq. (21), that contains the polarizability effects
explicitly.

C. Second order fluctuations correction

The grand potential can be computed to the next order by
taking into account fluctuations around the mean-field solu-
tion. This is done by decomposing φ into a mean-field term
plus Gaussian fluctuations

φ = iψMF + θ, (22)

and then computing S to the second order in θ :

S[iψMF + θ ] = S̃[ψMF] + 1

2

∫
δ2S

δφ(x)δφ(y)
[φMF]

× θ (x)θ (y)dxdy

= S̃[ψMF] + S(2)[θ ]. (23)
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In this case the grand potential is given by

J � J
(1)
MF = S̃[ψMF]



− lnZ (2)

= S̃[ψMF]



− ln

[∫
exp

(
−S(2)[θ ]




)
[dθ ]

]
,

(24)

where Z (2) is the contribution of the fluctuations to the parti-
tion function. The effective action for the fluctuations S(2)[θ ]
is straightforward to compute, yielding

S(2)[θ ] = 1

4π

∫ [(ε

2
+ αnMF

)
(∇θ )2

+ nMFα
2(∇ψMF · ∇θ )2

−
(

1

2
∇ · (ε∇ψMF) − σ1∂V

)
θ2

]
dx, (25)

where we have used the mean-field Eq. (17) (we have
not written the x dependence explicitly to keep a compact
expression).

Note that ε∇ψMF is not continuous, and thus leads to a
surface term. As expected, this action does not depend on the
fugacity but on the mean-field density, which is the only phys-
ically meaningful quantity.

In our model we consider parallel plates of constant sur-
face charge, the mean field problem is then one dimensional.
We can therefore split the coordinates in a one-dimensional
coordinate z perpendicular to the plates, and a two dimen-
sional one parallel to the plates: x = (z, r).

D. Pressure

Fourier transforming the fluctuations in the direction par-
allel to the plates we obtain

θ (z, r) =
∫

exp(ik · r)θ̃(z, k)
dk

(2π )2
, (26)

where θ̃ (z,−k) = θ̃ (z, k)∗ because θ is real. This decompo-
sition furthermore allows us to write the fluctuations action
(25) as

S(2)[θ ] =
∫

S
(2)
k [θ̃ (·, k)]

dk
(2π )2

, (27)

where the one-dimensional action is

S
(2)
k [θ ] = 1

4π

∫ ([ε

2
+ αnMF + α2nMFψ

′2
MF

]
θ ′2

+
[
−1

2
(εψ ′

MF)′ +
(ε

2
+ αnMF

)
k2

]
θ2

)
dz

+ 1

4π
[θ (0)2 + θ (L)2]

= S
(2)
k,b + S

(2)
k,s. (28)

This action thus has a bulk part S
(2)
k,b and a surface part S

(2)
k,s.

The surface action actually contains another term due to the
fact that εψ ′

MF is discontinuous across the bounding surfaces,

so that finally

S
(2)
k,s[θ ] = C

2
(θ (0)2 + θ (L)2), where

C = 1

4π
[εψ ′

MF]0−
0+ + 1

2π
, (29)

with the notation [f ]x2
x1

= f (x2) − f (x1). We also used the
symmetry z ↔ L − z of our system. The partition function for
the fluctuations can be written as a product of path-integrals,

Z (2) =
∏

k

∫
exp

(
−S

(2)
k [θ ]




)
[dθ ]. (30)

These path-integrals are computed in Appendix A, lead-
ing to

Z (2)
k = exp

(
kL

2

) √√√√√ 2πbk(0, L)[
ak

f (0, L) + C+εextk/4π




]2
− bk(0, L)2

,

(31)
where the functions bk and ak

f are defined in the appendix.
The total free energy of the mean field configuration and

fluctuations around it is then obtained as

F
(1)
MF = S̃[ψMF]



− 1

2π

∫ ∞

0
ln

(
Z (2)

k

)
k dk. (32)

We note here that the structure of the free energy F
(1)
MF

does not look like a mean-field term independent of the
counterion polarizability plus a zero frequency van der Waals
term that stems from the polarizability of the counterions.
Though this kind of decomposition is sometimes assumed in
the literature,27, 28 it clearly does not correspond to the weak-
coupling approximation.

We can see numerically that the integral over the trans-
verse Fourier modes in Eq. (32) diverges; this comes from our
model of point-like dipoles. Taking into account the size R of
the polarizable ions (more precisely, R is the radius of their
hydration shell), the integral is regularized by the dimension-
less cut-off:

kmax = πlGC

R
. (33)

Physically the cut-off arises because electric fields which fluc-
tuate on length scales shorter than the polarizable ion cannot
polarize it. The interaction pressure on this level of approxi-
mation is then obtained by taking into account Eq. (13), lead-
ing to

P (1) = −∂F
(1)
MF

∂L
. (34)

The results for the fluctuations-corrected interaction pressure
from Eq. (34) on the weak coupling approximation level are
shown in Fig. 2 for 
 = 1, εext = 0.05, and R = 1, for vari-
ous values of the counterion polarizability α. The fluctuations
correction in P(1) is quite small compared to the mean-field
value, but can become substantial as the polarizability α de-
creases, i.e., becomes more negative. This correction reduces
the interaction pressure between the surfaces. This indicates
that ions with nominally equal charge (of equal valency) but
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FIG. 2. Pressure P(1)(L) from Eq. (34) as a function of the plate separation L for εext = 0.05, 
 = 1, and R = 1. The dashed lines are the mean field result, the
solid lines include the fluctuations. (Left) For α = −0.1 and large plate separation, the difference is barely distinguishable. (Right) For small plate separation L
and various values of the polarizability α. The effect of fluctuations can be quite important for large counterion polarizabilities.

differing in the polarizability will mediate markedly different
interactions when confined between charged dielectric inter-
faces even at the weak-coupling level.

E. Density

We now consider the ion density by taking into account
the mean field solution as well as the fluctuations around the
mean field. From (18), the ion density is

ρ1(x) =
〈
exp

(
−α

2
(∇φ(x))2 + iφ(x)

)〉
1

(35)

= (2πα)−3/2
∫

exp

(
−p2

2α

)
〈exp(i p · ∇φ(x)

+ iφ(x))〉1d p, (36)

where we used a Hubbard-Stratonovitch transformation to ob-
tain the last expression. In this way we have only terms linear
in φ in the exponential. The subscript 1 denotes that we take
into account the first order of the fluctuations. We notice that
the mean-field equation for electroneutrality should also hold
on average at equilibrium, so that ρ1 will satisfy electroneu-
trality. As a consequence, we only need ρ1 up to a multiplica-
tive constant, and this constant will be set by electroneutrality.

The interpretation of the above formula is that the local
ion density is the average over a fluctuating dipolar moment
vector of a Coulomb fluid characterized by ions with a charge
and a dipolar moment. We then use the decomposition (22)
and get

ρ1(x) = (2πα)−3/2
∫

exp

(
−p2

2α
− p · ∇ψMF(x)

− ψMF(x)

)
〈exp (i p · ∇θ (x) + iθ (x))〉1 d p. (37)

The fluctuations θ being Gaussian, the average is easy to
compute,

〈exp (i p · ∇θ (x) + iθ (x))〉1

= exp

(
−1

2
〈( p · ∇θ (x) + θ (x))2〉1

)
. (38)

Introducing the fluctuations correlator

G(x, x′) = 〈θ (x)θ (x′)〉1, (39)

we can write it as

〈exp (i p · ∇θ (x) + iθ (x))〉1

= exp

(
−1

2
pT ∇∇′T G(x, x) p − 1

2
G(x, x)

− 1

2
p · ∇̄G(x, x)

)
. (40)

We used the notation ∇ for the gradient with respect to the
first variable of G(x, x′), ∇′ for the second variable, and ∇̄
for the sum of the two gradients. We can now insert this ex-
pression into (37), and remain with a Gaussian integral

ρ1(x) = (2πα)−3/2
∫

exp

(
−1

2
pT α−1

1+(x) p

− p · ∇ψ1(x) − ψ1(x)

)
d p, (41)

where we introduced a renormalized polarizability (which is
now a position-dependent matrix) and a renormalized field

α−1
1+(x) = α−1 + ∇∇′T G(x, x), (42)

ψ1(x) = ψMF(x) + 1

2
G(x, x). (43)

Performing the integral gives

ρ1+(x) =
√

det

(
α1+(x)

α

)

× exp

(
1

2
[∇ψ1(x)]T α1+(x)∇ψ1(x) − ψ1(x)

)
.

(44)

The index “+” means that our computation works only for α

> 0. In the more common case where α < 0, the computation
is the same up to some factors of i, and we get

α−1
1−(x) = |α|−1 − ∇∇′T G(x, x), (45)
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FIG. 3. Counterions density profile within the slab—dependence on the coupling constant 
. (Left) Weak coupling density close to the left electrode taking
into account the fluctuations around the mean field as a function of the position within the slab (z ∈ [

0, L
2

]
), for R = 0.3, α = −0.3, εext = 0.05, and 
 = 0.3

(dashed line) or 
 = 1 (solid line). The mean-field density itself is presented by the dotted line. (Right) Strong coupling density as a function of the position for
R = 2, α = −0.01, εext = 0.05, and 
 = 10 (solid line) or 
 = 50 (dashed line).

and

ρ1−(x) =
√

det

(
α1−(x)

α

)

× exp

(
−1

2
[∇ψ1(x)]T α1−(x)∇ψ1(x) − ψ1(x)

)
.

(46)

Now we have to compute G(x, x) and ∇∇′T G(x, x) at
each point. To do this, we will use the same technique we used
to compute the pressure: we Fourier transform the fluctuations
in the direction parallel to the plates and use the Pauli-van
Vleck formula.

Since the fluctuations action (25) is a sum over different
transversal modes, two modes with different wave vectors are
uncorrelated and we can write the correlator as an integral
over the modes,

G(x, x′) =
∫

exp(ik · [r − r ′])Gk(z, z′)
dk

(2π )2
, (47)

where Gk(z, z′) is the one-dimensional correlator for the ac-
tion in Eq. (28). More precisely, we need Gk(z, z) as well as
∂∂ ′Gk(z, z). These functions are computed in Appendix B.
Then we can write

G(x, x) =
∫

Gk(z, z)
dk

(2π )2
= 1

2π

∫ ∞

0
Gk(z, z)k dk,

(48)
and the matrix

∇∇′T G(x, x) =
∫ (

∂∂ ′ −ikT ∂

ik∂ ′ kkT

)
Gk(z, z)

dk
(2π )2

= 1

(2π )

∫ ∞

0

(
∂∂ ′ 0
0 k2

2 12

)
Gk(z, z)k dk,

(49)

where 12 is the two-dimensional identity matrix.
In conclusion, we have the algorithm to compute the

pressure and the density: for each mode, we integrate the
Pauli-van Vleck formula and then compute its contributions to

G(x, x) and ∇∇′T G(x, x) and add them to the contributions
of the previous modes. Finally, we compute the new density
at each point and renormalize it using electroneutrality.

The mean field and first order densities can be compared
in Fig. 3 (left). First of all, we observe that the effect of the
fluctuations is small and depends on the values of the param-
eters. For higher 
, e.g., 
 = 1 in the figure, the ions get
preferentially included in the region close to the dielectric
boundaries. This is not a mean-field effect since the mean-
field density does not depend on the coupling parameter. The
α dependence of the counterion density in the slab is shown
in Fig. 4 (left). The mean field density depends strongly on
α,2, 9 and this dependence remains after one adds the fluctua-
tion contribution. The inset shows that the deviation from the
mean-field density increases with α: the effect of the fluctua-
tions is enhanced by the polarizability.

As a conclusion, the counterions are attracted by the
boundaries, and most of this effect has a mean-field nature.
The polarizability tends to lower this attraction at the mean-
field level, but to increase it at the fluctuations level.

IV. STRONG COUPLING

The strong coupling approximation2, 24 is obtained in the
limit of asymptotically large coupling parameter, 
 → ∞. In
this limit it turns out that the statistical mechanical description
of the system is equivalent to a properly normalized one-body
description. This means that we can treat the system as com-
posed of bounding surfaces and a single polarizable charge
between them. We will first derive the strong coupling form
for the partition function, equivalent to the first order virial
expansion, and then evaluate the density profile and the inter-
action pressure.

We should underline that the virial expansion performed
here around a zero ion reference state is different from the
expansion around a Wigner crystal (that is not described by
the functional integral formalism used here) found in Ref. 29.
In the latter work, the first corrective term is proportional to
1/

√

, being linear in temperature, while in our computation
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FIG. 4. Counterions density profile within the slab—dependence on the polarizability α. (Left) Weak coupling density close to the left electrode taking into
account the fluctuations around the mean field as a function of the position within the slab (z ∈ [

0, L
2

]
), for R = 0.3, εext = 0.05, 
 = 0.3, and α = −0.3 (solid

line), α = −0.1 (dashed line), or α = −10−6 (dotted line). (Inset) Deviation from the mean-field density. (Right) Strong coupling density as a function of the
position within the dielectric slab for R = 1, εext = 0.05, 
 = 10, and α = −0.05 (solid line), α = −0.01 (dashed line), or α = −10−6 (dotted line).

it is 1/
. The lowest order term is the same in both ap-
proaches, though.

A. Formulation

The strong coupling limit formally corresponds to the λ


 1 limit. To the lowest non-trivial order in λ, the partition
function is given by

Z � Z0 + λ

2π

Z1 = Z0

(
1 + λ

2π

U

)
, (50)

where U has been defined as U = Z1/Z0. We are thus interested
in the evaluation of

Z0 =
∫

[dφ] exp

(
− 1

2π


[
1

4

∫
ε(x)(∇φ(x))2dx

+ i

∫
∂V

σ (x)φ(x)d ′x
])

, (51)

and Z1 = ∫
z1(x0)dx0, with

z1(x0) =
∫

[dφ] exp

(
− 1

2π


[
1

4

∫
ε(x)(∇φ(x))2dx

+ i

∫
∂V

σ (x)φ(x)d ′x
]

(52)

−
[α

2
(∇φ(x0))2 − iφ(x0)

])
.

The quantity λz1(x0)/Z � λz1(x0)/Z0 is the ionic density at
x0. The total number of ions thus follows by stipulating that
λU = N, so that λ can be tuned to satisfy electroneutrality.

As in the mean-field approximation, we will be inter-
ested in the density and the pressure. For the density, we will
be specifically interested in the x0 dependent part of z1(x0),
whereas for the pressure we need the L dependent part of Z0

and Z1. In this sense the density is easier to compute, so that
we address this question first.

B. Density

We introduce an auxiliary vector p together with a
Hubbard-Stratonovich decomposition and perform the inte-
gration over φ to write down Eq. (52) as

z1(x0) = (2πα)−3/2 det

(
− ε∇2

4π


)−1/2

×
∫

d p exp

(
− p2

2α
− 1

2

〈(
− 1

2π


∫
σ (x)φ(x)d ′x

+ p · ∇φ(x0) + φ(x0)

)2〉
0

)
, (53)

where 〈. . . 〉0 denotes the Gaussian average over φ with the
action S0[φ] = 1

8π

∫
ε(x)(∇φ(x))2dx. In this way the av-

erage can be written in terms of the correlator, G(x, x′)
= 〈φ(x)φ(x′)〉0, as〈(

− 1

2π


∫
σ (x)φ(x)d ′x + p · ∇φ(x0) + φ(x0)

)2
〉

0

= pT A(x0) p + 2 p · B(x0) + C(x0), (54)

where

A(x0) = ∇∇′T G(x0, x0), (55)

B(x0) = ∇
(

G(x0, x0) − 1

2π


∫
σ (x)G(x0, x)d ′x

)
, (56)

C(x0) = G(x0, x0) − 1

π


∫
σ (x)G(x0, x)d ′x

+ 1

(2π
)2

∫
σ (x)σ (x′)G(x, x′)d ′xd ′x′

= C ′(x0) + 1

(2π
)2

∫
σ (x)σ (x′)G(x, x′)d ′xd ′x′,

(57)

and ∇ and ∇′ denote, respectively, the gradient with respect to
the first and second variable. We can now perform the explicit

Downloaded 09 Jan 2013 to 147.210.24.83. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



174903-9 Démery, Dean, and Podgornik J. Chem. Phys. 137, 174903 (2012)

integration over p, obtaining

z1(x0) = Z0 det (1 + α A(x0))−1/2

× exp

(
1

2
B(x0)T

(
1

α
+ A(x0)

)−1

B(x0)− C ′(x0)

2

)
,

(58)
where

Z0 = det

(
− ε∇2

4π


)−1/2

× exp

(
− 1

2(2π
)2

∫
σ (x)σ (x′)G(x, x′)d ′xd ′x′

)
.

(59)

As we noted in the weak-coupling treatment, the
Hubbard-Stratonovitch transform depends on the sign of α.
However, it is easy to see here that the final expressions
(55)–(58) remain the same if α is negative.

We should mention that a problem arises in Eq. (58) if an
eigenvalue of 1 + α A(x0) is negative. This happens notably if
α is too negative, leading to a negative effective permittivity of
the hydration shell of the ion, and thus to an instability for the
field. The problematic value of α therefore strongly depends
on the radius of the hydration shell.

In order to be more explicit, we need the expression for
the correlator. Again, we Fourier transform the field in the
direction parallel to the plates:

φ(z, r) =
∫

exp(ik · r)φ̃(z, k)
dk

(2π )d−1
, (60)

and the correlator for the k mode is relatively easy to deter-
mine and is given in Ref. 30. To make the symmetry z → L
− z more explicit, we switch to coordinates where the plates
are located at −L/2 and L/2; in this case the correlator is given
by

Gk(z, z′)=4π


[
exp(−k|z − z′|)

2k

+ cosh(k(z+z′))+� exp(−kL) cosh(k(z−z′))
�−1 exp(kL) − � exp(−kL)

]
,

(61)

where

� = 1 − εext

1 + εext
. (62)

We will write A(x0), B(x0), and C ′(x0) using this expression
for the correlator. Divergences may appear, but for the density
itself we can drop (almost) all the x0-independent terms. In
fact we find

A(x0) = 1

2π

∫ kmax

0

(
∂∂ ′ 0
0 k2

2 12

)
Gk(z0, z0)k dk, (63)

where we need a cut-off as in the weak-coupling limit, and

∂∂ ′Gk(z0, z0) = 4


[
qmax(k) − k arctan

(
qmax(k)

k

)]

+ 4π
k2 cosh(2kz0) − � exp(−kL)

�−1 exp(kL) − � exp(−kL)
,

(64)

where qmax(k) is defined by (B9), qmax(k)2 + k2 = k2
max. Then,

for B(x0), we will keep

B(x0) = 2


(
1
0

) ∫ kmax

0

k2 sinh(2kz0)

�−1 exp(kL) − � exp(−kL)
dk.

(65)

and we can drop the second term in C ′(x0),

C ′(x0) = 2


∫ kmax

0

cosh(2kz0)

�−1 exp(kL) − � exp(−kL)
k dk.

(66)

The result is shown in Fig. 3 (right), where we used elec-
troneutrality to normalize the strong coupling result, defined
as we have seen up to a constant. We see that the counte-
rions are completely excluded from the region close to the
interfaces and pushed towards the middle of the dielectric
slab. This effect increases with the coupling parameter 
.
It appears in Fig. 4 that, in opposition to the weak coupling
limit, the dependence on the polarizability is weak. Figure 6
shows that the strong coupling density is ruled by the im-
ages: without them, the density would be constant within the
slab.2, 7, 24, 31

As a conclusion, the polarizability has a small effect at
the strong coupling level.

C. Pressure

Using its definition (12) and the condition λU = N, we
can write the free energy, up to the first order in λ, as

F � J + N

2π

ln λ = − ln Z0 − ln

(
1 + N

2π


)

+ N

2π

ln N − N

2π

ln U. (67)

In the right hand side, the second and third terms do not de-
pend on L and are not needed to compute the pressure. We can
restrict ourselves to the computation of the L dependent part
of the free energy:

FL � − ln Z0 − N

2π

ln U. (68)

Let us first compute the L dependent part of J0 = −ln Z0,
using (59) we get

J0 = 1

2
ln

[
det

(
− ε∇2

4π


)]

+ 1

2(2π
)2

∫
σ (x)σ (x′)G(x, x′)d ′xd ′x′. (69)

The first term is the thermal Casimir fluctuation free en-
ergy, and the second is the electrostatic interaction between
the plates. Using the decomposition of the correlator in
orthogonal modes, we can write∫

σ (x)σ (x′)G(x, x′)d ′xd ′x′ = 2(G0(0, 0) + G0(0, L)),

(70)
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where we have taken
∫

d r = 1 to have the energy per unit
area. Since the orthogonal mode k = 0 is ill-defined in (61),
we can derive with respect to L before taking the limit k → 0.
We get d

dL
Gk(0, 0) →

k→0
0 and d

dL
Gk(0, L) →

k→0
−2π
, so that

we can replace G0(0, L) = −2π
L. We thus get the final ex-
pression for the grand potential,

J0 = 1

4π

∫
ln(1 − �2 exp(−2kL))kdk − L

2π

. (71)

Within the strong-coupling virial expansion this term corre-
sponds to the free energy of the system without any ion.

Now we need to compute U, remembering that we only
need the L dependent terms in ln U. Starting from expression
(58), we get

z1(x0) = Z0 exp (−W (x0)), (72)

where W (x0) is an effective one-body potential given by

W (x0) = −1

2
B(x0)T

(
1

α
+ A(x0)

)−1

B(x0)

+ C ′(x0)

2
+ 1

2
Tr log (1 + α A(x0)). (73)

The Z0 term and the last term in the exponent of the above
equation can be rearranged and interpreted in the following
way: keeping only terms proportional to (∇φ)2 in the expo-
nential of (52), we can show that

det

(
− ε∇2

4π


)−1/2

det (1 + α A(x0))−1/2

= det

(
−∇

[
ε(x)

4π

+ αδ(x − x0)

]
∇

)−1/2

. (74)

This means that these two functional determinants represent
the thermal Casimir partition function for a system composed
of a finite extension dielectric slab, two semi-infinite dielec-
tric regions outside of it and a single polarizable ion within
the slab. The delta function in the expression for the effective
dielectric response function on the r.h.s. of (74) needs to be
regularized to avoid a divergence in the case of a point ion.
It is clear that the last term in the effective one-body poten-
tial (73) describes the thermal Casimir or zero-frequency van
der Waals interaction between the polarizable particle and the
dielectric interfaces in the system. It is given explicitly by

1

2
Tr log (1 + α A(x0)) = 1

2
Tr log(1 + α∇∇′T G(x0, x0))

� 1

2
αTr[∇∇′T G(x0, x0)]. (75)

In the asymptotic regime of large x0 we obtain the scaling
x−3

0 which corresponds to the zero-frequency van der Waals
interaction between the polarizable particle and a single di-
electric discontinuity.32 Our results are thus completely con-
sistent with everything else we know about the polarizable
particles and their zero-frequency van der Waals interactions
with dielectric discontinuities.27

At the end of the calculation we obtain for the L-
dependent interaction free energy (67) first the usual exten-
sive term, L

2π

, giving rise to an attractive force between the

plates, independent on L while the other terms cannot be eval-
uated analytically but are easily calculated numerically: the
computation of A follows from (63), B is obtained from (65),
and finally C ′(x0) is obtained in the form:

C ′(x0) = 2


∫ kmax

0

cosh(2kz0)

�−1 exp(kL) − � exp(−kL)
k dk+2L,

(76)
where we differentiated with respect to L before taking the
limit k → 0 in order to get the last term that represents the
attraction between the ion and each of the bounding dielectric
surfaces of the slab. Finally U is given by integrating (73).

The pressure obtained from the interaction free energy
is shown in Fig. 5 for different values of α and R. The depen-
dence on the polarizability is very weak and non-monotonous,
contrarily to what we observed in the weak coupling limit.
The results are however very sensitive to the size of the ions,
especially for large ions.

V. DISCUSSION AND CONCLUSIONS

In this paper we have formulated a theory of Coulomb
fluids that, apart from the charge of the mobile counterions,
includes also their static excess polarizability. This leads to
a possibility of ion specific effects even for ions with nomi-
nally equal valency.9 Instead of starting from the phenomeno-
logical description of the ionic effects on the local dielectric
function, an endeavor pursued in Refs. 9 and 10, we rather
implemented the effect of ionic polarizability at the level of
the field action deriving the appropriate field-theoretic repre-
sentation of the model. Though this variation in the approach
results in the same form of the model at the mean-field level,
the formulation presented is eventually more general and suit-
able for further analysis and implementation of the weak and
the strong-coupling asymptotic limits.

After formulating the model and casting it into a field-
theoretic form, we derive the pressure and the ionic density
in the mean-field level approximation—corresponding to the
saddle-point of the field-theoretic action. We then add the ef-
fects of Gaussian fluctuations of the local electrostatic poten-
tial around the mean field. This constitutes the weak-coupling
approximation of the complete field theory.

The effect of the fluctuations around the mean-field sad-
dle point is found to be rather small. In the pressure itself it
is barely discernible, see Fig. 2, but it does become stronger
as the polarizability of the ions is increased, while the den-
sity profile shows an effect only very close to the boundaries
of the system where the ionic density is enhanced, see Fig. 3,
depending on the coupling parameter. This modification of the
ionic density in the region close to the dielectric boundaries
of the system is partly due to the image effects30, 31 and partly
due to the ionic polarizability.

We then formulated a full strong-coupling theory which
formally corresponds to a single-particle level description and
derived its consequences in detail. In the strong-coupling limit
the ions are expelled from the vicinity of the dielectric bound-
aries, see Fig. 3. The origin of this effect lies in the dielectric
image interactions that lead to a vicinal exclusion of the ions
close to the dielectric discontinuities.30, 31
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FIG. 5. Strong coupling pressure as a function of the plate separation L. (Left) R = 2, εext = 0.05, and 
 = 10 for different values of α. (Right) α = −0.01,
εext = 0.05, and 
 = 10 for different values of R.

The results derived here, both for the mean-field plus
fluctuations and for the strong coupling regime, exhibit a de-
pendence on the ion polarizability as well as on the size of
the ions, Figs. 2 and 5. The effect of ionic polarizability on
the interaction pressure is connected partly with the changes
in the density profile leading to the changes in the osmotic
van’t Hoff component of the interactions pressure, and partly
with their contribution to the Maxwell stress term in Eq. (21).
The ionic size dependence comes from divergences naturally
present for point dipoles. We have to stress here that what
we refer to as the size of the ions is actually the size of the
ionic cavity in the solvent which includes also their hydration
shell.9 Despite the fact that the field theory arising from our
model is a priori independent of the ionic size, we see that if
one leaves the domain of mean field theory, by either taking
into account fluctuations or going to the strong coupling limit,
calculated thermodynamic quantities exhibit ultra-violet, or
short distance, divergences. These divergences are associated
with the inclusion of ionic polarizability as they do not arise
in strong coupling or in the mean field fluctuations for non-
polarizable ions. We have argued that the length scale used to
cut off ultra-violet divergences is thus the size of the polariz-
able molecules. Our results are thus in line with Bikerman15

who long ago argued for the role of the ionic size. The ef-
fects of the ion size on the interaction pressure are shown in

Fig. 5. The size dependence mediated by the polarizability of
the ions has nothing to do with steric effects and has not been
seen before for non-polarizable ions or for polarizable ions on
the mean-field level.

The effect of dielectric images, i.e., of the outer permit-
tivity, is shown in the case of density in Fig. 6 and in the case
of pressure in Fig. 7. The weak coupling limit is only weakly
affected by the images, which is to be expected since this
regime is dominated by the mean field that does not depend on
εext.30 On the other hand, the strong coupling limit is strongly
affected, this time because images add a non-negligible term
to the correlator (61).

Due to the polarizability of the ions, it is also clear that
our two approximations break down if the parameters are too
extreme, but for different reasons. This is easy to analyze for
the strong coupling result (58): here extreme parameter val-
ues correspond either to ions which are too small or have a
too high (negative) polarizability. In this case, the effective
permittivity around the ion may turn negative, leading to a
field instability that shows up in the partition function. For
the weak coupling limit, on the other hand, if the dielectric
function 1 + αn(z) becomes negative on the mean field level,
a divergence appears for the fluctuations about the mean field
and the system becomes unstable. This particular instability
points out that for dense systems, the linear relation between
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FIG. 6. Effect of the outer permittivity on the counterion density distribution. (Left) Weak coupling density with α = −0.3, R = 0.3, 
 = 0.3, and εext = 0.05
(solid line) or εext = 1 (dashed line). (Right) Strong coupling density with α = −0.01, R = 2, 
 = 10, and εext = 0.05 (solid line) or εext = 1 (dashed line).
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FIG. 7. Effect of the outer permittivity on the interaction pressure. (Left) Weak coupling pressure with α = −0.1, R = 1, 
 = 0.3, and εext = 0.05 (solid line)
or εext = 1 (dashed line). (Right) Strong coupling pressure with α = −0.01, R = 2, 
 = 10, and εext = 0.05 (solid line) or εext = 1 (dashed line).

concentration and dielectric decrement breaks down; hence
our study is restricted to relatively dilute systems. Other non-
linear solvation related effects14 not taken into account in our
analysis would then take over and stabilize the system.

For polarizable ions, the validity of the strong coupling
vs. weak coupling description no longer depends on a single
coupling parameter, but actually on three parameters. More
work would thus be needed to explore different regions of the
parameters space and assess the validity of the WC-SC di-
chotomy in each of them. Our present work can only be seen
as a first step towards this complicated endeavor. One gen-
eral conclusion stemming from the present work is that the
contribution of polarizable counterions to the total partition
function is in general non-additive, contrary to what is some-
times assumed.27, 28, 33 It is in fact highly non-additive at the
weak coupling level, whereas it can sometimes be reduced to
an additive contribution in the free energy at the strong cou-
pling level, only if the polarizability is large enough. Simply
adding a van der Waals ion-polarizability dependent contribu-
tion to the electrostatic potential of mean force is wrong.

A final note is in order about the possible computational
verifications of our analytical calculations via coarse grained
simulations that we did not attempt to see through in this
work. As polarizability belongs to non-pairwise additive ef-
fects the simulation of the present model presents a consider-
able challenge. One would need to include the image interac-
tions as well as the polarizability couplings to all orders which
would appear to be no small accomplishment. Until such time
when these types of simulations are actually performed our
analytical calculations will remain the sole means to assess
the consequences of our model of Coulomb fluids.
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APPENDIX A: FLUCTUATIONS PARTITION FUNCTION

In this appendix we will compute the path-integral ap-
pearing in (30),

Z (2)
k =

∫
exp

(
−S

(2)
k [θ ]




)
[dθ ]. (A1)

We introduce the propagator

K(θ0, θ1; z, z′; k) =
∫ θ(z′)=θ1

θ(z)=θ0

exp

(
−S

(2)
k,b[θ ]




)
[dθ ],

(A2)
where, implicitly, the action is taken only over [z, z′].

We denote by Kext(θ0, θ1; l; k) the propagator for a mode
k on a length l in the external medium; it is given by34

Kext(θ0, θ1; l; k) =
√

εextk

8π2
 sinh(kl)

× exp

(
− εextk

8π
 tanh(kl)

(
θ2

0 + θ2
1

)

+ εextk

4π
 sinh(kl)
θ0θ1

)
. (A3)

We also denote Kψ (θ0, θ1; z, z′; k) the propagator be-
tween z and z′ in the ionic solution with the field ψ (and the
ionic density n contained implicitly in the field). The path-
integral (A1) is thus

Z (2)
k = lim

l→∞

∫
Kext(θ0, θ1; l; k)KψMF (θ1, θ2; 0, L; k)

×Kext(θ2, θ3; l; k) exp

(
− C

2


[
θ2

1 + θ2
2

]) 3∏
j=0

dθj ,

= lim
l→∞

〈1|Kext(l; k) exp

(
−Cθ2

2


)
KψMF (0, L; k)

× exp

(
−Cθ2

2


)
Kext(l; k)|1〉, (A4)

where we introduce a matrix notation for the propagator. We
have to integrate over the possible outer values of the field, so
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we need∫
Kext(θ0, θ1; l; k)dθ0 = 1√

cosh(kl)

× exp

(
−εextk tanh(kl)

8π

θ2

1

)
.

(A5)

We can see immediately that the limit l → ∞ is not well de-
fined here: we find Z (2)

k = 0. Since we need only the L de-
pendence of Z (2)

k up to a multiplicative term, we can remove
the term 1/

√
cosh(kl) in the equation above. Thus the path-

integral becomes

Z (2)
k = lim

l→∞

[
cosh(kl)

〈
1

∣∣∣∣Kext(l; k)

× exp

(
−Cθ2

2


)
KψMF (0, L; k)

× exp

(
−Cθ2

2


)
Kext(l; k)

∣∣∣∣ 1

〉]
(A6)

= 〈ext, k|KψMF (0, L; k)|ext, k〉, (A7)

where we have used

|ext, k〉 = exp

(
−C + εextk/4π

2

θ2

)
. (A8)

To evaluate the propagator between the plates, we write
the bulk action

S
(2)
k,b[θ ]



= 1

2

∫ L

0
[A(z)θ ′(z)2 + Bk(z)θ (z)2]dz, (A9)

with

A = 1

2π


(
1

2
+ αnMF + α2nMFψ

′2
MF

)
, (A10)

Bk = 1

2π


[
−ψ ′′

MF

2
+

(
1

2
+ αnMF

)
k2

]
. (A11)

Then the propagator is of the form:34

K(θ0, θ1; z, z′; k) =
√

bk(z, z′)
2π

exp

(
−ak

i (z, z′)
2

θ2
0

− ak
f (z, z′)

2
θ2

1 + bk(z, z′)θ0θ1

)
.

(A12)

It is easy to show that ak
i , ak

f , and bk obey the following com-
position rules:

ak
i (z, z′ + ζ ) = ak

i (z, z′) − bk(z, z′)2

ak
f (z, z′) + ak

i (z′, z′ + ζ )
,

(A13)

ak
f (z, z′ + ζ ) = ak

f (z′, z′ + ζ ) − bk(z′, z′ + ζ )2

ak
f (z, z′) + ak

i (z′, z′ + ζ )
,

(A14)

bk(z, z′ + ζ ) = bk(z, z′)bk(z′, z′ + ζ )

ak
f (z, z′) + ak

i (z′, z′ + ζ )
. (A15)

On the other hand, one can show that on a small interval [z, z
+ ζ ], where A and Bk are almost constant, they are given by

ak
i (z, z + ζ ) =

√
A(z)Bk(z)

tanh(ωk(z)ζ )
, (A16)

ak
f (z, z + ζ ) =

√
A(z)Bk(z)

tanh(ωk(z)ζ )
, (A17)

bk(z, z + ζ ) =
√

A(z)Bk(z)

sinh(ωk(z)ζ )
, (A18)

where ωk(z) = √
Bk(z)/A(z). From Eqs. (A13)–(A18) we

can show that ak
i , ak

f , and bk satisfy

∂bk

∂z′ (z, z′) = −ak
f (z, z′)bk(z, z′)

A(z′)
, (A19)

∂ak
i

∂z′ (z, z′) = −bk(z, z′)2

A(z′)
, (A20)

∂ak
f

∂z′ (z, z′) = Bk(z′) − ak
f (z, z′)2

A(z′)
, (A21)

with the initial condition

bk(z, z′) ∼
z→z′

ak
i (z, z′) ∼

z→z′
ak

f (z, z′) ∼
z→z′

A(z)

z′ − z
. (A22)

Equations (A12) and (A19)–(A21) are the Pauli-van Vleck
formula. We will however use Eqs. (A13)–(A18) for the nu-
merical integration.

Using (A12) in (A6), we get

Z (2)
k =

√√√√√ 2πbk(0, L)[
ak

f (0, L) + C+εextk/4π




]2
− bk(0, L)2

. (A23)

However, this expression leads to a pressure that contains a
constant term (i.e., independent on L), that comes from the
fact that in our computation the total volume of the space de-
pends on L. This term is thus not physical, and should be
removed. Practically, we can notice that it comes from the
exponential decay of the function bk, bk(0, L) ∼ exp(−kL).
The final expression for the path-integral after removing this
artificial pressure is thus

Z (2)
k = exp

(
kL

2

) √√√√√ 2πbk(0, L)[
ak

f (0, L) + C+εextk/4π




]2
− bk(0, L)2

.

(A24)
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APPENDIX B: FLUCTUATIONS CORRELATION FUNCTION

We show here how to compute the k-mode correlation function Gk(z, z′) and ∂∂ ′Gk(z, z′) needed in (44).
First, we can derive that

Gk(z, z′) = 〈ext, k|KψMF (0, z; k)θKψMF (z, z′; k)θKψMF (z′, L; k)|ext, k〉
〈ext, k|KψMF (0, L; k)|ext, k〉 , (B1)

which can be evaluated explicitly with (A8) and (A12) and leads to

Gk(z, z) =
(

ak
f (0, z) − bk(0, z)2

C+εextk/4π



+ ak

i (0, z)
+ [z → L − z]

)−1

, (B2)

where we took advantage of the symmetry z → L − z of the
system.

The term ∂∂ ′Gk(z, z) can then be obtained as the limit

∂∂ ′Gk(z, z) = lim
ζ→0

(2ζ )−2[Gk(z + ζ, z + ζ )

− 2Gk(z − ζ, z + ζ ) + Gk(z − ζ, z − ζ )].

(B3)

We can again compute this expression analytically, because
we have an exact expression for KψMF (z, z + ζ ; k) when ζ is
small. As expected, it diverges. Again, we have to take the
size R of the ions into account. To be consistent with the cut-
off introduced for pressure, we will regularize the divergence
in Fourier space. The point is that locally, the correlator can
be computed analytically, and that this local form contains the
divergence; thus we will be able to cut it off in the analytic
expression.

In this purpose, we decompose the correlator in the fol-
lowing way:

Gk = Gnum
k − Gloc

k + Gloc
k , (B4)

where Gnum
k is the correlator computed using the numerical

values for the Pauli-van Vleck functions (dealing with it in
Fourier space would need a numerical Fourier transform) and
Gloc

k is the “local” correlator, computed assuming that A(z)
and ωk(z) are constant around z. Thus the term Gnum

k − Gloc
k

will not lead to divergences when we will compute its sec-
ond derivative, and we will be able to write the term Gloc

k in
Fourier space and cut its divergence off easily. Explicitly,

Gloc
k (z, z′) = exp(−ωk(z)|z − z′|)

2A(z)ωk(z)
, (B5)

its expression in Fourier space is

G̃loc
k (q) = 1

A(z)(q2 + ωk(z)2)
, (B6)

so its contribution to the second derivative will be

∂∂ ′Gcut
k (z, z) =

∫
|q|<qmax(k)

q2

A(z)(q2 + ωk(z)2)

dq

2π

(B7)

= 1

πA(z)

[
qmax(k) − ωk(z) arctan

(
qmax(k)

ωk(z)

)]
,

(B8)

where the superscript “cut” means that the cut-off has been
applied, and the one-dimensional cut-off depends on the mode
since the three-dimensional wave-vector is constrained:

qmax(k)2 + k2 = k2
max. (B9)

Now, we turn to the evaluation of ∂∂ ′Gnum
k (z, z). The cor-

relators invoked in the above expression can be derived from
the quantity:

Z(a, a′, b) =
∫

exp

(
−a

2
θ2 − a′

2
θ ′2 + bθθ ′

)
dθdθ ′

= 2π√
aa′ − b2

, (B10)

where

a = c + ak
i (z − ζ, z + ζ ), (B11)

a′ = c′ + ak
f (z − ζ, z + ζ ), (B12)

b = bk(z − ζ, z + ζ ), (B13)

with c = ak
f (0, z − ζ ) − bk(0,z−ζ )2

C+εextk/4π



+ak

i (0,z−ζ )
and c′ = ak

f (0, L

− z − ζ ) − bk(0,L−z−ζ )2

C+εextk/4π



+ak

i (0,L−z−ζ )
. We note that the terms ap-

pearing in a, a′, and b can be computed reversing the com-
position rules (A13)–(A15), giving

ak
i (z − ζ, z + ζ ) = bk(0, z − ζ )2

ak
i (0, z − ζ ) − ak

i (0, z + ζ )

− ak
f (0, z − ζ ), (B14)

ak
f (z − ζ, z + ζ ) = bk(0, L − z − ζ )2

ak
i (0, L − z − ζ ) − ak

i (0, L − z + ζ )

− ak
f (0, L − z − ζ ), (B15)
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bk(z − ζ, z + ζ ) = bk(0, z + ζ )

bk(0, z − ζ )

[
ak

f (0, z − ζ )

− ak
i (z − ζ, z + ζ )

]
, (B16)

where we used ak
f (z − ζ, z + ζ ) = ak

i (L − z − ζ, L − z

+ ζ ). Now

Gnum
k (z − ζ, z − ζ ) = −2

∂ ln(Z)

∂a
= a′

aa′ − b2
, (B17)

Gnum
k (z + ζ, z + ζ ) = −2

∂ ln(Z)

∂a′ = a

aa′ − b2
, (B18)

Gnum
k (z − ζ, z + ζ ) = ∂ ln(Z)

∂b
= b

aa′ − b2
. (B19)

We will thus write

[∂∂ ′]ζGnum
k (z, z) = a + a′ − 2b

4ζ 2(aa′ − b2)
, (B20)

where [∂∂ ′]ζ means that the second derivative is computed
with a small step ζ . To this quantity, we have to deduce

[∂∂ ′]ζGloc
k (z, z) = 1 − exp(−2ωk(z)ζ )

4ζ 2A(z)ωk(z)
. (B21)

Finally, we have

∂∂ ′Gk(z, z) = [∂∂ ′]ζGnum
k (z, z) − [∂∂ ′]ζGloc

k (z, z)

+∂∂ ′Gcut
k (z, z), (B22)

that should not depend on the discretisation step ζ as soon as
it is small enough.
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