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Multiple functional regression with both discrete and continuous covariates

In this paper we present a nonparametric method for extending functional regression methodology to the situation where more than one functional covariate is used to predict a functional response. Borrowing the idea from Kadri et al. (2010a), the method, which support mixed discrete and continuous explanatory variables, is based on estimating a function-valued function in reproducing kernel Hilbert spaces by virtue of positive operator-valued kernels.

Introduction

The analysis of interaction effects between continuous variables in multiple regression has received a significant amount of attention from the research community. In recent years, a large part of research has been focused on functional regression where continuous data are represented by real-valued functions rather than by discrete, finite dimensional vectors. This is often the case in functional data analysis (FDA) when observed data have been measured over a densely sampled grid. We refer the reader to Ramsay andSilverman (2002, 2005) and [START_REF] Ferraty | Nonparametric Functional Data Analysis[END_REF] for more details on functional data analysis of densely sampled data or fully observed trajectories. In this context, various functional regression models [START_REF] Ramsay | Functional data analysis[END_REF] have been proposed according to the nature of explanatory (or covariate) and response variables, perhaps the most widely studied is the generalized functional linear model where covariates are functions and responses are scalars [START_REF] Cardot | Functional linear model[END_REF][START_REF] Cardot | Spline Estimators for the Functional Linear Model[END_REF][START_REF] James | Generalized linear models with functional predictors[END_REF][START_REF] Müller | Generalized functional linear models[END_REF][START_REF] Preda | Regression models for functional data by reproducing kernel Hilbert spaces methods[END_REF].

In this paper, we are interested in the case of regression models with a functional response. Two subcategories of such models have appeared in the FDA literature: covariates are scalars and responses are functions also known as "functional response model" [START_REF] Faraway | Regression analysis for a functional response[END_REF][START_REF] Chiou | Functional response models[END_REF]; both covariates and responses are functions [START_REF] Ramsay | Some tools for functional data analysis[END_REF][START_REF] He | Extending correlation and regression from multivariate to functional data. Asymptotics in statistics and probability[END_REF][START_REF] Cuevas | Linear functional regression: the case of fixed design and functional response[END_REF][START_REF] Prchal | Spline estimator for the functional linear regression with functional response[END_REF][START_REF] Antoch | Functional linear regression with functional response: application to prediction of electricity consumption[END_REF]. In this work, we pay particular attention to this latter situation which corresponds to extending multivariate linear regression model to the functional case where all the components involved in the model are functions. Unlike most of previous works which consider only one functional covariate variable, we wish to perform a regression analysis in which multiple functional covariates are used to predict a functional response. The methodology which is concerned with solving such task is referred to as a multiple functional regression.

Previous studies on multiple functional regression [START_REF] Han | Novel Perspectives On Market Valuation of Firms Via Functional Regression[END_REF][START_REF] Matsui | Regularized functional regression modeling for functional response and predictors[END_REF][START_REF] Valderrama | Forecasting pollen concentration by a two-Step functional model[END_REF] assume a linear relationship between functional covariates and responses and model this relationship via a multiple functional linear regression model which generalizes the model in [START_REF] Ramsay | Some tools for functional data analysis[END_REF] to deal with more than one covariate variable. However, extensions to nonparametric models have not been considered. Nonparametric functional regression (Ferraty andVieu, 2002,2003) is addressed mostly in the context of functional covariates and scalar responses. More recently, [START_REF] Lian | Nonlinear functional models for functional responses in reproducing kernel hilbert spaces[END_REF] and Kadri et al. (2010a) showed how function-valued reproducing kernel Hilbert spaces (RKHS) and operator-valued kernels can be used for the nonparametric estimation of the regression function when both covariates and responses are curves. Building on these works, we present in this paper a nonparametric multiple functional regression method where several functions would serve as predictors. Furthermore, we aim at extending this method to handle mixed discrete and functional explanatory variables. This should be helpful for situations where a subset of regressors are comprised of repeated observations of an outcome variable and the remaining are independent scalar or categorical variables. In [START_REF] Antoch | Functional linear regression with functional response: application to prediction of electricity consumption[END_REF] for example, the authors discuss the use of a functional linear regression model with a functional response to predict electricity consumption and mention that including the knowledge of special events such as festive days in the estimation procedure may improve the prediction.

The remainder of this paper is organized as follows. Section 2 reviews the multiple functional linear regression model and discusses its nonparametric extension. This section also describes the RKHS-based estimation procedure for the nonparametric multiple functional regression model. Section 3 concludes the paper.

Multiple functional regression

Before presenting our nonparametric multiple function regression procedure, we start this section with a brief overview of the multiple functional linear regression model [START_REF] Matsui | Regularized functional regression modeling for functional response and predictors[END_REF][START_REF] Valderrama | Forecasting pollen concentration by a two-Step functional model[END_REF]. This model extends functional linear regression with a functional response [START_REF] Ramsay | Some tools for functional data analysis[END_REF][START_REF] Ramsay | Functional data analysis[END_REF] to deal with more than one covariate and seeks to explain a functional response variable y(t) by several functional covariates x k (s). A multiple functional linear regression model is formulated as follows:

y i (t) = α(t) + p k=1 Is x ik (s)β k (s, t)ds + ǫ i (t), t ∈ I t , i = 1, . . . , n, (1) 
where α(t) is the mean function, p is the number of functional covariates, n is the number of observations, β k (s, t) is the regression function for the k-th covariate and ǫ i (t) a random error function. To estimate the functional parameters of this model, one can consider the centered covariate and response variables to eliminate the functional intercept α. Then, β k (., .) are approximated by a linear combination of basis functions and the corresponding real-valued basis coefficients can be estimated by minimizing a penalized least square criterion. Good candidates for the basis functions include the Fourier basis [START_REF] Ramsay | Functional data analysis[END_REF] and the B-spline basis [START_REF] Prchal | Spline estimator for the functional linear regression with functional response[END_REF].

It is well known that parametric models suffer from the restriction that the inputoutput relationship has to be specified a priori. By allowing the data to model the relationships among variables, nonparametric models have emerged as a powerful approach for addressing this problem. In this context and from functional input-output data (x i (s), y i (t)) n i=1 ∈ (G x ) p × G y where G x : I s -→ R and G y : I t -→ R , a nonparametric multiple functional regression model can be defined as follows:

y i (t) = f (x i (s)) + ǫ i (t), s ∈ I s , t ∈ I t , i = 1, . . . , n,
where f is a linear operator which perform the mapping between two spaces of functions. In this work, we consider a slightly modified model in which covariates could be a mixture of discrete and continuous variables. More precisely, we consider the following model

y i (t) = f (x i ) + ǫ i (t), i = 1, . . . , n, (2) 
where x i ∈ X is composed of two subsets x d i and x c i (s). x d i ∈ R k is a k × 1 vector of discrete dependent or independent variables and x c i (s) is a vector of p continuous functions, so each x i contains k discrete values and p functional variables.

Our main interest in this paper is to design an efficient estimation procedure of the regression parameter f of the model ( 2). An estimate f * of f ∈ F can be obtained by minimizing the following regularized empirical risk

f * = arg min f ∈F n i=1 y i -f (x i ) 2 Gy + λ f 2 F (3)
Borrowing the idea from Kadri et al. (2010a), we use function-valued reproducing kernel Hilbert spaces (RKHS) and operator-valued kernels to solve this minimization problem. Function-valued RKHS theory is the extension of the scalar-valued case to the functional response setting. In this context, Hilbert spaces of function-valued functions are constructed and basic properties of real RKHS are restated. Some examples of potential applications of these spaces can be found in [START_REF] Kadri | Function-Valued Reproducting Kernel Hilbert Spaces and Applications[END_REF] and in the area of multi-task learning (discrete outputs) see [START_REF] Evgeniou | Learning multiple tasks with kernel methods[END_REF]. Function-valued RKHS theory is based on the one-to-one correspondence between reproducing kernel Hilbert spaces of function-valued functions and positive operator-valued kernels. We start by recalling some basic properties of such Spaces. We say that a Hilbert space F of functions X -→ G y has the reproducing property, if ∀x ∈ X the evaluation functional f -→ f (x) is continuous. This continuity is equivalent to the continuity of the mapping f -→ f (x), g Gy for any x ∈ X and g ∈ G y . By the Riesz representation theorem it follows that for a given x ∈ X and for any choice of g ∈ G y , there exists an element

h g x ∈ F , s.t. ∀f ∈ F h g x , f F = f (x)
, g Gy We can therefore define the corresponding operator-valued kernel K(., .) ∈ L(G y ), where L(G y ) denote the set of bounded linear operators from G y to G y , such that

K(x, z)g 1 , g 2 Gy = h g1 x , h g2 z F It follows that h g1 x (z), g 2 Gy = h g1 x , h g2 z F = K(x, z)g 1 , g
2 Gy and thus we obtain the reproducing property K(x, .)g, f F = f (x), g Gy It is easy to see that K(x, z) is a positive kernel as defined below: Definition: We say that K(x, z), satisfying K(x, z) = K(z, x) * , is a positive operatorvalued kernel if given an arbitrary finite set of points {(x i , g i )} i=1,...,n ∈ X × G y , the corresponding block matrix K with K ij = K(x i , x j )g i , g j Gy is positive semi-definite.

Importantly, the converse is also true. Any positive operator-valued kernel K(x, z) gives rise to an RKHS F K , which can be constructed by considering the space of functionvalued functions f having the form f (.) = n i=1 K(x i , .)g i and taking completion with respect to the inner product given by K(x, .)g 1 , K(z, .)

g 2 F = K(x, z)g 1 , g 2 Gy .
The functional version of the Representer Theorem can be used to show that the solution of the minimization problem (3) is of the following form:

f * (x) = n j=1 K(x, x j )g j (4)
Substituting this form in (3) , we arrive at the following minimization over the scalarvalued functions g i rather than the function-valued function f

min g∈(Gy) n n i=1 y i - n j=1 K(x i , x j )g j 2 Gy + λ n i,j K(x i , x j )g i , g j Gy (5) 
This problem can be solved by choosing a suitable operator-valued kernel. Choosing K presents two major difficulties: we need to construct a function from an adequate operator, and which takes as arguments variables composed of scalars and functions. [START_REF] Lian | Nonlinear functional models for functional responses in reproducing kernel hilbert spaces[END_REF] considered the identity operator, while in [START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF] the authors showed that it will be more useful to choose other operators than identity that are able to take into account functional properties of the input and output spaces. They also introduced a functional extension of the Gaussian kernel based on the multiplication operator. Using this operator, their approach can be seen as a nonlinear extension of the functional linear concurrent model [START_REF] Ramsay | Functional data analysis[END_REF]. Motivated by extending the functional linear regression model with functional response, we consider in this work a kernel K constructed from the integral operator and having the following form:

(K(x i , x j )g)(t) = [k x d (x d i , x d j ) + k x c (x c i , x c j )] k y (s, t)g(s)ds (6) 
where k x d and k x c are scalar-valued kernels on R k and (G x ) p respectively and k y the reproducing kernel of the space G y . Choosing k x d and k y is not a problem. Among the large number of possible classical kernels k x d and k y , we chose the Gaussian kernel. However, constructing k x c is slightly more delicate. One can use the inner product in (G x ) p to construct a linear kernel. Also, extending real-valued functional kernels such as those in [START_REF] Rossi | Support vector machine for functional data classification[END_REF] to multiple functional inputs could be possible.

To solve the problem (5), we consider that G y is a real-valued RKHS and k y its reproducing kernel and then each function in this space can be approximated by a finite linear combination of kernels. So, the functions g i (.) can be approximated by m l=1 α il k y (t l , .) and solving (5) returns to finding the corresponding real variables α il . Under this framework and using matrix formulation, we find that the nm × 1 vector α satisfies the system of linear equation (K + λI)α = Y (7)

where the nm × 1 vector Y is obtained by concatenating the columns of the matrix (Y il ) i≤n, l≤m and K is the block operator kernel matrix (K ij ) 1≤i,j≤n where each K ij is a m × m matrix.

Conclusion

We study the problem of multiple functional regression where several functional explanatory variables are used to predict a functional response. Using function-valued RKHS theory, we have proposed a nonparametric estimation procedure which support mixed discrete and continuous covariates. In future, we will illustrate our approach and evaluate its performance by experiments on simulated and real data.
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