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Functional Regularized Least Squares Classification with Operator-valued Kernels

Although operator-valued kernels have recently received increasing interest in various machine learning and functional data analysis problems such as multi-task learning or functional regression, little attention has been paid to the understanding of their associated feature spaces. In this paper, we explore the potential of adopting an operatorvalued kernel feature space perspective for the analysis of functional data. We then extend the Regularized Least Squares Classification (RLSC) algorithm to cover situations where there are multiple functions per observation. Experiments on a sound recognition problem show that the proposed method outperforms the classical RLSC algorithm.

Introduction

Following the development of multi-task and complex output learning methods [START_REF] Pontil | Open House on Multi-Task and Complex Outputs Learning[END_REF], operator-valued kernels have recently attracted considerable attention in the machine learning community (Micchelli & Pontil, 2005b;[START_REF] Reisert | Learning equivariant functions with matrix valued kernels[END_REF][START_REF] Caponnetto | Universal multi-task kernels[END_REF]. It turns out that these kernels lead to a new class of algorithms well suited for learning multi-output functions. For example, in multi-task learning contexts, standard single-task kernel learning methods such as support vector machines (SVM) and regularization networks (RN) are extended to deal with several dependent tasks at once by learning a vector-valued function using multi-task kernels [START_REF] Evgeniou | Learning multiple tasks with kernel methods[END_REF]. Also, in functional data analysis (FDA) where observed continuous data are measured over a densely sampled grid and then represented by real-valued functions rather than by discrete finite dimensional vectors, function-valued reproducing kernel Hilbert spaces (RKHS) are constructed from nonnegative operator-valued kernels to extend kernel ridge regression from finite dimensions to the infinite dimensional case [START_REF] Lian | Nonlinear functional models for functional responses in reproducing kernel Hilbert spaces[END_REF][START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF].

While most recent work has focused on studying operator-valued kernels and their corresponding RKHS from the perspective of extending Aronszajn's pioneering work (1950) to the vector or functionvalued case (Micchelli & Pontil, 2005a;[START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF][START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF], in this paper we pay special attention to the feature space point of view [START_REF] Schölkopf | Input space vs. feature space in kernel-based methods[END_REF]. More precisely, we provide some ideas targeted at advancing the understanding of feature spaces associated with operator-valued kernels and we show how these kernels can design more suitable feature maps than those associated with scalar-valued kernels, especially when input data are complex, infinite dimensional objects like curves and distributions.

In many experiments, the observations consist of a sample of random functions or curves. So, we adopt in this paper a functional data analysis point of view in which each curve corresponds to one observation. This is an extension of multivariate data analysis where observations consist of vectors of finite dimension. For an introduction to the field of FDA, the two monographs by [START_REF] Ramsay | Functional Data Analysis[END_REF]2002) provide a rewarding and accessible overview on foundations and applications, as well as a collection of motivating examples [START_REF] Müller | Functional modelling and classification of longitudinal data[END_REF].

To explore the potential of adopting an operatorvalued kernel feature space approach, we are interested in the problem of functional classification in the case where there are multiple functions per observation. This study is valuable from a variety of perspectives. Our motivating example is the practical problem of sound recognition which is of great importance in surveillance and security applications [START_REF] Dufaux | Automatic sound detection and recognition for noisy environment[END_REF][START_REF] Istrate | Information extraction from sound for medical telemonitoring[END_REF][START_REF] Rabaoui | Using one-class svms and wavelets for audio surveillance[END_REF]. This problem can be tackled by classifying incoming signals representing the environmental sounds into various predefined classes. In this setting, a preprocessing step consists in applying signal-processing techniques to generate a set of features characterizing the signal to be classified. These features form a so-called feature vector which contains discrete values of different functional parameters providing information about temporal, frequential, cepstral and energy characteristics of the signal. In standard machine learning methods, the feature vector is considered to be a subset of R n by concatenating samples of the different functional features, and this has the drawback of not considering any dependencies between different values over subsequent time-points within the same functional datum. Employing these methods implies that permuting time points arbitrarily, which is equivalent to exchanging the order of the indexes in a multivariate vector, should not change the result of statistical analysis. Taking into account the inherent sequential nature of the data and using the dependencies along the time-axis should lead to higher quality results [START_REF] Lee | Functional data analysis: classification and regression[END_REF]. In our work, we use a functional data analysis approach based on modeling each sound signal by a vector of functions (in (L 2 ) p for example, where L 2 is the space of square integrable functions and p is the number of functional parameters) rather than by a vector in R n , with the hope of improving performance by: (1) considering the relationship between samples of a function variable and thus the dynamic behavior of the functional data, (2) capturing discriminative characteristics between functions contrary to the concatenation procedure.

During the last decade, various kernel-based methods have become very popular for solving classification problems. Among them, the regularized least squares classification (RLSC) is a simple regularization algorithm which achieves good performance, nearly equivalent to that of the well-known Support Vector Machines (SVMs) [START_REF] Rifkin | Regularized least squares classification[END_REF][START_REF] Lian | Nonlinear functional models for functional responses in reproducing kernel Hilbert spaces[END_REF][START_REF] Rifkin | In defense of one-vsall classification[END_REF][START_REF] Zhang | Svm vs regularized least squares classification[END_REF]. By using operator-valued kernels, we extend the RLSC algorithm to cover situations where there are multiple functions per observation. One main obstacle for this extension involves the inversion of the block operator kernel matrix (kernel matrix where the block entries are linear operators). In contrast to the situation in the multivariate case, this inversion is not always feasible in infinite dimensional Hilbert spaces. In this paper, we attempt to overcome this problem by characterizing a class of operator-valued kernels and performing an eigenvalue decomposition of this kernel matrix.

The remainder of this paper is organized as follows.

In section 2, we review concepts of operator-valued kernels and their corresponding reproducing kernel Hilbert spaces and discuss some ideas for understanding the associated feature maps. Using these kernels, we propose a functional regularized least squares classification algorithm in section 3. It is an extension of the classical RLSC to the case where there are multiple functions per observation. The proposed algorithm is experimentally evaluated on a sound recognition task in section 4. Finally, section 5 presents some conclusions and future work directions.

Operator-valued kernels and associated feature spaces

In the machine learning literature, operator-valued kernels were first introduced by Micchelli and Pontil (2005b) to deal with the problem of multi-task learning. In this context, these kernels, called multitask kernels, are matrix-valued functions and their corresponding vector-valued reproducing kernel Hilbert spaces are used to learn multiple tasks simultaneously [START_REF] Evgeniou | Learning multiple tasks with kernel methods[END_REF]. Most often, multitask kernels are constructed from scalar-valued kernels which are carried over to the vector-valued setting by a positive definite matrix. More details and some examples of multi-task kernels can be found in [START_REF] Caponnetto | Universal multi-task kernels[END_REF]. In addition, some works have studied the construction of such kernels from a functional data analysis point of view (continuous data). For example, in [START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF], the authors showed how infinite dimensional operator-valued kernels can be used to perform nonlinear functional regression in the case where covariates as well as responses are functions.

Since we are interested in the problem of functional classification, we use a similar framework to that of [START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF], but we consider the more general case where we have multiple functions as inputs to the learning module. Kernel-based learning methodology can be extended directly from the vector-valued to the functional-valued case. The principle of this extension is to replace vectors by functions and matrices by linear operators; scalar products in vector space are replaced by scalar products in function space, which is usually chosen as the space of square integrable functions L 2 on a suitable domain. In the present paper, we focus on infinite dimensional operator-valued kernels and their corresponding functional-valued RKHS.

An operator-valued kernel K : X × X -→ L(Y ) is the reproducing kernel of a Hilbert space of functions from an input space X which takes values in a Hilbert space Y . L(Y ) is the set of all bounded linear operators from Y into itself. Input data are represented by a vector of functions, so we consider the case where X ⊂ (L 2 ) p and Y ⊂ L 2 . Function-valued RKHS theory is based on the one-to-one correspondence between reproducing kernel Hilbert spaces of function-valued functions and positive operator-valued kernels. We start by recalling some basic properties of such spaces. We say that a Hilbert space F of functions f : X -→ Y has the reproducing property, if ∀x ∈ X the linear functional f -→ f (x), y Y is continuous for any x ∈ X and y ∈ Y . By the Riesz representation theorem it follows that for a given x ∈ X and for any choice of y ∈ Y , there exists an element h y x ∈ F, s.t.

∀f ∈ F h y x , f F = f (x), y Y
We can therefore define the corresponding operator-

valued kernel K : X × X -→ L(Y ) such that K(x 1 , x 2 )y 1 , y 2 Y = h y1 x1 , h y2 x2 F It follows that h y1 x1 (x 2 ), y 2 Y = h y1 x1 , h y2 x2 F = K(x 1 , x 2 )y 1 , y 2 Gy
and thus we obtain the reproducing property

K(x, .)y, f F = f (x), y Y (1) 
Consequently, we obtain that K(., .) is a positive definite operator-valued kernel as defined below: (see proposition 1 in (Micchelli & Pontil, 2005b) for the proof)

Definition: We say that K(x 1 , x 2 ), satisfying K(x 1 , x 2 ) = K(x 2 , x 1 ) * (the superscript * indicates the adjoint operator), is a positive definite operatorvalued kernel if given an arbitrary finite set of points {(x i , y i )} i=1,...,n ∈ X ×Y , the corresponding block matrix K with

K ij = K(x i , x j )y i , y j Y is positive semi- definite.
Importantly, the converse is also true. Any positive operator-valued kernel K(x 1 , x 2 ) gives rise to an RKHS F K , which can be constructed by considering the space of function-valued functions f having the form f (.) = n i=1 K(x i , .)y i and taking completion with respect to the inner product given by

K(x 1 , .)y 1 , K(x 2 , .)y 2 F = K(x 1 , x 2 )y 1 , y 2 Y .
In the following, we present an example of functionvalued RKHS with functional inputs and the associated operator-valued kernel.

Example. Let X = H and Y = L 2 (Ω), where H is the Hilbert space of constants in [0, 1] and L 2 (Ω) the space of square integrable functions on Ω. We denote by M the space of L 2 (Ω)-valued functions on H whose

norm g 2 M = Ω H [g(v)(x)] 2 dvdx is finite.
Let (F; ., . F ) be the space of functions from H to L 2 (Ω) such that:

   F = {f, ∃f = df (v) dv ∈ M, f (u) = u 0 f (v)dv} f 1 , f 2 F = f 1 , f 2 M F is a RKHS with kernel K(u, v) = M ϕ(u,v)
. M ϕ is the multiplication operator associated with the function ϕ where ϕ(u, v) is equal to u if u(x) ≤ v(x) ∀x ∈ Ω and v otherwise. It is easy to check that K is Hermitian and nonnegative. Now we show that the reproducing property holds for any

f ∈ F, w ∈ L 2 (Ω) and u ∈ H f, K(u, .)w F = f , [K(u, .)w] M = Ω H [f (v)](x)[K(u, v)w] (x)dvdx = Ω u 0 [f (v)](x)w(x)dvdx = Ω [f (u)](x)w(x)dx = f (u), w L 2 (Ω)
Similar to the scalar case, operator-valued kernels provide an elegant way of dealing with nonlinear algorithms by reducing them to linear ones in some feature space F nonlinearly related to input space. A feature map associated with an operator-valued kernel K is a continuous function

Φ : X × Y -→ L(X, Y ) such that, for every x 1 , x 2 ∈ X and y 1 , y 2 ∈ Y K(x 1 , x 2 )y 1 , y 2 Y = Φ(x 1 , y 1 ), Φ(x 2 , y 2 ) L(X,Y )
where L(X, Y ) is the set of mappings from X to Y . By virtue of this property, Φ is called a feature map associated with K. Furthermore, from (1), it follows that in particular

K(x 1 , .)y 1 , K(x 2 , .)y 2 F = K(x 1 , x 2 )y 1 , y 2 Y
which means that any operator-valued kernel admits a feature map representation with a feature space F ⊂ L(X, Y ), and corresponds to a dot product in another space.

From this feature map perspective, we study the geometry of a feature space associated with an operatorvalued kernel and we compare it with the one obtained by a scalar-valued kernel. More precisely, we consider two reproducing kernel Hilbert spaces (RKHS) F and H. F is a RKHS of function-valued functions on X with values in Y . X ⊂ (L 2 ) p , Y ⊂ L 2 and let K be the reproducing operator-valued kernel of F. H is also a RKHS, but of scalar-valued functions on X with values in R, and k its reproducing real-valued kernel. The mappings Φ K and Φ k associated, respectively, with the kernels K and k are defined as follows

Φ y K : (L 2 ) p → L((L 2 ) p , L 2 ), x → K(x, .)y and Φ k : (L 2 ) p → L((L 2 ) p , R), x → k(x, .)
These feature maps can be seen as a mapping of the input data x i , which are vector of functions in (L 2 ) p , into a feature space in which the dot product can be computed using the kernel functions. This idea leads to design nonlinear methods based on linear ones in the feature space. In a supervised classification problem for example, since kernels could map input data into a higher dimensional space, kernel methods deal with this problem by finding a linear separation in the feature space between data which can not be separated linearly in the input space. We now compare the dimension of feature spaces obtained by the maps Φ K and Φ k . To do this, we adopt a functional data analysis point of view where observations are composed of sets of functions. Direct understanding of this FDA viewpoint comes from the consideration of the "atom" of a statistical analysis. In a basic course in statistics, atoms are "numbers", while in multivariate data analysis the atoms are vectors and methods for understanding populations of vectors are the focus. FDA can be viewed as the generalization of this, where the atoms are more complicated objects, such as curves, images or shapes represented by functions [START_REF] Zhao | The functional data analysis view of longitudinal data[END_REF]. Based on this, the dimension of the input space is p since x i ∈ (L 2 ) p is a vector of p functions. The feature space obtained by the map Φ k is a space of functions, so its dimension from a FDA point of view is one. The map Φ K projects the input data into a space of operators L(X, Y ). This means that using the operator-valued kernel K corresponds to mapping the functional data x i into a higher, possibly infinite, dimensional space (L 2 ) d with d → ∞. In a binary functional classification problem, we have higher probability to achieve linear separation between the classes by projecting the functional data into a higher dimensional feature space rather than into a lower one, that is why we think that it is more suitable to use operatorvalued than scalar-valued kernels in this context.

Functional regularized least squares classification

In this section, we show how to extend the regularized least squares classification algorithm (RLSC) to functional contexts using operator-valued kernels. To use these kernels for a classification problem, we consider the labels to be functions in some function space rather than real values as usual. The functional classification problem can then be framed as that of learning a function-valued function f : X -→ Y where X ⊂ (L 2 ) p and Y ⊂ L 2 . The RLSC algorithm [START_REF] Rifkin | Regularized least squares classification[END_REF] is based on solving a Tikhonov minimization problem associated with a square loss function, and then an estimate f * of f in a Hilbert space F with reproducing operator-valued kernel K : X ×X -→ L(Y ) is obtained by minimizing

f * = arg min f ∈F n i=1 y i -f (x i ) 2 Y + λ f 2 F (2)
By the representer theorem (Micchelli & Pontil, 2005a;[START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF], the solution of this problem has the following form

f * (x) = n j=1 K(x, x j )β j , β j ∈ Y (3) 
Substituting (3) in (2) , we come up with the following minimization over the scalar-valued functions β i rather than the function-valued function f

min βv∈(Y ) n n i=1 β i - n j=1 K(x i , x j )β j 2 Y +λ n i,j K(x i , x j )β i , β j Y (4)
β v is the vector of functions (β i ) i=1,...,n ∈ (L 2 ) n . The problem (4) can be solved in three ways. Assuming that the observations are made on a regular grid {t 1 , . . . , t m }, one can first discretize the functions x i and y i and then solve the problem using multivariate data analysis techniques. However, this has the drawback, as well known in the FDA literature, of not considering the relationships that exist between samples. The second way consists in considering the output space Y to be a scalar valued reproducing Hilbert space. In this case, the functions β i can be approximated by a linear combination of a scalar kernel

β i = m l=1 α il k(s l , .
) and then the problem (4) becomes a minimization problem over the real values α il . Another possible way to solve the minimization ( 4) is to compute its derivative using the directional derivative and setting the result to zero to find an analytic solution of the problem. It follows that β v satisfies the system of linear operator equations

(K + λI)β v = y v ( 5 
)
where

K = [K(x i , x j )] n i,j=1 is a n × n block operator matrix (K ij ∈ L(Y )
) and y v the vector of functions (y i ) n i=1 ∈ (L 2 ) n . In this work, we are interested in this third approach which extends the classical RLSC algorithm to functional data analysis domain. One main obstacle for this extension is the inversion of the block operator kernel matrix K. Block operator matrices generalize block matrices to the case where the block entries are linear operators between infinite dimensional Hilbert spaces. In contrast to the situation in the multivariate case, inverting such matrices is not always feasible in infinite dimensional spaces. To overcome this problem, we study the eigenvalue decomposition of a class of block operator kernel matrices obtained from operator-valued kernels having the following form

K(x i , x j ) = G(x i , x j )T, ∀x i , x j ∈ X (6)
where G is a scalar-valued kernel and T is an operator in L(Y ). This kernel construction is adapted from (Micchelli & Pontil, 2005a;b). Choosing T depends on the context. For multi-task kernels, T is a finite dimensional matrix which model relations between tasks. In FDA, [START_REF] Lian | Nonlinear functional models for functional responses in reproducing kernel Hilbert spaces[END_REF] suggested the use of the identity operator, while [START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF] showed that it will be more useful to choose other operators than identity that are able to take into account functional properties of the input and output spaces. They introduced a functional extension of the Gaussian kernel based on the multiplication operator. In this work, we are interested in kernels constructed from the integral operator. This seems to be a reasonable choice since functional linear model (see Eq. ( 7)) are based on this operator [START_REF] Ramsay | Functional Data Analysis[END_REF] 

y(s) = α(s) + x(t)ν(s, t)dt (7) Algorithm 1 Functional RLSC Input data x i ∈ (L 2 ([0, 1])) p , size n labels y i ∈ L 2 ([0, 1]), size n Eigendecomposition of G G = G(x i , x j ) n i,j=1 ∈ R n×n eigenvalues α i ∈ R, size n eigenvectors v i ∈ R n , size n Eigendecomposition of T T ∈ L(Y ) Initialize k: number of eigenfunctions eigenvalues δ i ∈ R, size k eigenfunctions w i ∈ L 2 ([0, 1]), size k Eigendecomposition of K = G ⊗ T K = K(x i , x j ) n i,j=1 ∈ (L(Y )) n×n eigenvalues θ i ∈ R, size n × k θ = α ⊗ δ eigenfunctions z i ∈ (L 2 ([0, 1])) n , size n × k z = v ⊗ w Solution of (4) β = (K + λI) -1 y Initialize λ: regularization parameter β = n×k i=1 (θ i + λ) -1 n j=1 z i,j , y j z i
where α and ν are the functional parameters of the model. So we consider the following positive definite operator-valued kernel

(K(x i , x j )y)(t) = G(x i , x j ) Ω e -|t-s| y(s)ds (8) 
where y ∈ Y and {s, t} ∈ Ω = [0, 1]. Note that a similar kernel was proposed in [START_REF] Caponnetto | Universal multi-task kernels[END_REF] for linear spaces of functions from R to Y . The n×n block operator kernel matrix K of operator-kernels having the form (6) can be expressed by a Kronecker product between the matrix G = G(x i , x j ) n i,j=1 in R n×n and the operator T ∈ L(Y )

K =    G(x 1 , x 1 )T . . . G(x 1 , x n )T . . . . . . . . . G(x n , x 1 )T . . . G(x n , x n )T    = G ⊗ T
In this case, the eigendecomposition of the matrix K can be obtained from the eigendecompositions of G and T (see Algorithm 1). Let θ i and z i be, respectively, the eigenvalues and the eigenfunctions of K, the inverse operator K -1 is given by

K -1 y v = i θ -1 i y v , z i z i , ∀y v ∈ (L 2 ) n
Now we are able to solve the system of linear operator equation ( 5) and the functions β i can be computed from eigenvalues and eigenfunctions of the matrix K, as described in Algorithm 1.

Experiments

Our experiments are based on a sound recognition task. The performance of the functional RLSC algorithm, described in section 3, is evaluated on a data set of sounds collected from commercial databases which include sounds ranging from screams to explosions, such as gun shots or glass breaking, and compared with the RLSC method [START_REF] Rifkin | Regularized least squares classification[END_REF].

Many previous works in the context of sound recognition have concentrated on classifying environmental sounds other than speech and music [START_REF] Dufaux | Automatic sound detection and recognition for noisy environment[END_REF][START_REF] Peltonen | Computational audiroty scene recognition[END_REF]. Such sounds are extremely versatile, including signals generated in domestic, business, and outdoor environments. A system that is able to recognize such sounds may be of great importance for surveillance and security applications [START_REF] Istrate | Information extraction from sound for medical telemonitoring[END_REF][START_REF] Rabaoui | Using one-class svms and wavelets for audio surveillance[END_REF]. The classification of a sound is usually performed in two steps. First, a pre-processor applies signal processing techniques to generate a set of features characterizing the signal to be classified. Then, in the feature space, a decision rule is implemented to assign a class to a pattern.

Database description

As in [START_REF] Rabaoui | Using one-class svms and wavelets for audio surveillance[END_REF], the major part of the sound samples used in the recognition experiments is taken from two sound libraries (Leonardo Software;Real World Computing Paternship, 2000). All signals in the database have a 16 bits resolution and are sampled at 44100 Hz, enabling both good time resolution and a wide frequency band, which are both necessary to cover harmonic as well as impulsive sounds. The selected sound classes are given in Table 1, and they are typical of surveillance applications. The number of items in each class is deliberately not equal.

Note that this database includes impulsive sounds and harmonic sounds such as phone rings (C6) and children voices (C7). These sounds are quite likely to be recorded by a surveillance system. Some classes sound very similar to a human listener: in particular, explosions (C4) are pretty similar to gunshots (C2). Glass breaking sounds include both bottle and window breaking situations. Phone rings are either electronic or mechanic alarms. Temporal representations and spectrograms of some sounds are depicted in Figure 1 and 2. Power spectra are extracted through the Fast Fourier Transform (FFT) every 10 ms from 25 ms frames. They are represented vertically at the corresponding frame indexes. The frequency range of interest is between 0 and 22 kHz. A lighter shade indicates a higher power value. These figures show that in the considered database we can have both: (1) many similarities between some sounds belonging to different classes, (2) diversities within the same sound class.

Results

Following [START_REF] Rifkin | In defense of one-vsall classification[END_REF], the 1-vs-all multiclass classifier is selected in these experiments. So we train N (number of classes) different binary classifiers, each one trained to distinguish the data in a single class from the examples in all remaining classes. We run the N classifiers to classify a new example. In section 3, we showed that operator-valued kernels can be used in a classification problem by considering the labels y i to be functions in some function space rather than real values. Similarly to the scalar case, a natural choice for y i would seem to be the Heaviside step function in L 2 ([0, 1]) scaled by a real number. The used operator valued-kernel is based on the integral operator as defined in (8). Eigenvalues δ i and eigenfunctions w i associated with this kernel are equal to 2 1+µ 2 i and µ i cos(µ i x) + sin(µ i x), respectively ; where µ i are solutions of the equation cot µ = 1 2 (µ -1 µ ). The adopted sound data processing scheme is the following. Let X be the set of training sounds, shared in N classes denoted C 1 , . . . , C N . Each class contains m i sounds, i = 1, . . . , N . Sound number j in class C i is denoted s i,j , (i = 1, . . . , N, j = 1, . . . , m i ). The preprocessor converts a recorded acoustic signal s i,j into a time/frequency localized representation. In multivariate methods, this representation is obtained by splitting the signal s i,j into T i,j overlapping short frames and computing a vector of features z t,i,j , t = 1, . . . , T i,j which characterize each frame. Since the pre-processor is a series of continuous time-localized features, it will be useful to take into account the relationships between feature samples along the time axis and consider dependencies between features. That is why we use a FDA-based approach in which features representing a sound are modeled by functions z i,j (t).

In this work, Mel Frequency Cepstral Coefficients (MFCCs) are used to describe the spectral shape of each signal. These coefficients are obtained using 23 channels Mel filterbank and a Hamming analysis window of length 25 ms with 50% overlap. We choose to use 13 MFCC features and the energy parameter measured along the sound signal. So, each sound is characterized by 14 functional parameters: 13 cepstral functions and one energy function.

Performance of the Functional RLSC based classifier is compared to the results obtained by the RLSC algorithm, see Table 2 and3. The performance is measured as the percentage number of sounds correctly recognized and it is given by (W r /T n ) × 100%, where W r is the number of well recognized sounds and T n is the total number of sounds to be recognized. The use of the Functional RLSC is fully justified by the results presented here, as it yields consistently lower error rates and a high classification accuracy for the major part of the sound classes.

Conclusion

This paper has put forward the idea that by viewing operator-valued kernels from a feature map perspective, we can design more general kernel methods wellsuited for complex data. Based on this, we have extended the regularized least squares classification algorithm to functional data analysis contexts where input data are real-valued functions rather than finite dimensional vectors. Through experiments on sound recognition, we have shown that the proposed approach is efficient and improves the classical RLSC method in a sound classification dataset. Further investigations will consider larger classes of operator-valued kernels. It would also be interesting to study learning methods for choosing the operator-valued kernel.

Figure 1 .

 1 Figure 1. Structural similarities between two different classes.

Figure 2 .

 2 Figure 2. Structural diversity inside the same sound class and between classes.

Table 1 .

 1 Classes of sounds and number of samples in the database used for performance evaluation.

	Classes	Number Train Test	Total Duration(s)
	Human screams	C1	40	25	65	167
	Gunshots	C2	36	19	55	97
	Glass breaking	C3	48	25	73	123
	Explosions	C4	41	21	62	180
	Door slams	C5	50	25	75	96
	Phone rings	C6	34	17	51	107
	Children voices	C7	58	29	87	140
	Machines	C8	40	20	60	184
	Total		327	181	508	18mn 14s

Table 2 .

 2 Confusion Matrix obtained when using the Functional Regularized Least Squares classification algorithm

Table 3 .

 3 Confusion Matrix obtained when using the Regularized Least Squares Classification (RLSC) algorithm

		C1	C2	C3	C4	C5	C6	C7	C8
	C1	92	4	4.76	0	5.27	11.3	6.89	0
	C2	0	52	0	14	0	2.7	0	0
	C3	0	20	76.2	0	0	0	17.24	5
	C4	0	16	0	66	0	0	0	0
	C5	4	8	0	4	84.21	0	6.8	0
	C6	4	0	0	0	10.52	86	0	0
	C7	0	0	0	8	0	0	69.07	0
	C8	0	0	19.04	8	0	0	0	95
			Total Recognition Rate = 77.56%		
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