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Abstract
In 1956 Cooper demonstrated (1956 Phys. Rev. 104 1189) that, no matter how weak the
attraction is, two electrons in three-dimensional (3D) space just above the Fermi sea could be
bound. In this work we investigate the influence of confinement on the binding energy of a
Cooper pair. We show that confinement-induced modification of the Fermi sea results in a
significant increase of the binding energy, when the bottom of an energy subband is very close
to the Fermi surface.

(Some figures may appear in colour only in the online journal)

As was indicated by Cooper the ground state of the 3D
electron gas, i.e. the filled Fermi sphere, is unstable if there is
even an infinitesimally small electron–electron attraction near
the Fermi surface [1]. Instead, a qualitatively different ground
state appears in this system. By considering two electrons
above the Fermi sea he found that these electrons are bound,
and that the largest binding energy is

E3D
0 = −2h̄ωD exp

(
−

2
|g|νF

)
(1)

for two electrons having opposite momenta (k,−k) and
anti-parallel spins (↑,↓). Here ωD is the Debye frequency,
g is a negative constant characterizing the attraction, and νF is
the electron density of states per spin at the chemical potential
µ. If electrons having nearly opposite momenta (k,−k + q)
are paired (q is the total momentum of a Cooper pair), the
binding energy is less than E0.

The degeneracy of the electron gas (Pauli exclusion
principle) is the essential property of the system. Together
with the attractive interaction between the particles it is the
origin of the Fermi sea instability. It is well known that in
the bulk (3D) case a weak attractive potential alone cannot
create a bound state [2]. To form a bound state the attraction
should be larger than a certain threshold. In contrast, in

one- and two-dimensional cases a bound state can be created
by an arbitrarily weak attractive potential. It is the filled
Fermi sphere at low temperatures that transforms the 3D
system to an effectively 2D one. Indeed, the Pauli exclusion
principle prohibits the electrons from being scattered inside
the Fermi sphere. Besides, the energy transfer between
electrons due to the phonon exchange is of the order of
h̄ωD, which is much smaller than the Fermi energy, µ.
Therefore electrons are effectively confined in a thin shell
around the Fermi surface, if h̄ωD � µ [3]. This result of
Cooper made it possible to conclude that the instability of the
normal phase, driven by the Pauli exclusion principle and the
effective electron–electron correlations is responsible for the
occurrence of the superconducting phase [4, 5].

In recent years, due to remarkable experimental
progress [6–18], the study of the superconducting properties
in nanoscale has attracted a lot of interest [19–33].
A characteristic feature of such a system is quantum
confinement of charge carriers. It results in important
qualitative changes in the characteristics of superconductors
with nanoscale dimensions, namely, any superconducting
quantity (the superconducting order parameter, the energy
gap, the critical temperature [23, 24], critical magnetic
field [25], critical current [26], coherence length [27])

1



exhibits quantum-size oscillations with enhancement [9] and
reduction [18] trends. In quasi-low-dimensional structures,
the spatial distribution of the pair condensate exhibits
distinct nonuniform patterns leading to the formation of the
Andreev-type states. This significantly modifies the ratio
of the energy gap to the critical temperature [32]. The
superconducting-to-normal transition driven by a magnetic
field becomes a cascade of first-order transitions contrary
to the second-order transition found in the mesoscopic
regime [25].

The goal of the present paper is to investigate the
influence of quantum confinement on the binding energy
in the single bound-pair model. The main feature of
low-dimensional structures that makes them different from
a bulk is the formation of a series of single-electron energy
subbands (discrete electron levels in the case of quasi-0D).
While the specimen thickness increases (decreases), these
subbands move down (up) in energy.

Following Cooper, we consider two quasi-particles above
the filled Fermi sphere. We assume translational invariance
along one, e.g. the z-direction. We can write the two-particle
wavefunction as

9 (r1, r2) =
∑

k

∑
i,j

ψkijeik(z1−z2)ϕi(ρ1)ϕi(ρ2), (2)

with i, j the quantum numbers associated with ρ1 and ρ2,
respectively, and k the wavevector of the quasi-free electron
motion along the z-direction. Here we shall concentrate on
the situation where the pair is at rest (q = 0) [3]. In this
case the scattering phase volume is largest. The two-particle
Schrödinger equation reads

(E − Ĥ0)9 (r1, r2) = V (r1 − r2)9(r1, r2), (3)

where Ĥ0 =
−h̄2

2m

(
5

2
1 +5

2
2

)
. We make an approximation,

that the potential V (r1 − r2) couples only electrons from
time-reversed states. We can make this assumption because
according to Anderson [34] the pairing of the time-reversed
states is a good approximation in bulk in the absence of
a magnetic field. For nanoscale systems, the Anderson’s
approximation is good enough provided that the pairing of
two electrons from different single-electron subbands plays
a minor role. As shown in [26] this is true when the
subband-dependent pairing is much less than the subband
energy spacing. We remark that this approximation becomes
exact only in the situation of the spatially independent pairing.
Our previous numerical investigations [26] have shown that
the use of Anderson’s recipe is well justified in nanoscale,
i.e. corrections were found to be even less than a few
per cent. Even for a broken time-reversal symmetry it was
shown that Anderson’s approximation still provides very
good results for a cylindrical superconducting nanowire in
a parallel magnetic field [25], because the single-electron
wavefunctions remain unaltered in the linear order in the
vector potential [25]. Within the Anderson approximation
the form of the wavefunction, shown in equation (2) can be
simplified, namely

9 (r1, r2) =
∑

k

∑
i

ψkieik(z1−z2)ϕi (ρ1) ϕi(ρ2). (4)

Substituting equation (4) into (3) and making projections on
both sides of the equation, we obtain the following matrix
equation(

E − 2εi −
h̄2k2

m

)
ψki =

∑
q

∑
j

Vki,qjψqj, (5)

where Vki,qj = 〈k, i;−k, i|V (r1 − r2) |q, j;−q, j〉. This equa-
tion is solved with V (r1 − r2) factorized as

〈k, i;−k, i|V (r1 − r2) |q, j;−q, j〉 = −
g

V
ω∗kiωqj, (6)

where the interaction is confined to the area very close to the
Fermi surface

|ωki|
2
= 4(ξk,i), (7)

with ξk,i ≡ εi +
h̄2k2

2m − µ, the energy spectrum of an electron
in the Fermi sea, measured from the Fermi surface, µ, g is the
coupling and V is the volume of the system. Here 4(ξ) = 1 if
h̄ωD > ξ > 0 and 4(ξ) = 0 in other cases. Summing over the
quantum numbers k, j, we find the relation∑

k

∑
i

ωkiψki = −
g

V

∑
k

∑
i

ω∗kiωki

E − 2εi −
h̄2k2

m

×

∑
q

∑
j

ωqjψqj. (8)

This is the eigenvalue equation, we have to solve. By
measuring the energy of the pair relative to the chemical
potential, E = 2µ+ E0, we rewrite this equation as follows

V

g
=

∑
k

∑
i

ω∗kiωki

2εi +
h̄2k2

m − 2µ− E0

. (9)

When the bottom of a parabolic subband passes through
the Fermi surface, the density of states νF increases abruptly,
since the density of states per unit length in 1D for one spin
projection at the Fermi surface reads as

ν1D(E) dE =
1
π

(
m

2h̄2

)1/2∑
i

θ(E − εi)

(E − εi)1/2
dE, (10)

where θ(E − εi) is the Heaviside function. Note that the
position of the bottom of any subband scales as 1/D2, with D
the specimen thickness. As an example, in figures 1(a) and (b),
the single-electron subbands are schematically plotted versus
the wavevector of the quasi-free electron motion along a
nanowire. The narrow range of energies for electrons involved
in the interaction is highlighted with the patterned boxes.
Throughout this paper the energy range [µ,µ+ h̄ωD] is
referred to as the Debye window. In figure 1(a) an off-resonant
situation is drawn, since the bottom edges of all subbands 1–3
are situated outside of the Debye window. When increasing
the thickness of the sample, the subbands move down, and the
edge of the third subband now is found in the vicinity of the
Fermi level. The resonant regime develops, when a subband
enters the Debye window and approaches the chemical
potential µ (as shown in figure 1(b)). Size evolution of the
system leads to a sequence of peaks in the average density of
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Figure 1. (a) Scheme of the single-electron subbands versus the wavevector of the motion parallel to the specimen for the off-resonant
case. (b) The same as in panel (a) but for the resonant thickness. (c) The 1D density of states at the Fermi level versus the wire thickness D.

states νD = (h̄ωD)
−1
∫ µ+h̄ωD
µ

ν1D(E) dE as a function of the
sample thickness D, as shown in figure 1(c). Here red thin and
blue thick curves correspond to ν1D and νD, respectively.

We can split the sum in equation (9) into two terms,
namely

V

g
=

∑
k

′∑
i

4
(
ξk,i
)

2ξk,i − E0
+

∑
k

4
(
ξk,R

)
2ξk,R − E0

, (11)

where the prime means the absence of resonant subbands in
the summation. Here it is supposed for simplicity that only
one resonant subband is present in the spectrum that is labeled
by i = R. Considering i as a continuous variable and making
an approximation that the contribution from the non-resonant
subbands to the density of states weakly depends on the
energy in the Debye window, i.e. ν(E) = ν(µ), since for the
non-resonant subbands h̄ωD � µi ≡ µ− εi, we can estimate
the first term in equation (11) as

Fb = g
∫ h̄ωD

0

ν(E) dξ
2ξ − E0

= g
νF

2
ln
(

E0 − 2h̄ωD

E0

)
, (12)

where νF is the density of states per unit volume at energy µ.
In the evaluation of the second term in equation (11),

which we denote as Fc, we make use of equation (10) for the
density of states per unit length in 1D. Then Fc acquires the
following form

Fc =
g

πL2

(
m

2h̄2

) 1
2
∫ h̄ωD

0

dξ
2ξ − E0

1

(ξ − ξR)1/2
, (13)

where ξR = εR−µ = −µR is the energy of the bottom of the
resonant subband with respect to the chemical potential and L
is the nanowire thickness. ξR is negative because we consider
the regime where the bottom of the resonant subband is below
the chemical potential. Performing the integration we get

Fc =
g

πL2

(
m

h̄2ζ

) 1
2

×

[
arctanh

(
−

2ξR

ζ

) 1
2

− arctanh
(

2h̄ωD − 2ξR

ζ

) 1
2
]

(14)

with ζ = E0 − 2ξR = E0 + 2µR. If the bottom edge of the
subband R is situated very close to the Fermi level, we can

further approximate ξR = 0 and

Fc =
g

πL2

(
m

h̄2E0

) 1
2

arctanh
(

2h̄ωD

E0

) 1
2

. (15)

Since usually h̄ωD � |E0|, and making use of

lim
h̄ωD�|E0|

arctanh
(
−

2h̄ωD

E0

) 1
2

=
iπ

2
, (16)

we get the total condition in the form

1
g
=
νF

2
ln
(

E0 − 2h̄ωD

E0

)
+

1

L2

(
−

m

4h̄2E0

) 1
2

. (17)

Of course if there are M resonance subbands, with bottom
edges in the vicinity of the Fermi surface the second term
should be multiplied by M.

If the system is in the bulk limit, L → ∞, then the
contribution of the second term is negligible and we obtain the
Cooper expression for the binding energy (1). The reduction
of dimensions of the system when approaching the nanoscale
regime splits the conduction band into a multiple of subbands.
Since confinement is weak, the quantization energy is small
and the number of subbands with edges in the Debye window
is large (see figure 2(c)). There is always a finite and large
probability of finding the edge of a subband very close to
the Fermi surface. This subband we call resonant. Since the
number of subbands is large, the contribution of the resonant
subband to the total density of states is small and can be
considered as a perturbation. For the zero-order perturbation
Fc = 0 and this leads to the bulk result of equation (1). For the
first-order perturbation we obtain the Cooper result modified
due to the influence of the resonant subband

E1D→3D
0 = −2h̄ωD exp

(
−

2
|̃g|νF

)
, (18)

where

g̃−1
= g−1

−
1

h̄νFL2

(
m

2h̄ωD

) 1
2

exp
(

1
|g|νF

)
. (19)

Hence the binding energy of the pair increases exponentially
as L decreases. This is the origin of the sharp resonances.

In the case of strong confinement, the resonant subbands’
contribution to the density of states is significant, even
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Figure 2. Scheme of the single-electron subbands versus the wavevector of the motion parallel to the specimen for (a) an ultra-small
sample, (b) a sample with moderate confinement, (c) a weakly confined sample.

determinative (see figure 2(a)). When the edge of the resonant
subband touches the Fermi surface the main contribution
to the density of states comes from the second term in
equation (17). The contribution from the other subbands with
bottom edges below the Fermi surface can be viewed as a
perturbation. In the zero-order approximation equation (17)
reads as

1
g
=

1

L2

(
−

m

4h̄2E0

) 1
2

, (20)

which leads to the well-known 1D result for the energy of
the bound state in the attractive δ-function potential with the
coupling constant g/L2 (we have the extra factor 1/2 due to
the reduced mass m/2)

E1D
0 = −

mg2

4h̄2L4
. (21)

Making the same iterative procedure as above, we get the
Cooper pair binding energy in the first-order perturbation

E3D→1D
0 = −

mg2

4h̄2L4
[
1− |g|νF

2 ln
(

8h̄3ωDL4

mg2

)]2 . (22)

The model presented here is oversimplified. For example
it cannot describe a situation of moderate confinement,
as presented in figure 2(b). Nevertheless it enables us to
investigate the influence of the system’s dimensionality on
the binding energy of the Cooper pair in the presence of
the Fermi sea. Notice that the binding energy obtained in
the zero-order approximation, equation (21), is just the exact
binding energy of two particles in a vacuum for the case
of a 1D interaction model with V(x) = −V0δ(x). Therefore,
quantum confinement in the resonant-subband regime opens
a channel for the real (molecule) binding. In other words,
the presence of the resonant subband very near to the Fermi
surface reconfigures the scattering phase space and forms
an effective low-dimensional situation. The physics behind
can be understood as follows. Two additional electrons can
scatter via their interaction to all states of the same total
momentum that are unoccupied by other electrons. The
correlation between these electrons depends on the number
of states in the Debye window above the Fermi sea available
to form a pair [29]. When a subband approaches the Fermi

level the number of states available for scattering strongly
increases. This results in an increase of the binding energy.
Since the Fermi sea in our model is frozen, i.e. there is
no correlation between the electrons in the Fermi sea and
two additional electrons, these two electrons can scatter only
from the present state to all other empty states, but there
is no in-scattering flow to these states. Besides, there is no
possibility for these two electrons to scatter below the Fermi
surface.

So far we have studied pairing in the situation of ξR < 0.
Let us consider another regime when the chemical potential
is situated slightly below the bottom edge of the empty
subband. We can also call this subband resonant and split
the sum in equation (9), resulting in equation (11), because
the contribution to the averaged density of states from this
subband is larger than from the others. Hence, equation (11)
reads as

1 =
g

2πL2

(
2m

h̄2

) 1
2
∫ h̄ωD

ξR

dξ
2ξ − E0

1

(ξ − ξR)1/2
+ Fb. (23)

In the zero-order perturbation, the integration of this equation
gives

1 =
g

2πL2

(
2m

h̄2

) 1
2 arctanh

(
h̄ωD−ξR
(ξR−E0/2)

) 1
2

(ξR − E0/2)1/2
. (24)

Assuming that h̄ωD � |E| and h̄ωD � ξR we find that

E0 = 2ξR −
mg2

4h̄2L4
. (25)

The first term here is positive and the second is negative.
While the bottom edge of the resonant subband moves
up, the binding energy in this approximation decreases and

finally it becomes zero, when 2ξR =
mg2

4h̄2L4 , meaning that the
contribution of the resonant subband is no longer dominant
and we have to take into account the contributions from the
other subbands. In other words, we are back to the bulk
solution for the Cooper pair problem: the resonance in the
binding energy disappears. We remark that the same occurs
when the bottom of the resonant subband goes far below the
Fermi surface.

It is known that the spatial extent of the pair in the 3D
Cooper problem is ξ3D ≈ 1.15h̄vF/E0, which is ∼104 Å. In
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the resonant regime, the pair binding is enhanced and it is
expected that this enhancement should modify the size of
the Cooper pair. Therefore, it is of interest to investigate the
influence of quantum confinement on the size of a Cooper
pair. Obviously, the size of the pair in the confined directions
is determined by the size of the confinement. The size of the
Cooper pair along the non-confined direction may be defined
as

ξ2
C =

∫
|9(ρ1, ρ2, z)|2z2 dz∫
|9(ρ1, ρ2, z)|2 dz

=

∑
i ϕi(ρ1)ϕi(ρ2)

∫ ∣∣ ∂
∂kψki

∣∣2 dk∑
i ϕi(ρ1)ϕi(ρ2)

∫
|ψki|

2 dk.
(26)

If we neglect the contribution from the non-resonant subbands
and consider in the summation only the resonant one,
substituting equation (4) here we obtain

ξ2
C =

∫ h̄ωD
0

dξ
(2ξ−E0)

4 (ξ − ξR)
1/2∫ h̄ωD

0
dξ

(2ξ−E0)
2

1
(ξ−ξR)

1/2

, (27)

where we have taken into account that

(E0 − 2ξR)ψki =
∑

q

∑
j

Vki,qjψqj

= −λω∗k,i

∑
q

∑
j

ωq,j = const, (28)

and performing the integration under the condition h̄ωD→∞

we get

ξ2
C =

h̄2

8mE0
. (29)

Since in the resonance subband the binding energy E0 is large,
the size of the resonant Cooper pair becomes small. We can
say that the Cooper pair becomes like a point boson dimer.

In summary, we solved the Cooper problem of two
fermions attracting each other pairwise via a 3D potential in
the presence of quantum confinement. We found that in the
strong confinement regime the behavior of the binding energy
is qualitatively different from that in the bulk. In the presence
of quantum confinement the band of single-electron states in
a clean nanosample is split up in a series of subbands. While
the specimen thickness increases (decreases), these subbands
move down (up) in energy. Each time when the bottom of
a parabolic subband passes through the Fermi surface, the
binding energy of a resonant Cooper pair strongly increases.
The resonant Cooper pair becomes like a point dimer.
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