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Abstract

In this work we propose and evaluate two variational data assimilation techniques for
the estimation of low order surrogate experimental dynamical models for fluid flows.
Both methods are built from optimal control recipes and rely on proper orthogonal
decomposition and a Galerkin projection of the Navier Stokes equation. The techniques
proposed differ in the control variables they involve. The first one introduces a weak
dynamical model defined only up to an additional uncertainty time-dependent function
whereas the second one, handles a strong dynamical constraint in which the dynamical
system’s coefficients constitute the control variables. Both choices correspond to different
approximations of the relation between the reduced basis on which is expressed the
motion field and the basis components that have been neglected in the reduced order
model construction. The techniques have been assessed on numerical data and for real
experimental conditions with noisy Image Velocimetry data.

Keywords: POD, variational assimilation, reduced order dynamical systems, PIV,
wake Flow

1 Introduction

The reduction to a set of coupled ordinary differential equations of high dimensional
dynamical systems associated to the Navier Stokes equations has been an intensive sub-
ject of studies since a long time. Despite the extreme temporal and spatial complexity
of fluid flows, model reduction principles can often be applied to capture and represent
the main characteristics of the flow dynamics. The construction of so-called low order
dynamical systems (LODS) or reduced order models can be viewed as an approach in
which one sacrifices the ambitious goal of having a full representation of the flow to a
more modest one that consists in capturing and representing just the most representa-
tive components of the flow (with respect to a given criteria) through a small number of
coupled ordinary differential equations. Such a representation is of major interest when
one aims at characterizing the current dynamical and kinematical states of a given flow
with a low computational load. This is crucial for instance in flow control applications.

This system of ordinary differential equations can be determined based on experi-
mental results, so these kinds of models are also named empirical models. The snapshots
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of flow fields used as experimental data to generate the models may be issued either
from numerical or physical experiments. Models produced from numerical simulations
have been used in general as a benchmark to assess the model performances, since in
that case all the data are available to validate the results obtained. On the other hand
models provided by physical experiments carried out in laboratories environments have
been settled in order to get closer to real world experiments and applications. Such
models have however to face some additional complexities due to inherent measurements
uncertainties, to the absence of data in some regions or to poor spatial and temporal
resolution of the images. These reduced dynamical systems have been used for instance
to improve numerical simulations in tuning the boundary conditions to more realistic
situations [31].

One of the possibilities to neglect the influence of some degrees of freedom over
the main characteristics of the flow consists in representing the flow as a sum of n-
orthonormal spatial basis functions weighted with temporal coefficients. To determine
the basis function of this expansion, one of the usual approaches relies on the Karhunen
Loeve decomposition (referred as proper orthogonal decomposition – POD – in the fluid
mechanics domain). In this case the spatial basis functions, also called modes, and the
associated temporal coefficients are computed from eigenvalues problems associated ei-
ther to the two points correlation tensor or to the temporal correlation tensor (see for
instance Holmes et al.[18] for a review). Beyond its easy implementation, this decom-
position offers several advantages. It is optimal with respect to the L2-norm and the
recovered modes are organized with respect to a decreasing mean kinetic energy order.
Thus a truncation of the number of modes based on energetic criteria is straightforward.
Also, as the spatial modes are orthonormal, a Galerkin projection of the Navier Stokes
equations, under the hypothesis of incompressible flow, reduces the system of partial
differential equations to a system of ordinary differential equations with respect to the
temporal coefficients of the decomposition.

Unfortunately, these reduced order models determine in general a dynamical system
that in many cases may converge to erroneous states after a relative short time of in-
tegration. Holmes et al. [18] have mentioned as potential source of this problem the
following issues:

• Neglect of the incidence of boundary or pressure terms in the computation of the
dynamical system coefficients,

• Inaccurate estimation of derivatives of spatial modes that determine the dynamical
system coefficients,

• Problems related to low-dimensional truncation associated either to the dissipation
loss induced by the truncated modes or to a generation of a non-realistic incomplete
system.

Concerning the first point several authors have disregarded in their analysis the influence
of the pressure term in wake flows arguing that this effect could be ignored when large
wake domains were considered. However, depending on the problem or on the truncation
level, neglecting this term may add some uncertainties in the ability of the computed
dynamical system to faithfully represent the actual flow dynamics (Kalb and Deane[20],
Noack et al.[28]). As a remedy, the introduction of correcting terms to take into account
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the effect in the outflow boundary through modifications of the linear [15] or quadratic
terms have been proposed [28].

The second point refers to the fact that the coefficients of the reduced dynamical
system involve spatial derivatives that can only be poorly determined on experimental
data. To avoid the direct explicit computation of these coefficients it is possible to rely
on regression techniques such as the one proposed in [31]. In this approach the system’s
coefficients are estimated within a least square goodness of fit from the sequence of tem-
poral coefficients observed at the snapshot instants and a finite difference approximation
of their temporal derivatives (assuming a very small sampling time to get an accurate
derivative).

As for the third point, the effect of dissipation of the unresolved modes on the dynam-
ics of the system has been proposed to be included through the addition of an artificial
viscosity. The dissipation coefficients could be determined either by a proper modeling
or through an appropriate tuning allowing obtaining qualitatively correct results. One
of the classical solution consists in adding a constant viscosity acting in the same way
on all the POD modes [12, 32]. This artificial viscosity is added to the flow kinematic
viscosity and enables after a proper tuning of its value to improve the system’s numerical
stability. Rempfer and Fasel [34] and Rempfer [33] have proposed modal viscosities that
affect differently the modes of the decomposition. More recently, Karamanos and Kar-
niadakis [17] employed a dissipative model called spectral vanishing viscosity model to
formulate an alternative approach. Cazemier et al. [7] used also modal kinetic equations
to determine viscosities to be added on each POD mode. The main drawback of all these
methods is that they require fixing a priori a great number of parameters.

Some authors have also proposed to enhance the system by considering larger basis
than the one provided by a given snapshots sequence associated to a single case of the
flow characteristic parameters. A better response of the system is expected by increasing
the subspace spanned by the truncated dynamical system and the possibility to include a
statistical variance attached to the attractor [2, 19]. However, while this may stabilize the
scheme, the limit cycles amplitude obtained with such extended basis may be different
from those obtained for the original basis [11].

Besides, for the case of wake flows as pointed out by [27], the error sources are inher-
ent to the reduced system as defined from a Galerkin projection. The authors highlighted
that it is not possible to guarantee, a priori, the system structural stability as little per-
turbations on the system’s coefficients can provide qualitatively very different solutions.
In order to restore dissipation or nonlinear large-scales/small scales interactions to the
reduced system some authors have proposed to use non-linear Galerkin techniques in
which an explicit relation between the resolved and non-resolved modes together with
a clear time scale separation principle between the associated temporal coefficients are
hypothesized.

Nonlinear Galerkin projection techniques, which are based on the approximate inertial
manifold concept [8, 14, 25, 24] have been successfully used for the reconstruction of low
order dynamical systems from experimental particle images measurements [23]. Despite
some sensibility to the initial condition such approaches have shown to provide long term
stability for discrete systems [35] even if some authors report situations for which such
frameworks have revealed to be inadequate [36]. It must be also outlined that, in the
same way as for the classical Galerkin projection, non-linear Galerkin methods require
to have an accurate estimation of the coefficients of the original ODE system.
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It is also possible to try to improve the accuracy and stability of the dynamical sys-
tem itself without directly addressing the error sources. In this spirit, Kalb and Deane
[20] proposed an intrinsic stabilization scheme that enables to make corrections on the
constant and linear terms of the LODS Galerkin system. With this formulation the dy-
namical system is reinitialized at each snapshot instant to the temporal eigenfunctions
value, and time-stepped to the next snapshot time so that time integration of the dynam-
ical system does not diverge. The model seems more adapted to numerical data since for
experimental data the “true value” of the temporal eigenfunctions are unavailable due
to the presence of noise caused by experimental conditions.

The method considered in this paper makes use of an alternative solution for building
a reduced order flow representation from the data and to cope with an inaccurate spec-
ification of the system’s coefficients or of the modes truncation closure. The approach
proposed relies on data assimilation principles built from optimal control theory [22] that
are intensively used in meteorology and oceanography sciences for the analysis of geo-
physical flows [21]. In the domain of wake flows other authors have used approaches in
the same spirit to improve the accuracy of the POD-Galerkin models [3, 9, 16, 15]. These
methods introduce some calibration terms, which may include an eddy viscosity term or
additional constant or linear terms. Those terms are computed through the minimization
of a goodness of fit cost function between the POD temporal coefficients and those pre-
dicted by the calibrated model under the constraint imposed by the calibrated dynamics.
The method proposed here can be regarded as a calibration technique on the system’s
coefficients as well. It is nevertheless formulated slightly differently as an optimal control
problem with an explicit constraint on the initial condition and on the system’s coef-
ficients and relies on general norms weighted by appropriate covariance matrices. The
method extends a similar technique we proposed recently [10]. This technique was for-
mulated also as a weakly constrained optimal control problem incorporating an additive
uncertainty function [10]. We will show that considering for the control variables an ad-
ditional uncertainty function or the dynamical system’s coefficients corresponds indeed
to different assumptions on the reduced dynamical model. Both methods have their own
advantages and we will show how they can be nicely combined. These techniques will be
compared on the basis of experimental and numerical data. Let us mention that POD
reduced order models have been used to build efficient variational assimilation strategies
of oceanic models [5, 13]. However, in those approaches, only the initial condition is
considered as a control variable. In these studies, the authors aimed at lowering the
computational cost of the forward and backward integration of the full dynamical model
required within a variational assimilation process. The coefficients of the reduced model
are thus directly set from samples of the dynamics forward integration; they are not
estimated from noisy experimental data as we propose to do it in this study.

The paper is structured as follow. In section 2, we briefly recall the principles of
the Proper Orthogonal Decomposition and those governing the obtention of a reduced
order modeling through a linear Galerkin projection. After pointing out the different
limitations associated either to a direct modeling of the reduced system or to a polynomial
identification of the dynamics from experimental data, we present in section 3 the main
concepts of the variational data assimilation techniques we used in this work. Section
4 describes the successive application of two variational assimilation strategies to the
definition of reduced order dynamical models from noisy velocity measurements. The
last section is dedicated to numerical and experimental results of a turbulent wake of a

4



cylinder at Reynolds 3 900.

2 POD-Galerkin model

The POD-Galerkin method has been extensively described in many articles. The
method foundations are for instance thoroughly described in Holmes et al.(1996). Let
us review very briefly its main characteristics. As previously presented, a flow field
u(x, t) ∈ L2(Ω), where Ω is a physical domain with boundary ∂Ω, is decomposed on a
finite set of a n-orthonormal spatial basis functions {φi(x) : Ω ⊂ IR

2 → IR
2, i = 1, . . . , n},

with temporal coefficients {ai(t) : IR
+ → IR, i = 1, . . . , n} such that:

u(x, t) =

n∑

i=1

ai(t)φi(x). (1)

The spatial modes φ(x) are global and mutually orthogonal. They are usually extracted
through an eigenvalue problem from a set of observations u(x, ti) obtained experimentally
or numerically. When working on finite dimension, their identification reduces to a SVD
decomposition of a matrix that gathers in its columns the different snapshots of the
velocity fields u(x, ti). The obtained modes are optimal with respect to the L2(Ω) scalar
product:

〈f, g〉 =

∫

Ω

f(x)g(x)dx,

whose associated norm corresponds to the kinetic energy of the flow contained in Ω. The
spatial modes also inherit by construction of properties of the flow that can be expressed
as linear homogeneous equations of the velocity fields (incompressibility condition for
instance).

The Navier Stokes equations, and the incompressibility condition for the fluctuating
components are then reduced by means of a Galerkin projection (with respect to the
L2(Ω) inner product) onto the subspace spanned by the first n vectors of the POD basis:

〈
∂u

∂t
+ (u · ∇)u+∇p−

1

Re
∆u, φj

〉

= 0. (2)

As outlined previously the incompressibility condition is implicitly imposed to the basis
functions through the data and hence can be drop. Homogeneous Dirichlet or Neumann
boundary conditions are also implicitly satisfied by the basis functions. Let us also recall
that the POD representation is only defined for zero mean signals. The temporal average
must be thus either incorporated as the first mode of the decomposition (associated to
a unity coefficient) or considered as an additive component (that is previously removed
from the data). For sake of simplicity, in this study we will not distinguish between
these two cases that have obviously direct implications on the form of the Navier-Sokes
equations considered (i.e. primitive form vs. Reynolds average form). Let us note that
removing the mean field from the data has the advantage to enable coping with spatially
non-homogeneous stationary boundary conditions and provides a simple so-called lifting
procedure. For a non-stationary boundary condition a similar approach can be envisaged
by subtracting a non-stationary velocity field respecting this condition.
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Identifying u(x, t) to its modal decomposition in equation (2), leads to a quadratic
system of ordinary differential equations describing the evolution of the temporal coeffi-
cients:

dak
dt

= fk +

n∑

i=1

likai +

n∑

i=1

n∑

j=1

aibijkaj , k = 1, · · · , n, (3)

with :

fk =

∫

Ω

∇p(x)φk(x)dx

lik = −
1

Re

∫

Ω

∆φiφkdx+ ϕik, (4)

bijk =

∫

Ω

φj∇φiφkdx,

and where the terms ϕij and p introduced in the constant and linear coefficient respec-
tively depends on the pressure function. In order to define further their expressions, we
proceed to a decomposition of the pressure term as proposed in [4]:

p(x, t) = p(x) +

n∑

k=1

ak(t)ψk(x) + pd(x, t). (5)

In this decomposition the first term represents the pressure temporal average. The
second expression represents the pressure term belonging to the subspace spanned by
the truncated temporal modes basis. The last term consists of the remaining pressure.
It depends on the POD basis components but also on the modes that have been neglected
in the basis truncation stage. This decomposition introduces an extended POD basis with
new basis functions defined as:

ψi(x) =
1

σi

∫ T

to

ai(t)p(x, t)dt, (6)

σi =

∫ T

to

a2i (t)dt. (7)

From this decomposition, the projection of the pressure gradient on the POD basis
components may be expressed as:

∫

Ω

∇p(x, t)φi(x)dx =

∫

Ω

∇pφidx+

n∑

k=1

ak(t)ϕki + ξi(t), (8)

ϕki =

∫

Ω

∇ψkφidx, (9)

ξi(t) =

∫

Ω

∇pd(x, t)φidx. (10)

The second term of this expression corresponds to the influence of the pressure gradient
projected on the subspace spanned by the POD temporal modes basis components. The
third term represents the contribution of the rest of the fluctuating pressure components.
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For incompressible flows the pressure terms can be further evaluated on the boundary
of the domain after integration by part. In some cases such as wake flows for instance,
considering a uniform velocity on the inflow boundary and the far downstream outflow
boundaries, the contribution of these terms is negligible or small. In the general case
however, they do not cancel and are completely unknown. A direct calculation of the
dynamic system’s coefficients requires a modeling of those terms and to restrict strictly
their computation to numerical data. The estimation of the system’s coefficients from
the data enables to integrate implicitly the contribution of those terms in the estimated
coefficients given of course that their influences are observable on the available mea-
surements. The last pressure term, ξi(t), cannot be included in the constant, linear or
quadratic coefficients and should be added to the reduced dynamics as an additional time
varying component. However, as this term is at least partly caused by the unresolved
modes it is quite difficult to model. In this work we will show how a particular form
of an optimal control strategy allows us specifying from the data the contribution of
such a function. Before describing the data assimilation framework on which we rely
to estimate the system coefficients, we describe first the effects of the low-dimensional
truncation procedure through a nonlinear Galerkin technique.

2.1 Unresolved modes modeling with nonlinear Galerkin methods

Nonlinear Galerkin methods have been proposed by several authors in order to take
into account the non-resolved components in flow numerical simulations. Those tech-
niques separates the solution of a dynamical system on two subspaces related respec-
tively to slow and fast modes or to large and small scales. The small scales dynamics
are simplified and assumed to follow linear or stationary pde’s. This is referred as a
slaving principle in which the small scales/fast modes are slaved to the evolution of the
slow/large scales components of the velocity. An exact (when possible) or approximate
algebraic relation modeling this slaving is injected in the slow modes components in or-
der to close the large scales dynamics. It is expected that such modeling bring a better
approximation of the unresolved components than the linear Galerkin projection, which
consists to neglect such a relation and to cancel the influence of fast modes.

In order to describe further those methods, let us consider an infinite expansion of
the velocities on a L2(Ω) POD basis, where we identify the velocity u(x, t) with an
infinite dimension vector of the temporal coefficient a = (a1, a2, . . . , a∞). Decomposing
this vector by defining two projections P : L2(Ω) → Hn and Q = I − P : L2(Ω) → Hr

respectively defined as the projection on the space spanned by the truncated POD basis
{φ1(x), . . . , φn(x)} (i.e. the resolved modes) and the complement space spanned by
{φn+1(x), . . . , φ∞(x)} (i.e. the unresolved modes) , we get

P (u) = p = (a1, a2, . . . , an), (11)

Q(u) = q = (an+1, an+2, . . . , a∞). (12)

When these projections are associated to a spectral decomposition of a linear dynami-
cal operator (i.e the dynamics linear tangent operator for instance) those methods are
referred as centered manifold (if there exists a set of pure imaginary eigenvalues associ-
ated to an eigenspace called the center eigenspace) or otherwise as (approximate) inertial
manifold [6, 39]. Let us note that inertial manifolds have been proved to exist for many
dissipative systems but their existence remains open for the Navier-Stokes equations.
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Considering the evolution model (3) for a = p+ q written in compact form as

da

dt
= La+B(a, a) + f, (13)

where L, B and f denote respectively linear, bilinear and constant operators, the pro-
jections P and Q lead to the system:

dp

dt
= Ln(p+ q) +Bn(p+ q, p+ q) + fn, (14)

dq

dt
= L∞(p+ q) +B∞(p+ q, p+ q) + f∞, (15)

where the superscript n and ∞ refer to projections P and Q respectively. Assuming that
the unresolved modes evolves on a much smaller time scale compared to the resolved
modes, and considering that the resolved modes concentrate a higher energy than the
unresolved ones (or equivalently the temporal p-modes exhibit much higher amplitudes
than the q ones), the following approximate resolution of the second equation can be
proposed [1, 11]:

q = ϕ(p). (16)

This expression relates, in a generic way, univocally the non-resolved modes to the sole
resolved modes. Injecting ϕ : Hn → Hr into the resolved modes dynamics (14) enables
to close the problem:

dp

dt
= Ln(p+ ϕ(p)) +Bn(p+ ϕ(p), p+ ϕ(p)) + fn. (17)

As a simple example considering a linear (eventually time dependent) relation q =
a+M(t)p leads for the resolved modes to a dynamical system:

dp

dt
= Ln(In +M(t))p+Bn(a, p) +Bn(p, a) +Bn(a,M(t)p) +Bn(M(t)p, a)

︸ ︷︷ ︸

L̃n(t)p

+

Bn(p+M(t)p, p+M(t)p)
︸ ︷︷ ︸

B̃n
t (p,p)

+ fn + Lna+B(a, a)
︸ ︷︷ ︸

f̃n

, (18)

which remains of the same form but depends now on new coefficients involving eventually
time-dependent terms.

Considering invariant manifold reductions through a linear stability analysis around
a base flow state, it can be proposed that the resolved/unresolved modes relations can
be expressed as a second order polynomial [27] . In this case the associated extended
dynamical system includes third and forth order terms. However, these two additional
terms correspond to unresolved modes interactions, which are associated to low amount
of the kinetic energy. Compared to the other terms involving the most energetic modes, it
is far likely that these terms will have only a small influence on the short-term dynamics
of the resolved modes. Thus, it is customary to simplify the system by sticking to a
quadratic dynamical system.
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Let us point out that a linear Galerkin projection associated to the traditional POD
reduced order modeling is obviously recovered through a null dependency (independence
assumption of the two modes sets). Compared to this solution, we see that a simple
linear relation between the resolved and unresolved modes involves a dynamical system
in which the system’s coefficients are modified and depend on this interaction model. It
can be expected that a sound modeling of this interaction enables to reproduce more
faithfully the system’s dynamics. However, this gain in precision is general paid by
an increase of the order of the dynamical system, which impacts generally its stability.
Instead of an accurate modeling of this interaction, in this work we will rather rely
on procedures allowing an estimation of the dynamics’ coefficients from the data. The
credo we will follow consists to hypothesize that the data reflect in a way or another
the influence of the truncated unresolved modes. An accurate and robust estimation
method should therefore enable to propagate implicitly the relation between the two
modes sets from the data to the coefficient values. To that end, we propose in this
work to explore the use of two different optimal control techniques for the assimilation
of measurement data into the reduced order dynamical systems and the estimation of its
initial condition and of its coefficients. The first technique will consider a dynamics in
which the coefficients L̃ and B̃ constitutes stationary control variables of the assimilation
process. The second strategy will incorporate an additive time dependent uncertainty
variable, ϑ(t), to the classical POD reduced order dynamics. This corresponds to a case
in which this additional additive control variable gathers the time-dependent interaction
terms:

ϑ(t) = LnM(t)p+Bn(a,M(t)p) +Bn(M(t)p,M(t)p) +Bn(p,M(t)p) +Bn(M(t)p, p).
(19)

The first method will allow us eventually to forecast future states of the system whereas
the second one is limited to analysis tasks on the time interval in which observation
measurements are available. We will show in particular that the combination of both
strategies brought some very good results for the constitution of a reduced order model
within the time period corresponding to the observation time range. Before entering pre-
cisely into the details of both methods we describe the general context of the variational
data assimilation techniques.

3 Data assimilation

The framework considered in this paper relies on optimal control theory introduced
by Lions [22]. It is intensively used in meteorology and oceanography in order to per-
form data assimilation of geophysical flows [21]. In the following we present the general
principles governing such variational data assimilation schemes. Even though we will use
such principles in a particular context, we wish to describe this methodology in a general
setup so that interested reader may eventually adapt the same derivation to different
objectives.

The problem we are dealing with consists in recovering a system’s state X(x, t) obey-
ing to a dynamical law given some noisy and possibly incomplete measurements of the
state. The measurements (also called observations) are assumed to be available only at
discrete time. This is formalized, for any location x ∈ Ω at time t ∈ [t0, tf ], by the
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system:

∂tX(x, t) +M(X(x, t), u(t)) = 0 (20)

X(x, t0) = X0(x) + ǫ(x), (21)

where M is a nonlinear dynamical operator depending on a control parameter u(t). We
assume here that u(t) ∈ U and X(t) ∈ V are square integrable functions in Hilbert spaces
identified to their dual. The term X0 is the initial vector at time t0 and ǫ is an (unknown)
zero mean additive control variable on the initial condition. Besides, we assume that
measurements of the unknown state Y(t) ∈ O are available. These observations are
measured through the nonlinear operator H and belong also to an Hilbert space:

Y(x, t) = HX(x, t) + η(x), (22)

where η is a zero mean Gaussian random field.

3.1 Cost functional

From this system, data assimilation aims at recovering an initial condition and a value
of the dynamics’ control parameter that leads to the lowest discrepancy between the mea-
surements and the state variable. This objective can be formalized as the minimization
of a cost functional, J : U × V → R, defined as:

J (u, ǫ) =
1

2

∫ tf

t0

‖Y(t)−H(X(u(t), ǫ, t))‖2Rdt+
1

2
‖ǫ‖2Ic +

1

2

∫ tf

t0

‖u(t)− u0‖
2
F dt. (23)

This functional of the initial condition and the dynamics’ control parameter gathers three
terms. The first term comes directly from the measurement equation. It is a quadratic
best fit term between the observation and the state variable provided by the dynamics
integration for a given value of the functional parameters. The second term aims at
specifying a low error on the initial condition whereas the third term enforces the control
variable to be close to a given a priori value u0 of the control parameter. For a null
value of this a priori a control of lowest energy is sought. The norms corresponds to
the Mahalanobis distance defined from the inner products < R−1., . >O, < I−1

c ., . >V

and < F−1., . >U of the measurements, the state variable and the control variable spaces
respectively. They involve covariance tensors R, Ic and F related to the measurement
error, the error on the initial condition and the deviation between the control and its a
priori value. In our applications, these covariance tensors have been defined as diagonal
tensor (i.e. the noise are assumed to be uncorrelated in time and space). For example
the observation covariance tensor has been set to a covariance tensor of the form:

R(x, t, x′, t′) = σδ(x− x′)δ(t− t′), (24)

and similar expressions hold for F and Ic.
In order to compute the gradient of this functional we assume that X(u(t), ǫ; t) depends

continuously on (u(t), ǫ) and is differentiable with respect to the control variables u(t)
and ǫ, on the whole time range.
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3.2 Differentiation

Noting first that dX = (∂X/∂u)δu(t)+ (∂X/∂ǫ)δǫ, the differentiation of equations (20–
21) in the direction (δu, δǫ) reads:

∂tdX + ∂XM(X,u(t))dX + ∂uM(X,u(t))δu(t) = 0, (25)

dX(x, t0) = δǫ(x), (26)

where ∂XM and ∂uM denotes the linear tangent operators defined by:

lim
β→0

M(X + βX, u(t))−M(X,u(t))

β
= ∂XM(X)dX. (27)

The differentiation of the cost function (23) in the direction (δu, δǫ) (denoting UT as the
space of square integrable function on a spatio-temporal domain) reads then:

〈∂J

∂u
, δu

〉

UT

=

∫ tf

t0

〈

u(t)−u0, δu(t)
〉

F
dt−

∫ tf

t0

〈

Y(t)−H(X(t)), (∂XH) (
∂X

∂u
δu(t))

〉

O

dt,

(28)

〈∂J

∂ǫ
, δǫ

〉

V

=
〈

(X(x, t0)−X0(x)), δǫ
〉

Ic
−

∫ tf

t0

〈

Y(t)−H(X(t)), (∂XH) (
∂X

∂ǫ
δǫ)

〉

O

dt.

(29)
Introducing the adjoint of the linear tangent operator (∂XH)

∗
, defined as:

∀(x, y) ∈ (V,O), < (∂XH)x, y >O=< x, (∂XH)
∗
y >V , (30)

these two relations can be reformulated as:

〈∂J

∂u
, δu

〉

UT

=

∫ tf

t0

〈

F−1(u(t)− u0), δu(t)
〉

U
dt−

∫ tf

t0

〈

(∂XH)
∗
R−1(Y(t)−H(X(t)),

∂X

∂u
δu(t)

〉

V

dt, (31)

and

〈∂J

∂ǫ
, δǫ

〉

V

=
〈

I−1
c (X(x, t0)−X0(x)), δǫ

〉

V

−

∫ tf

t0

〈

(∂XH)
∗
R−1(Y(t)−H(X(t)),

∂X

∂ǫ
δǫ
〉

V

dt. (32)

Expression (31-32) provides the functional gradients in the directions (δu, δǫm). We can
remark from these expressions that a direct numerical evaluation of these gradients is
in practice completely unfeasible. As a matter of fact, such an evaluation would require
to compute perturbations of the state variable along all the components of the control
variables (δu, δǫ) – i.e. integrate the dynamical model for all perturbed components of
the control variables, which is computationally completely unrealistic.
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3.3 Adjoint model

An elegant solution of this problem consists in relying on an adjoint formulation
[21, 22]. To that end, the integration over the range [t0, tf ] of the inner product between
an adjoint variable λ ∈ VT and relation (25) is performed:

∫ tf

t0

〈∂dX

∂t
(t), λ(t)

〉

V
dt+

∫ tf

t0

〈
(∂XM) dX(t), λ(t)

〉

V
dt+

∫ tf

t0

〈
(∂uM) δu(t), λ(t)

〉

V
dt = 0.

An integration by parts of the first term yields:

−

∫ tf

t0

〈
−
∂λ

∂t
(t)) + (∂XM)

∗
λ(t), dX(t)

〉

V
dt =

〈
λ(tf ), dX(tf )

〉

V
−

〈
λ(t0), dX(t0)

〉

V
+

∫ tf

t0

〈
δu(t), (∂uM)

∗
λ(t)

〉

U
dt, (33)

where the adjoint of the tangent linear operators (∂XM)
∗
: V → V and (∂uM)

∗
: V → U

have been introduced. At this point no particular assumptions nor constraints have
been imposed on the adjoint variable. However, we are free to particularize the set of
adjoint variables of interest in setting a particular evolution equation or a given boundary
conditions allowing simplifying the computation of the functional gradient. As we will
see it, imposing that the adjoint variable λ is solution of the system:

{
−∂tλ(t) + (∂XM)

∗
λ(t) = (∂XH)

∗
R−1(Y −H(X(t)))

λ(tf ) = 0,
(34)

will provide us a simple and accessible solution for the functional gradient.
As a matter of fact, injecting this relation into equation (33) with dX(t0) = δǫ and

dX = (∂X/∂u)δu(t) + (∂X/∂ǫ)δǫ allows identifying the right hand second terms of the
functional gradients (31-32) and we get

〈∂J

∂ǫ
, δǫ

〉

V

= −
〈

λ(t0), δǫ
〉

V

+
〈

I−1
c (X(t0)−X0), δǫ

〉

V

,

〈∂J

∂u
, δu

〉

UT

=

∫ tf

t0

〈

δu(t), F−1(u(t)− u0) + (∂uM)
∗
λ(t)

〉

U
dt

=
〈

F−1(u− u0)) + (∂uM)
∗
λ, δu

〉

UT

.

From these relations, one can now readily identify the two components of the cost function
derivatives with respect to the control variables:

∂J

∂ǫ
= −λ(t0) + I−1

c (X(t0)−X0),

∂J

∂u
= F−1(u− u0) + (∂uM)

∗
λ.

(35)

The partial derivatives of J are now simple to compute when the adjoint variable λ
is available. The knowledge of the functional gradient enables then to define updating

12



1. Set an initial condition: X(t0) = X0

2. From X(t0), compute X(t) with the forward integration of rela-
tion (20)

3. Compute the adjoint variable λ(t) with the backward integration
of relation (34)

4. Update the initial value X(t0) and the parameter model u with
(36)

5. Loop to step 2 until convergence

Figure 1: Schematic representation of the variational data-assimilation algorithm

rules for the control variables from iterative optimization procedures. A quasi-Newton
minimization process consists for instance of:

Xn+1(t0) = Xn(t0)− αnH̃
−1
Xn(t0)

(I−1
c (Xn(t0)−X0)− λ(t0)),

un+1 = un − αnH̃
−1
un

((∂un
M)

∗
λ+ F−1(un − u0)),

(36)

where H̃−1
xn

denotes an approximation of the Hessian inverse computed from the func-
tional gradient with respect to variable xn; the constant αn is chosen so that to respect
Wolfe conditions. The adjoint variable is accessible through a forward integration of the
state dynamics (20-21) and a backward integration of the adjoint variable dynamics (34).
Let us point out that considering a final condition for the state variable (through a simi-
lar cost function term as for the initial condition) would change the null initial condition
of the adjoint dynamics into a term similar to the one involved in the derivative with
respect to the initial condition control variable. The overall optimal control process is
schematically summarized in figure 1.

Such a formulation provides us a practical framework for the estimation of state vari-
ables trajectory from a sequence of noisy and possibly incomplete observation variables.
The variables used to control the system may be either parameters or global uncertainty
functions of the dynamical model. Both of these possibilities will be exploited in the
following to settle two assimilation schemes for low order dynamical systems.

4 Application to Low order dynamical systems

We apply here the assimilation formalism for the estimation of low order dynamical
systems. The first method, which corresponds to a refinement of a method detailed
in [10], consists in performing an assimilation of the temporal modes considering an
additive uncertainty function on the reduced dynamical model. The coefficients of the
dynamical system are here first assumed to be directly provided by the data. These
coefficients are then updated, in a second time, from the assimilated temporal modes
trajectory. In the second technique, these coefficients are directly assimilated jointly
with the temporal modes. The uncertainty is in that case put on each parameter of the
model and not anymore through an additional uncertainty function. We will see that
this latter techniques, brings a significant improvement in the accuracy of the low order
dynamical system.
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4.1 Recovery of the temporal modes trajectory with a weak constraint assimilation

This first technique corresponds to a continuation of the work developed in [10]. For
this assimilation problem, we consider the dynamics of the temporal POD modes defined
in equations (3-4) and augmented by an additive uncertainty function, ω(t) ≃ ξ(t)+ϑ(t),
encoding both the contribution of the component of the fluctuating pressure belonging
to the complement space of the subspace spanned by the POD temporal modes, ξ(t)
(10) and the interaction between the modes of the reduced POD basis and the secondary
modes that have been truncated, ϑ(t) (19):

{
∂ta(t) = f + La(t) +B(a(t), a(t)) + ω(t),
a(t0) = a0 + η.

(37)

In this system the constant, linear and bilinear operators of the dynamics, f , L and
B are assumed to be known and fixed.They can be provided for instance by a regres-
sion technique from the data [31]. Functions ω(t) and η represent zero mean uncer-
tainty functions with covariances Q and Ic associated to the dynamical model and to
the initial condition respectively. They are assumed to belong to Hilbert spaces W
and I respectively. The aim of the assimilation consists to control these two func-
tions in order to fit at best a sequence of data aobs ∈ O and to recover the temporal
modes a ∈ A([t0, tf ]), where the space of the temporal modes trajectory is defined
as A([t0, tf ]) =

{
g/g ∈ L2([t0, tf ], ∂tg ∈ L2([t0, tf ])

}
. The measurements aobs of the

temporal modes are assumed to be provided through a standard POD analysis (Snap-
shots method [37] or direct method followed by a projection of the velocity measure-
ments onto the spatial modes). Under Gaussian hypothesis of the model error (i.e.
[
∫
da(t)− E

∫
da(t)|a(0)] ∼ N (0, Q))1, the background error (i.e. η ∼ N (0, Ic)) and the

observation error (i.e. [aobs(t) − a(t)|a(t)] ∼ N (0, R)), finding a control of lower mean
square energy associated to the smallest discrepancy between the measurement and the
unknown modes can be formalized as the minimization of the following functional:

J(ω, η) =
1

2

∫ tf

t0

‖aobs(t)− a(ω, η, t)‖2Rdt+
1

2

∫ tf

t0

‖ω(t)‖2Qdt+
1

2
‖η‖2Ic . (38)

This functional corresponds to a so-called weak constraint assimilation problem as this
minimization problem is equivalent to a weakly constrained optimization in which the
dynamics augmented by an uncertainty function constitutes the optimization constraint.
This uncertainty function constitutes an additive time dependant control variable on the
dynamics. The third term of the functional consists to fix, up to a Gaussian noise, the
initial condition to an a priori value. This value can be provided by the measurement at
the initial time or fixed through a previous data assimilation on a time interval ending
at to. Let us now derive the expression of the associated functional gradient as given
through the introduction of an adjoint variable driven by the adjoint of the tangent linear
operator associated to the considered dynamical model.

1Let us note this Gaussian assumption is formally true only for linear dynamics.
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4.1.1 Linear tangent operator

The linear tangent operator of the considered dynamical model is obtained computing
(∂aM)

∗
for a small perturbation θ = (θ1, . . . , θs)

T :

(∂aM) (θk) = −





n∑

i=1

likθi +
∑

ij

aibijkθj + θibijkaj



 , k = 1, . . . , n. (39)

The adjoint of this operator is very similar and includes the adjoint L∗ of matrix Lℓk =
lℓk and the adjoint of matrices B(a, •) and B(•, a) where B(a, •)kℓ =

∑

i aibiℓk and
B(•, a)kℓ =

∑

i aibℓik respectively. The dynamics associated to the adjoint variables λ(t)
derived in a general case in the previous section (34) reads here as:

{
−∂tλ(t) + L∗λ(t) +B∗(a(t), λ(t)) +B∗(λ(t), a(t)) = R−1(aobs(t)− a(t)),
λ(tf ) = 0.

(40)

The knowledge of the adjoint variable provides us the functional gradients with respect
to the control variable, which are given by the system:

{
∂ηJ = −λ(t0) + I−1

c (a(t0)− a0),
∂ωJ = Q−1(∂ta(t)− f − La(t)−B(a(t), a(t)))− λ,

(41)

where the control function ω has been replaced by its expression: ω = ∂ta(t)−f−La(t)−
B(a(t), a(t)). The whole assimilation process consists schematically to integrate forward
the system (37) for a null initial uncertainty value. The adjoint system is then integrated
backward from a null terminal condition. The trajectory of this adjoint variable enables
to get the gradient of the functional with respect to the two control variables (41). These
gradients can then be used as descent directions of a minimization procedure. In this work
we used the limited storage variant of the BFGS quasi-Newton optimization technique
[29]. A complete synopsis of the whole algorithm is summarized in figure 2. This synopsis
corresponds to an improved version of the technique proposed in [10], where a fixed step
gradient descent was originally proposed.

The supplementary degree of freedom brought by the uncertainty variable has shown
to provide very good results [10]. It allows us adapting the modes trajectory to noisy data.
Nevertheless as indicated previously, in this approach, the dynamical system coefficients
are considered as known and given through a least square regression technique. These
coefficients can be subsequently updated from the estimated assimilated trajectory. This
constitutes thus finally a two steps method that is not completely satisfactory, as those
coefficients have not been directly considered as variables of the problem. As a matter of
fact, it must be outlined that the coefficients first obtained through a regression technique
on noisy data do not allow usually to reconstruct a complete trajectory of the dynamical
system on the whole sequence of data. To that end, an adhoc damping of the dynamics
was considered to stabilize the system and to get a first run of the assimilation process
[10]. This first run is all the more important that if it is too far away from the observation,
the backward adjoint integration may fail to successfully correct the modes dynamics,
which yields a local convergence of the method toward a meaningless local minima.

In order to improve the accuracy and the robustness of the dynamical model re-
construction, we propose in the following a modified assimilation scheme in which the
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POD-ROM Weak Constraint Assimilation (WCA) Algorithm

1. Initializations :

• Compute the POD of a set of velocity snapshots {u(•, ti), ti = 0, . . . , f};

• Fix the POD-ROM dynamical coefficients (through a least square estimation);

• Fix a null uncertainty ωn = 0;

• Fix an initial condition a0(to) = aobs(to) = (〈u(to), φi〉, i = 1, . . . , k)T ;

• n = 0;

2. Minimization procedure

(a) Integrate forward the dynamics from an(to):

∂ta
n(t) = f + Lan(t) +B(an(t), an(t)) + ωn(t)

(b) Integrate backward the adjoint dynamics from λ(tf ) = 0

−∂tλ(t) + L∗λ(t) +B∗(an(t), λ(t)) +B∗(λ(t), an(t)) = R−1(aobs(t)− an(t))

(c) Quasi-Newton descent iteration (LBFGS [29])

an+1(to) = an(to)− αn
aH̃

−1
an(to)

(

I−1
c (an(to)− aobs(to))− λ(to)

)

,

ωn+1 = ωn − αn
ωH̃

−1
ωn

(

Q−1ωn − λ
)

,
(42)

where H̃−1
xn denotes the LBFGS inverse Hessian approximation computed from the

functional gradient with respect to variable xn; the constant αn
x is chosen with a line

search procedure so that to respect Wolfe conditions.

3. Loop to step 2 until convergence.

results: initial condition a(to) and uncertainty function ω(t)

Figure 2: Synopsis of the Weak constraint assimilation algorithm
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system coefficients are now defined as control variables of the system. This new assimila-
tion process will allow us to properly estimate the dynamics’ coefficients and to initialize
efficiently a weak constraint assimilation.

4.2 Assimilation of the low order dynamical system with a strong constraint assimilation

We are now considering an assimilation strategy defined from a control on the initial
condition and on the coefficient f , L and B(, ) of the dynamical system. Apart from the
initial condition, the dynamical model we are considering here does not include anymore
any uncertainty terms:

{
∂ta(t) + f + La(t) +B(a(t), a(t)) = 0,
a(t0) = a0 + η.

(43)

Opposite to the previous assimilation this dynamical model will constitute a strong con-
straint on the associated optimization problem. More precisely, this scheme consists to
seek a control that minimizes a cost functional encoding the variances of the measurement
discrepancy and the unknown coefficients subject to the constraint given by the dynamics
(43). The measurement and the unknown coefficients are here assumed to be distributed
according to Gaussian laws centered on a(t), f0, L0 and b0 = (b0ijk, 0 ≤ i, j, k ≤ n)
respectively. The corresponding cost function reads hence:

H(f, L, b, η) =

∫ tf

t0

1

2
‖aobs(t)− a(f, L,B, η, t)‖2Rdt+

1

2σ2
f

‖f − f0‖
2 +

1

2σ2
L

‖L− L0‖
2
F +

1

2σ2
b

‖b− b0‖
2
F +

1

2
‖η‖2Ic .

(44)

The Frobenius norm is here considered for the matrix L and the tensor b. This model
differs from the previous one, as it introduces three Gaussian uncertainties (of constant
variances) on the parameter values instead of a global additive uncertainty model on the
temporal modes. The expected value of the parameters, (or the mean of the uncertainties)
fo, Lo, bo can be fixed either through a standard polynomial identification technique from
the POD modes [31] or fixed to a priori values. As for the different variances, in the case
of a polynomial identification they can be set to the least squares estimation residues.
The adjoint system corresponding to this new problem is unchanged (39). The functional
gradient with respect to the control variables, I, L and b, reads now:







∂ηH = −λ(to) + I−1
c (a(t0)− aobs(0)),

∂fH = σ2
f (f − fo)−

∫ tf

to
λ(t)dt,

∂LH = σ2
L(L− Lo)−

∫ tf

to
a(t)λ(t)dt,

∂bH = σ2
b (b− bo)−

∫ tf

to
a(t)a(t)T ⊗ λ(t)dt.

(45)

As previously, the assimilation of the low order dynamical system consists to integrate
the dynamical system (43) starting from the initial measurements, and initial values of
the coefficients f , L and b. The initial value of the temporal coefficients are assumed to
be given by the measured coefficients, aobs(0). As for the system coefficient’s a priori

values, in our experiments, we systematically set them to a zero value as we did not want
to rely on an external estimation process. A backward integration of the adjoint system
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Type N ∆t T [vs] Lx × Ly nx × ny

PIV 2D − 2C 3 072 0.11D/Ue 72 3D × 3D 64× 64
LES 2D − 2C 300 0.06D/Ue 4 3D × 3D 144× 144

Table 1: Characteristics of the available velocity fields from PIV and LES (vs for vortex shedding)

enables then to compute the functional gradient, which provides a descent direction for
the cost functional minimization. The updated values of the control variables are then
used to integrate again the direct dynamical model (43) and so on until convergence.
The whole algorithm is summarized in figure 3.

Opposite to the previous scheme, this new assimilation system has the advantage to
authorize the direct estimation of the low order dynamical system and the recovering of
the restored modes trajectory in a single step. We will see in the following experimental
section that this unified estimation process provides good results on a difficult case. We
will furthermore show that the combination of both assimilation processes allows us to
estimate very precisely the trajectory of the POD-Galerkin system.

5 Data benchmarks for experimental validation

In order to assess the performances of the two data assimilation methods for the
specification of low order dynamical models we have constituted a benchmark composed
of large eddy simulation results and experimental PIV data. The numerical simulation
and the experimental data concerns both a wake behind a circular cylinder at Reynolds
3 900. The experimental setup and the large eddies simulation technique used for this
wake flow are described in Appendix A and Appendix B respectively. Below we detail
the data benchmarks corresponding to these two cases.

5.1 Time sequences used

For the PIV, the whole sequence constituted of 3 072 successive 2D − 2C velocity
fields has been selected for the first benchmark. For the LES, a sequence of only 300 full
3D − 3C velocity fields with a 20∆t time step between them has been kept for building
a snapshots sequence of the flow motion. Velocity fields similar to the PIV motion fields
have been extracted from this database. The time-resolved sequence is made up of 300
2D− 2C velocity fields just behind the circular cylinder in the plane z = 0 with a square
size of 3D × 3D and with a number of approximately 80 snapshots by vortex shedding.

Table 1 summarizes the main characteristics of the velocity fields estimated with the
PIV technique and those obtained from LES. Few general remarks can be outlined. The
spatial and temporal resolutions are much higher for LES than for PIV. The temporal
length of the sequence is much greater for PIV than for LES. These characteristics re-
flect well the usual respective advantages of experimental measurements (free Reynolds
number, ability to generate long time sequence at low cost) and numerical simulation
approaches (no noise, full components in space with a high spatial density).

Figure 4 illustrates two snapshots of the spanwize vorticity ωy (adimensionned with
Ue and ν) in the plane z = 0 for LES and PIV. Both fields present similar vorticity
magnitude and features. The spatial resolution of the PIV measurements (32× 32 pixels
final window size and 50% overlapping) acts as a low-pass filter but the noise level is
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POD-ROM Strong Constraint Assimilation (SCA) Algorithm

1. Initializations :

• Compute the POD of a set of velocity snapshots {u(•, ti), ti = 0, . . . , f};

• Fix the POD-ROM dynamical coefficients to zero (or to a priori values fo, Lo, bo if
any);

• Fix an initial condition a0(to) = aobs(to) = (〈u(to), φi〉, i = 1, . . . , k)T ;

• n = 0;

2. Minimization procedure

(a) Integrate forward the dynamics from an(to):

∂ta
n(t) = fn + Lnan(t) +Bn(an(t), an(t))

(b) Integrate backward the adjoint dynamics from λ(tf ) = 0

−∂tλ(t) + Ln∗λ(t) +Bn∗(an(t), λ(t)) +Bn∗(λ(t), an(t)) = R−1(aobs(t)− an(t))

(c) Quasi-Newton descent iteration (LBFGS [29])

an+1(to) = an(to)− αn
aH̃

−1
an(to)

(

I−1
c (an(to)− aobs(to))− λ(to)

)

,

fn+1 = fn − αn
f H̃

−1
fn

(

σ2
f (f

n − fo)−

∫ tf

to

λ(t)dt

)

,

Ln+1 = Ln − αn
LH̃

−1
Ln

(

σ2
L(L

n − Lo)−

∫ tf

to

a(t)λ(t)dt

)

,

bn+1 = bn − αn
b H̃

−1
bn

(

σ2
b (b

n − bo)−

∫ tf

to

a(t)a(t)T ⊗ λ(t)dt

)

,

(46)

where H̃−1
xn denotes the LBFGS inverse Hessian approximation computed from the

functional gradient with respect to variable xn; the constant αn
x is fixed with a line

search procedure so that to respect Wolfe conditions.

3. Loop to step 2 until convergence.

results: initial condition a(to) and dynamics coefficients f , L and b.

Figure 3: Synopsis of the Strong constraint assimilation (SCA) algorithm
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emphasized by the derivative scheme (centered 2nd order). The spanwise vorticity ωz

highlights the two shear layers on both sides of the cylinder. For this Reynolds number
(ReD = 3900), the boundary layer on the body is laminar and transition to turbulence
takes place in the shear layers. While one of the two shear layers is almost straight and
laminar up to x/D = 2, the second one becomes unstable and rolls up to form a primary
vortex. Small vortices resulting from the instability of the shear layer seem to accumulate
in this primary large scale structure. This scenario is observed alternatively in the two
shear layers and at different stages of their evolution in the instantaneous fields. The
Bénard-von Karman vortex street begins further downstream. The 3D instantaneous flow
fields, which are not illustrated here, show clearly the fully three-dimensional character of
the dynamics. As expected from the flow’s Reynolds number these fields exhibits a wide
range of scales. The vortex street, which is the main structure of the flow, is quasi-2D
with shedding parallel to the cylinder. Numerous filament vortices can be also clearly
observed.

5.2 Proper Orthogonal Decomposition

The velocity field sequences have been preprocessed removing the mean part (as the
Reynolds decomposition) and considering an adimensionalization of the fluctuating part
with respect to the external velocity Ue. This preprocessing is useful to remove the mean
kinetic energy part and to facilitate the comparison between LES and PIV (and for
readers who might be eventually interested in using these data). A Proper Orthogonal
Decomposition is performed with the snapshot method [37] using the full sequences of
the PIV measurements (3 072 snapshots) and of the LES results (300 snapshots).

Figure 5 presents for the LES and PIV sequences the distribution of the turbulent
kinetic energy with respect to the number of modes. Figure 6 shows the cumulative
distribution of this energy. The slope of the spectra changes beyond 30 modes. This
seems to indicate that the first spatial modes are probably converged. The PIV sequence
and the LES sequences possess close energy levels for the first modes. From these figures
we can remark that the first two modes are the principal modes of the flow. They
represent 62% of the total turbulent kinetic energy for the PIV measurements and 60%
for the LES sequence. These coupled modes correspond to the large vortices of the
von Karman street and to their advection downstream. The following modes have a
much lower contribution. The first 32 modes represent 84% (+22% compared to the two
first modes) of the total turbulent kinetic energy for PIV and 94% (+34%) for LES. This
relatively low decreasing can be explained by the relatively “high” Reynolds number of
the flow in this study. The fastest energy decrease of the LES is due to a lower variability
of the coherent structures present in a shorter number of snapshots. In this experimental
study as we focus on the ability of the assimilation techniques to faithfully represent the
flow dynamics along a given time range from the corresponding available data, questions
of statistical convergence of the data are not primordial. In particular, we do not aim
at comparing precisely the results obtained on these two sequences but rather to show
that the assimilation works either for noise free numerical data or for noisy and sparse
experimental data.
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Figure 4: Snapshots of the vorticity field obtained from a Large Eddies Simulation (top) and estimated
from a PIV technique (bottom). 21
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Figure 5: Turbulent kinetic energy distribution with respect to the number of modes for the 300-snapshots
LES sequence (red curve) and the 3 072-snapshots PIV sequence (green curve).
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6 Results of the POD assimilation

The two variational assimilation strategies (the strong and weak constraint assim-
ilation) have been applied in order to assess their ability to accurately reproduce the
trajectory of a reduced order dynamical systems with 32 temporal modes from discrete
sequences of POD temporal modes provided by the snapshots method [37].

The Gaussian uncertainties σf , σL and σb of the dynamical coefficients have been
arbitrarily identically fixed to 103. The covariance tensors R(x, x′) and Ic(x, x

′) have
been defined as the diagonal tensors 1

2σR
δ(x − x′) and 1

2σI
δ(x − x′) with σR = 1 and

σI = 103.
As for the experiments, the strong constraint assimilation strategy has been first

performed on three sequences of POD temporal modes. The first sequence is a LES se-
quence depicting 3 vortex shedding and corresponding to 256 successive snapshots. The
other sequences are two PIV sequences showing 3 and 12 vortex shedding, corresponding
respectively to 128 and 512 successive snapshots. The target values for the initial condi-
tion a0 is given by the POD data whereas the target values for f0, L0 and b0 have been
fixed to zero values. In this way, no previous calibration method (such as a polynomial
identification associated to a damped dynamics) is used to set the values of these coeffi-
cients. At the very first iteration of the assimilation, the initial values of the dynamics’
coefficients L, b are fixed to zero as well and the initial conditions of the unknown modes
variables are initialized to the observed modes value at the initial time.

The weak constraint assimilation strategy is then run on the same sequence of tem-
poral modes after convergence of the strong constraint assimilation. The dynamical
coefficients and the initial conditions of the modes are set to those estimated from the
previous assimilation. The target values for a0 are not changed and are given by the
POD data. At the first iteration, the uncertainty function is fixed to a null value.

In the following section we show first the results obtained from the strong constraint
assimilation, noted as (SCA). The trajectories corresponding to the weak constraint
assimilation, noted (WCA) are presented in a subsequent section.

6.1 Strong Constraint Assimilation

Figures 7, 8 and 9 present respectively the temporal modes trajectories of the first
32 modes recovered after the assimilation of the observed POD temporal modes.

As can be observed from this curves the strong constraint assimilation technique
enables for the short time LES and PIV sequences to build a reduced order models that
faithfully recover with a good accuracy the trajectories corresponding to the first modes.
For the longer PIV sequence, the less energetic modes trajectories are less accurately
recovered (Fig. 9). However the mean tendency of the modes are well represented. It can
be outlined, that the corresponding reduced order models have been obtained considering
a null initialization. In addition, the targeted values of the dynamical coefficients being
fixed to zero values the assimilation consequently favors coefficients with a low magnitude.
Despite this zero initialization and non informative targeted values of the dynamical
coefficients, the assimilation succeeds to converge to a meaningful solution for the first
modes of the dynamics. To illustrate the velocity fields reconstructed from the reduced
dynamical model estimated through the strong constraint assimilation procedure, we plot
in figure 10 two snapshots of the vorticity corresponding to the LES sequence and the
PIV sequence.
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Figure 7: Reconstructed temporal modes trajectories for the LES sequence showing 3 vortex shedding
(256 snapshots): dashed line, the data (every 2 snapshots instants); solid line, results of the strong
constraint assimilation.
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Figure 8: Reconstructed temporal modes trajectories for the PIV sequence showing 3 vortex shedding
(128 snapshots): dashed line, the data (every 2 snapshots instants); solid line, results of the strong
constraint assimilation.
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Figure 9: Reconstructed temporal modes trajectories for the PIV sequence showing 12 vortex shedding
(512 snapshots): dashed line, the data (every 4 snapshots instants); solid line, results of the strong
constraint assimilation.
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Figure 10: Snapshot of the vorticity field reconstructed from the reduced order model estimated through
the strong constraint assimilation of the LES data (a) and the PIV data (b).27



6.2 Weak Constraint Assimilation

The coefficients of the dynamical system estimated from the previous strong con-
straint assimilation are now injected within the weak constraint assimilation technique.
The initial condition of this new assimilation is initialized with the initial condition es-
timated from the previous assimilation scheme. It is however important to outline that
this initial state remains a control variable of the weak constraint assimilation. The addi-
tional control variable consists in an uncertainty function representing the missing part of
the dynamics. As previously stated from a simplified nonlinear Galerkin projection this
additional variable can be interpreted as a term gathering the time dependent interac-
tion terms between secondary modes and modes of the truncated basis (see section 2.1)
and also as the eventual contribution of a component of the fluctuating pressure (see
equation 10 and the text below this equation). The Figures 11, 12 and 13 present the
results obtained with the weak constraint assimilation strategy. In these figures the tra-
jectories of the dynamics complemented with an uncertainty variable are plotted. As can
be observed from these results the trajectories fit perfectly the data in the three cases.
The uncertainty control variable enables to complete the missing elements of the reduced
dynamics to explain the data. This uncertainty function is however only defined for
the time range on which the data are available. To define a reduced model enabling to
forecast future states of the system, it could be interesting to rely on a decomposition of
this uncertainty signal. Assuming the uncertainty function is stationary in a weak sense,
the covariance signal matrix could be learned for each mode from this assimilation on
the past data. The future states of this uncertainty function could be then adequately
randomly sampled conditioned on its past trajectory. This study, which is beyond the
scope of the present paper, would have the advantage to allow defining a reduced forecast
model that could be useful for flow control prospect. This will be the route we intend to
follow in a future work.

In order to emphasize the importance of the initial condition as a control variable,
which is usually not considered in POD calibration techniques [3, 9, 15, 16], we plot
in figure 14 the modes trajectories obtained from the POD initial condition associated
to the noise free LES sequence. We see clearly on the trajectory plots that the sim-
ulation diverges after the second vortex shedding. The initial states ensuing from the
proper orthogonal decomposition are clearly not adapted to the estimated quadratic re-
duced dynamical model. The effect of phenomenon related to higher order dynamical
terms or to 3D effects are probably too pregnant in this initial condition. As alterna-
tives we can consider either to build a more accurate higher order polynomial dynamical
model (of third or forth order) with eventual inherent numerical stability problems, or
to adapt the initial condition to the kind of selected approximation of the Navier-Stokes
POD-Galerkin projection. This latter solution was implemented in the data assimila-
tion strategy adopted. The figure 15 illustrates however that the dependence on initial
condition of the assimilated reduced dynamics can be slightly relaxed. In this figure
we plot the modes trajectory obtained from an initial condition slightly perturbed in
the direction of the POD data at the initial time. This initial condition is defined as:
â(0)+0.1(aobso − â(0)), where â(0) refers to the initial condition estimated from the weak
constraint data assimilation. The modes trajectories differ slightly from the trajectories
starting from the assimilated initial condition but do not diverge. This shows a possi-
ble adaptation of the assimilated reduced order model to a small set of initial condition
around the ideal assimilated initial modes values.
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Figure 11: Reconstructed temporal modes trajectories for the LES sequence showing 3 vortex shedding
(128 snapshots): dashed line, the data (every 2 snapshots instants); solid line, results of the weak
constraint assimilation.
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Figure 12: Reconstructed temporal modes trajectories for the PIV sequence showing 3 vortex shedding
(256 snapshots): dashed line, the data (every 2 snapshots instants); solid line, results of the weak
constraint assimilation.
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Figure 13: Reconstructed temporal modes trajectories for the PIV sequence showing 12 vortex shedding
(512 snapshots): dashed line, the data (every 4 snapshots instants); solid line, results of the weak
constraint assimilation.
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Figure 14: Weak constraint reduced order model forward integration from the observed POD initial
conditions of the LES sequence (dashed line). Reduced order model forward integration from the initial
condition estimated with the weak constraint assimilation procedure (solid line)

32



-0.8
-0.4

0
0.4
0.8

0 2 4 6 8 10 12 14

a
1

t

-0.8
-0.4

0
0.4
0.8

a
2

-0.4
-0.2

0
0.2
0.4

a
3

-0.4
-0.2

0
0.2
0.4

a
4

-0.2
-0.1

0
0.1
0.2

a
8

-0.2
-0.1

0
0.1
0.2

a
1
0

-0.2
-0.1

0
0.1
0.2

a
1
2

-0.2
-0.1

0
0.1
0.2

a
2
8

-0.2
-0.1

0
0.1
0.2

a
3
0

-0.2
-0.1

0
0.1
0.2

a
3
2

Figure 15: Weak constraint reduced order model forward integration from the assimilated initial con-
ditions slightly perturbed in the direction of the POD initial condition associated to the LES sequence
(dashed line). Reduced order model forward integration from the initial condition estimated with the
weak constraint assimilation procedure (solid line).
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7 CONCLUSION

From the benchmark of the flow around a cylinder problem at Reynolds 3 900, we
proposed a method to improve the construction of a reduced order model from PIV mea-
sures, and numerical data (LES). As experimental data are prone to be affected by many
errors (measurement noise due to 3D effects, measurements on a limited scales range,
etc.) the estimation from regression techniques of reduced order models yields dynamical
systems that often exhibit stability problems. Furthermore, those techniques do not al-
low providing an initial state of the different modes adapted to the chosen representation
of the Navier-Stokes Galerkin projection. This is quite problematic when one aims, like
in this study, at representing the quasi-2D component of the flow whereas the initial
experimental condition includes strong 3D effects, important noise or inaccurate velocity
measurements. To improve the deficiency of polynomial identification approaches we
developed a variational data-assimilation scheme in which the initial state of the modes
and the reduced order models coefficients constitute control variables of the system. The
assimilation is conducted on the basis of POD modes estimated from a snapshots se-
quence of the flow velocity fields. This strategy enables the building of reduced order
models initialized with a very uninformative prior (null initialization and null constant a
priori values). This reconstructed dynamical model has shown to recover quite well the
dynamics of a large amount of modes for short numerical and experimental sequences de-
picting three vortex shedding. For longer PIV sequences the last modes are less faithfully
reconstructed but the mean tendency of the modes trajectories are still well described.
The coupling of the strong constraint assimilation strategy with a weak constraint assim-
ilation process enables to correct this deficiency by introducing an uncertainty control
variable on the dynamics. Through a simplified nonlinear Galerkin projection it has been
shown that such uncertainty variable can be interpreted as a time varying term of the
dynamics representing both the coupling between the neglected secondary modes and
the components of the POD basis and also the eventual contribution of the projection
of the fluctuating pressure gradient component on the POD temporal modes. This as-
similation procedure has enabled us building reduced order dynamical systems that fit
quite perfectly the data for short or long temporal sequences of observed POD tempo-
ral modes. We believe this uncertainty function could be useful to design reduced order
models for flows dynamics that are only partially known. The question of how to forecast
such a reduced order dynamical system stays open, but we believe that the analysis of
this uncertainty function could serve as a basis to generate for instance adequate random
samples mimicking the behavior along time of the secondary modes.

Appendix A Wake behind a cylinder: experimental setup

The wake behind a circular cylinder at Reynolds 3 900 has been generated in the
Cemagref wind tunnel. This fifteen meters long wind tunnel is usually used to study
plane mixing layers where two parallel flows with different velocities and temperatures
give rise to a turbulent mixing. For this study, this configuration has been slightly
modified by an extension of the downstream separating plate. This modification provides
two independent testing zones with identical dimension (a rectangular cross section of
100× 50 cm2 large and 300 cm long). The PIV experiments have been carried out in the
upper testing zone for which the upper wall is slightly tilted to suppress the longitudinal
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pressure gradient. The flow velocity can be chosen continuously between 1 and 5m/s
with a good stability. The uniformity of the velocity profile at the entrance of the test
section has been checked by hot-wire anemometry. The free stream turbulence intensity
was less than 0.5% and the temperature was kept within 0.2◦c by using an air-water
heat-exchanger. The circular cylinder has been mounted horizontally at the entrance of
the upper testing zone. It has been equipped with two thin rectangular end-plates to
decrease the effects of the boundary layer which develops on the wall. The dimensions of
the plates follow the specification recommended by Stansby [38]. The distance between
the end-plates is L = 89.6 cm and the diameter of the circular cylinder is D = 32mm.
The aspect ratio is L/D = 20 and the blockage ratio is 3.2%.

The reference frame is direct and the origin is located at the center of the cylinder.
The longitudinal x-axis is the testing zone axis of the wind tunnel, y-axis is normal to
the wake central plane (symmetry plane) and z-axis is the cylinder axis. The velocity
components u, v and w are related to x, y and z axis respectively.

The free-stream velocity has been adjusted at 1.82m/s so that the Reynolds number
be 3 900 (Reynolds number based on the free stream velocity Ue, the kinematic viscos-
ity ν and the diameter of the circular cylinder D). For this Reynolds number, the flow is
relatively well documented in the literature (Parnaudeau et al. [30]). The Strouhal num-
ber St is 0.208. The Strouhal frequency fs (vortex shedding frequency of the von Karman
street) is then about 12hz.

Time-resolved 2D−2C PIV experiments (two in-plane velocity components in a plane
field) have been carried out with Nd-YAG laser (NewWave Pegasus with nominal energy
by pulse of 10mj at 3 000hz) and a CMOS camera (Photron APX-RS with 50−3 000hz
acquisition frequency range for 1 024 × 1 024 px image size). The laser sheet has been
produced by means of a Rodenstock telescope and a cylindrical lens. The diameter of
the particle seeding (diluted polyglycol in water) is about 1µm.

The measurement area was located just behind the circular cylinder, in the plane
z = 0. The camera was located perpendicularly to the laser sheet at a distance of 60 cm.
For the mounted lens, the focal length was 50mm with an aperture of 5.6. The resulting
field of view is of dimension 3D × 3D. One sequence of 3 072 successive image pairs
(equivalent to the 8Go buffer memory of the fast camera) has been obtained with a
500hz acquisition rate (≈ 40 snapshots by vortex shedding). The time interval between
two pulses is 250µs.

The PIV records have been analyzed through a cross-correlation technique imple-
mented with a Fast-Fourier-Transform algorithm in a multi-grid process with 5 itera-
tions and shift sub-pixel (1 × 128 × 128, 1 × 64 × 64 and 3 × 32 × 32 pixels) and 50%
overlapping. The cross-correlation peaks were fit with a Gaussian function on 3 pixels.
Erroneous velocity vectors have been identified by a median filter and replaced by their
local mean value. To give an idea of the corresponding experimental accuracy, the parti-
cle displacement range is about −1 to +5 pixels (with an error less than 0.2 pixel on the
instantaneous displacement) and less than 0.1% of the velocity vectors are erroneous.
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Appendix B Wake behind a cylinder: Large Eddy Simulation

The code used for this study solved the incompressible Navier-Stokes equations:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u+ f (B.1)

∇ · u = 0, (B.2)

where the forcing term f represents the Immersed Boundary Method used to impose the
no-slip condition at the cylinder surface. The principle of the present forcing is to create
an internal flow preserving the no-slip boundary at the cylinder surface while avoiding
strong discontinuities to prevent spurious oscillations.

Basically, Large Eddy Simulation method consists in separating, through a spatial
filtering operation, the great scales and the small scales of the turbulence. Spatial filtering
(denoted by the overbar) of the Navier-Stokes equations is:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u+∇ · T + f (B.3)

∇ · u = 0, (B.4)

where Tij = uiuj −uiuj is the subgrid-scale stress. According to the Boussinesq hypoth-
esis, the subgrid-scale stress can be defined as:

Tij = νt

(

Sij −
1

3
δijSkk

)

, (B.5)

where S is the shear stress tensor. Here, the turbulent viscosity νt ∼ ∆cν∆ is evaluated
by the Structure Function model proposed by Métais and Lesieur [26], where ∆c is the
filter width estimated as the cubic root of the mesh volume and ν∆ is the subfilter length
scale.

The incompressible Navier-Stokes equations are solved on a regular Cartesian grid in
non-staggered configuration. Sixth-order compact centered difference schemes are used
to evaluate all spatial derivatives, except at the outlet and outflow boundaries where
single sided schemes were employed for the x-derivative calculation. Time integration is
performed with the second-order Adams-Bashforth scheme. A constant flow is imposed
at the entrance of the domain and a simple convection equation is applied at the exit.
Periodic conditions are used in the two transverse direction y and z.

Our computational domain extends over 20D in the streamwise and normal directions.
The center of the cylinder is located at xcyl = 5D downstream of the inflow. The spanwize
extent of the domain was chosen to be Lz = πD, which corresponds to the size used by
most previous authors. For the square which contains the cylinder, we only used 48× 48
points in the streamwise and normal directions. A uniform streamwize flow is imposed
in the initial conditions, with no perturbation in the other directions. For the regime
considered, the boundary layer is laminar. The simulation was carried out with a constant
time step size of ∆t = 0.003D/Ue, which ensured that the Courant number be 0.15. The
Reynolds number is ReD = 3900, the domain size is Lx × Ly × Lz = 20D × 20D × πD
and the corresponding number of point is nx × ny × nz = 961 × 960 × 48. LES was
performed for a time duration of ≃ 52 vortex shedding cycles to ensure a convergence of
the 2nd order statistics.
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