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Abstract

The present work is aimed at verifying the influence of high asymmetries in
the variation of in-plane lead-lag stiffness of one blade on the ground reso-
nance phenomenon in helicopters. The periodical equations of motions are
analyzed by using Floquet’s Theory (FM) and the boundaries of instabilities
predicted. The stability chart obtained as a function of asymmetry param-
eters and rotor speed reveals a complex evolution of critical zones and the
existence of bifurcation points at low rotor speed values. Additionally, it
is known that when treated as parametric excitations; periodic terms may
cause parametric resonances in dynamic systems, some of which can become
unstable. Therefore, the helicopter is later considered as a parametrically
excited system and the equations are treated analytically by applying the
Method of Multiple Scales (MMS). A stability analysis is used to verify the
existence of unstable parametric resonances with first and second order sets
of equations. The results are compared and validated with those obtained
by Floquet’s Theory. Moreover, an explanation is given for the presence of
unstable motion at low rotor speeds due to parametric instabilities of the
second order.
Keywords: Nonlinear Dynamics, Floquet’s Method, Method of Multiple
Scales, Ground Resonance, Anisotropic Rotor
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Symbol Description Units
a Rotor eccentricity m
b Blade equivalent length m
[c.c.] Complex conjugate terms
D p

n
∂p

∂T p
n

- partial derivative with respect to time
scales

Fext External force vector
G Damping matrix of the dynamical system
I Imaginary unit
IZb k Lag rotational inertia of the kth blade

around its center of gravity
kg m2

K Stiffness matrix of the dynamical system
Kb k kth blade lead-lag stiffness N m rad−1

KfX
, KfY

Longitudinal and transverse stiffness of
fuselage

N m−1

mf , mb k Fuselage and mass of kth blade kg
M Mass matrix of the dynamical system
Nb Number of blades in the rotor
P (Γ , σ) Characteristic polynomial equation
ra k

√
a rb k

rb k Ratio between the static moment over the
total lead-lag rotational inertia of the kth

blade

m−1

rmk Ratio between the static moment of the kth

blade over the total mass of the helicopter
m

S State Space matrix
t Time s
T0, T1 Time scales s
u Vector of degree of freedom of the system
v State variable vector
x (t) , y (t) Longitudinal and transverse displacement of

the fuselage
m

xbx, ybx Blade position in x and y directions m
(x, y, z) Mobile coordinate system attached to the

rotor hub
(X0, Y0, Z0) Inertial referential coordinate system
Greek Letters

2



ε Bookkeeping parameter
ϕk (t) Lead-lag angle of kth blade rad
Φ Transition Matrix (Floquet’s Theory)
Γ Solutions of the characteristic polynomial

equation
λ Characteristic exponents
Ω Rotor speed rad s−1

σ Frequency detuning parameter rad s−1

ζk Azimuth angle for the kth blade rad
ω1..6 Six natural frequencies of Eq.(8) rad s−1

ωb k Lead-lag natural frequencies of kth blade at
rest, k = 1..4

rad s−1

ωx, ωy Fuselage resonance frequencies in x and y
directions

rad s−1

1. Introduction

Perturbation methods have been dedicated to calculating differential equa-
tions with periodic, parametric and/or nonlinear terms. Hill’s Infinite Deter-
minant, Harmonic Balance Method and Method of Multiple Scales (MMS)
are methods frequently employed to treat them [1, 2]. The reasons for using
these methods are the need to obtain analytical expressions whose analysis is
relatively simple and less computer time-consuming than numerical methods.

Nonlinear rotor dynamics [3, 4, 5], industrial problems with parametric
excitations [6] and classical examples, e.g. pendulum dynamics in parametric
excitations [7, 8, 9] are all examples of problems in which these methods have
been used. In the latter applications, the authors observed that parametric
excitations lead to the occurrence of parametric resonances that in turn lead
to unstable oscillation conditions.

Research into the problem of the ground resonance phenomenon in he-
licopters was first performed by Coleman and Feingold [10]. Later, inves-
tigations on the occurrences of ground resonance for articulated, hingeless
and bearingless rotors were carried out [11, 12, 13]. In all cases, the use
of linearized periodic equations of motion provides very accurate frequency
prediction of critical zones but only isotropic rotor configurations (all blades
having the same properties) were analyzed.

The effects of geometric nonlinearities and the use of nonlinear springs
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on the prediction of instabilities was verified [14, 15] with the application of
perturbation methods.

Moreover, the dynamics of a helicopter subject to ground resonance, tak-
ing into account blade dissimilarities was examinated [16]. The results ob-
tained by using Floquet’s Theory confirm that the introduction of slight
asymmetry ±5% on the in-plane lead-lag stiffness of one blade shifts the
boundary speeds of unstable regions, making them wider.

The present work is aimed at verifying the influence of high in-plane
stiffness variation at one blade on the stability of the ground resonance phe-
nomenon. The presence of viscous damping is not considered in the mechani-
cal model, in order to highlight all the possible instabilities. Firstly, by using
Floquet’s Theory, the boundaries of stability are determined as a function
of the asymmetry parameter and rotor speed. Following this, by considering
the helicopter as a parametrically excited system, the equations are solved
by using the MMS.

The dynamical equations of motion from the mechanical model are formu-
lated in section 2 while sections 3 and 4 describe the methodologies applied to
the set of periodic motion equations, namely the Floquet Method (FM) and
the MMS. The critical rotor speeds predicted by both methods are presented
in section 5 and compared for an anisotropic rotor configuration.

2. Derivation of Equations

Figure 1 provides a general diagram of the dynamical system. It rep-
resents a simplified helicopter model very similar to that proposed by the
earliest research in aeromechanical stability [10], e.g. the ground resonance
phenomenon.

Considered as a rigid body the fuselage has a longitudinal x(t) and a
lateral y(t) displacement, respectively. The flexibility of the landing skid is
represented by springs placed in both directions. At its rest point, the center
of mass (point O) of the fuselage is coincident with the origin of an inertial
coordinate system (X0, Y0, Z0).

The rotor head system consists of an assembly of one rigid rotor hub with
Nb blades. Each k blade is represented by a concentrated mass and has an
in-plane lead-lag motion defined by ϕk(t). Length b is the radius of gyration,
i.e. the distance from the articulation at point B and the concentrated mass
assuming an equivalent rotational inertia of a blade. The stiffness of the
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lead-lag blade motion is provided by a torsional spring presented at each
articulation.

The origin of a mobile coordinate system (x, y, z) parallel to the inertial
system is located at the geometric center of the rotor hub (point A). The
rotor revolves at speed Ω.

Both body and rotor head are joined by a rigid shaft. Neither aerody-
namic forces on the blades nor viscous damping are considered.

Figure 1: Schema of the mechanical system

Moreover, the following conditions are considered.

• The fuselage has a mass mf and spring stiffness Kf X and Kf Y linked
to it through directions x and y, respectively;

• The rotor is composed ofNb = 4 blades and each blade k has an azimuth
angle of ζk = 2π (k − 1) /Nb with the x - axis;

• Each blade has the same mass mb k and moment of inertia Izb k around
the z - axis ;

• The angular spring constant for each blade k is Kb k;

• The position of blade k projected in the inertial coordinate system is:

xb k = a cos (Ωt+ ζk) + b cos (Ωt+ ζk + ϕk(t)) + x(t)
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yb k = a sin (Ωt+ ζk) + b sin (Ωt+ ζk + ϕk(t)) + y(t)

where a is rotor eccentricity (i.e. hinge offset).
The vector of degrees of freedom of the system is obtained by considering

the general Laplace variable u as:

u1..6 (t) =
{
x(t) y(t) ϕ1(t) ϕ2(t) ϕ3(t) ϕ4(t)

}
The Lagrange equation is introduced in the kinetic and the potential

energy expressions of the system (body and rotor) and equations of motion
are obtained. Later, the nonlinear terms are neglected and a first order
Taylor series expansion for the trigonometric blade lead-lag angle terms is
performed.

The linear matrix equation of motion of the dynamical system obtained
is:

M ü + G u̇ + K u = Fext (1)

M, G and K correspond to the mass, damping and stiffness matrices,
respectively. They are non-symmetric and non-diagonal matrices due to the
presence of periodic terms. Moreover, Fext is equal to zero for blades with the
same inertial and geometrical properties. They are all expressed in Eq.(2) to
Eq.(5), as follows:

M(t) =


1 0 −rm1 sin(ψ1) −rm2 sin(ψ2) −rm3 sin(ψ3) −rm4 sin(ψ4)
0 1 rm1 cos(ψ1) rm2 cos(ψ2) rm3 cos(ψ3) rm4 cos(ψ4)

−rb1 sin(ψ1) rb1 cos(ψ1) 1 0 0 0
−rb2 sin(ψ2) rb2 cos(ψ2) 0 1 0 0
−rb3 sin(ψ3) rb3 cos(ψ3) 0 0 1 0
−rb4 sin(ψ4) rb4 cos(ψ4) 0 0 0 1

 (2)

G(t) =


0 0 −2Ωrm1cos(ψ1) −2Ωrm2 cos(ψ2) −2Ωrm3 cos(ψ3) −2Ωrm4 cos(ψ4)
0 0 −2Ωrm1sin(ψ1) −2Ωrm2 sin(ψ2) −2Ωrm3 sin(ψ3) −2Ωrm4 sin(ψ4)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3)

K(t) =


ω2

x 0 Ω2rm1 sin(ψ1) Ω2rm2 sin(ψ2) Ω2rm3 sin(ψ3) Ω2rm4 sin(ψ4)
0 ω2

y −Ω2rm1 cos(ψ1) −Ω2rm2 cos(ψ2) −Ω2rm3 cos(ψ3) −Ω2rm4 cos(ψ4)
0 0 ω2

b 1+Ω2r2
a 1 0 0 0

0 0 0 ω2
b 2+Ω2r2

a 2 0 0
0 0 0 0 ω2

b 3+Ω2r2
a 3 0

0 0 0 0 0 ω2
b 4+Ω2r2

a 4

 (4)
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Fext(t) =



Nb∑
k=1

Ω2rm k(a+b
a ) cos(ψk)

Nb∑
k=1

Ω2rm k(a+b
a ) sin(ψk)

0
0
0
0

 (5)

where
rmk = bmb k

mf +
Nb∑
mb k

k=1

, rb k = bmb k

b2 mb k+Izb k
, r2

a k = a rb k, ψk = Ωt+ ζk,

ω2
x = Kf X

mf +
Nb∑
mb k

k=1

, ω2
y = Kf Y

mf +
Nb∑
mb k

k=1

, ω2
b k = Kb k

b2 mb k+Izb k
k=1..Nb

Factors rmk and rb k representing the ratio between the blade static mo-
ment over the total translatory inertia of the helicopter and the total ro-
tational inertia of the blade, respectively, are small when compared to the
unit.

Terms ωx and ωy are the natural frequencies of the fuselage in directions
x and y, respectively. Moreover, ωb 1..4 are the lead-lag natural frequencies of
blades 1 to 4 at rest.

3. Floquet’s Method

A stability analysis of the periodic equations of motion is carried out by
using Floquet’s theory [17, 18, 19]. This permits predetermining the critical
rotor speeds at which the ground resonance phenomenon occurs.

In order to attain this objective, the dynamical system in Eq.(1) is rep-
resented in a state-space form as:

v̇(t) = S(t) v(t), t > t0

v(t) = v0, v(t) =
[

u(t) u̇(t)
]T

where S(t) is the state-space matrix with period T and v(t) is the state
variable vector.

According to Floquet’s Theory, there is a transition matrix Φ that links
v(t0) to v(t) and is defined as: Φ(t, t0) = P(t, t0) eQ(t−t0).

The monodromy matrix R or the Floquet Transition Matrix (FTM) de-
fined as:
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R = Φ(t0 + T, t0)

is computed by admitting the periodic system matrices, Eq.(1), as a
switched periodical system. As reported by Dufour [20], matrix S(t) is ap-
proximated by a series of p step functions and the monodromy matrix can
be obtained as follows:

R =
p∏

k=1
eSk(tk−tk−1) (6)

where matrix Sk, within the interval defined by tk and tk−1, is constant value
of S(t) at t = tk−1.

The dynamical system Eq.(1) is exponentially stable if R is Schur. This
means that if all the norms of the eigenvalues of R, known as characteristic
multipliers, are less than one.

4. Method of Multiple Scales

The Method of Multiple Scales is applied in order to treat the periodic
equations of motion analytically. Apart from this application, the present
method has been frequently employed in nonlinear industrial problems [6]
and nonlinear rotating machines [3, 4, 5].

In the present work, great attention is paid to parametrically excited
systems [7, 9]. The presence of parametric and periodic terms can subject
the system to parametric instability conditions.

By introducing the bookkeeping parameter ε into the expansion of any
time dependent functions having the form:

un(t) = un0 (T0, T1, T2) + εun1 (T0, T1, T2) + (7)
ε2 un2 (T0, T1, T2) +O(3), n = 1..6

and by scaling the periodic terms to appear as parametric excitations at
the first order of ε by considering rmk = εαk and rb k = εβk, three sets of
equations are obtained by grouping them as a function of the power of ε once
Eq.(7) is replaced in Eq.(1).

Note that Tn = εnt, n ∈ R+ are time scales and terms with a higher order
than ε3 are neglected.
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4.1. Order ε0 equations
The set of order ε0 equations collected is:

D2
0 un0 + ω2

n un0 = 0, n = 1..6 (8)

where D0 is the partial derivative with respect to T0 and

ω1 = ωx, ω2 = ωy, ωk+2 =
√
ω2
b k + r2

a kΩ2, k = 1..Nb

The six equations of motion are homogeneous and independent which
indicates dynamic uncoupling between rotor and fuselage dynamics on the
fast time scale. The solutions of these equations are trivial and take the form
un0 = 1

2Cn (T1, T2) e(I ωnT0) + [c.c.] , n=1..6. The term Cn (T1, T2) is complex
and [c.c.] represents the complex conjugate of the previous terms.

4.2. Order ε1 equations
The set equations of order ε1 are represented below.

D2
0u11 + ω2

1 u11 = −2D1D0u10+
6∑

n=3

{
−1

2I
(n−2)αn−2D2

0 un0e(IΩT0) + I(n−3)αn−2ΩD0 un0e(IΩT0)

+1
2I

(n−2)αn−2Ω2 un0e(IΩT0) + [c.c.]

}
(9)

D2
0u21 + ω2

2 u21 = −2D1D0u20+
6∑

n=3

{
−1

2 I
(n−3)αn−2D2

0 un0e(IΩT0) − I(n−2)αn−2ΩD0 un0e(IΩT0)

+1
2 I

(n−3)αn−2Ω2 un0e(IΩT0) + [c.c.]

}
(10)

D2
0un1 + ω2

n un1 = −2D1D0un0+

− 1
2I

(n−2)βn−2D2
0 u10e(IΩT0) (11)

− 1
2I

(n−3)βn−2D2
0 u20e(IΩT0) + [c.c.] , n = 3..6

The right-hand side of the above equations highlights the existence of
external excitations that are totally dependent on the steady-state responses
un0 . The responses un0 are time dependent of T0, T1 and T2.
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4.2.1. Parametric Resonances of first order - ε1 equations
The external excitations on equations of order ε1, manifested by the pres-

ence of un0e(IΩT0) and/or its variation, lead the dynamical system to a res-
onance condition depending on the rotor speed value attributed for Ω. The
resonance is detected when any combination of frequencies of exciting terms
becomes equal to the natural frequencies of the linear dynamical system.

To clarify the procedure, the combination of frequencies are represented
below once the solutions of Eq.(8) are substituted in Eq.(9) to Eq.(11) and
the exponential terms collected.

Body Equations - Eq.(9) and Eq.(10):

[ |Ω± ωn| ] , n = 3..6 (12)

Blade Equations - Eq.(11):[
|Ω± ω1| |Ω± ω2|

]
(13)

Submitting Eq.(12) equal to ω1 and ω2 and Eq.(13) equal to ω3..6, the
rotor speeds at which a resonance occurs are:

Body equation - Eq.(9):[
|ω1 ± ω3| |ω1 ± ω4| |ω1 ± ω5| |ω1 ± ω6|

]
(14)

Body equation - Eq.(10):[
|ω2 ± ω3| |ω2 ± ω4| |ω2 ± ω5| |ω2 ± ω6|

]
(15)

Blade equations - Eq.(11):[
|ω1 ± ωn| |ω2 ± ωn|

]
, n = 3..6 (16)

Under this condition, the resonant terms are considered as secular terms
[1, 2].

4.2.2. Solvability Conditions - ε1 equations
In order to obtain solutions for the inhomogeneous equations, certain solv-

ability conditions must be satisfied when using asymptotic or perturbation
methods. Particularly with MMS, the secular terms should be eliminated by
setting their coefficients equal to zero. A set of so-called solvability equations
is obtained. Their solutions lead to determining specific conditions and the
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relation between the amplitude responses of motion of the previous order of
the ε dynamical system.

In the present work, emphasis is given to studying the stability of such
equations. This entails predicting the ground resonance phenomenon by
determining the boundary speeds of unstable zones for any type of rotor.

For this reason, a detuning frequency parameter σ is introduced into the
harmonic terms before scaling the equations of motion in Eq.(1). Considering
Ω = ΩR + εσ permits controlling the nearness of a resonance case identified
by ΩR and shown in Eqs.(14) to (16).

The secular terms are collected once the value of ΩR has been substi-
tuted in the new ε1 set of equations. Six linear differential equations, known
as solvability equations, are obtained. They are a function of the complex
amplitudes Cn (T1, T2) and/or its conjugate Cn (T1, T2), n = 1..6.

4.2.3. Non Resonant Case – ε1 equations
A non resonant case at ε1 equations is established when the Ω does not

belong to the rotor speed values defined in Eqs.(14) to (16).
The solvability equations are therefore:

∂

∂T1
Cn (T1, T2) = 0, n = 1..6 (17)

which lead the amplitude responses Cn be independent of T1.
Taking into account the above solvability conditions and replacing them

in Eqs.(9) to (11), the responses un1 (T0, T1, T2) are obtained by solving the
inhomogeneous second order differential equations (see Appendix A).

4.3. Order ε2 equations
The set of equations of order ε2 is:

D2
0u12 + ω2

1 u12 = −2 D2D0 u10 −D2
1u10 − 2 D1D0u11

6∑
n=3



−I(n−2)αn−2

[1
2D2

0 un1 + D1D0 un0

]
e(IΩT0)

+I(n−3)Ωαn−2

[1
2D0 un1 + D1 un0

]
e(IΩT0)

+1
2 I

(n−2) αn−2Ω2 un1e(IΩT0) + [c.c.]


(18)
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D2
0u22 + ω2

2 u22 = −2 D2D0 u20 −D2
1u20 − 2 D1D0u21

6∑
n=3



−I(n−3)αn−2

[1
2D2

0 un1 + D1D0 un0

]
e(IΩT0)

−I(n−2)Ωαn−2

[1
2D0 un1 + D1 un0

]
e(IΩT0)

+1
2 I

(n−3) αn−2Ω2 un1e(IΩT0) + [c.c.]


(19)

D2
0un2 + ω2

6 un2 = −2 D2D0 un0 −D2
1un0 − 2 D1D0un1

−I(n−2)βn−2

(1
2D2

0 u11 + D1D0 u10

)
e(IΩT0) , n = 3..6 (20)

−I(n−3)βn−2

(1
2D2

0u21 + D1D0 u20

)
e(IΩT0)

Note that un0 and un1 are time dependents of T0, T1 and T2.

4.3.1. Parametric Resonances of second order - ε2 equations
The same procedure developed in section 4.2.1 is used to determine the

parametric resonances of the second order. However, for this goal, the ex-
pressions of un1 (T0, T1, T2) are necessary.

It is assumed, for instance, that any parametric resonance of the second
order is similar to those found in first order equations which leads to validat-
ing the responses determined in Appendix A. By substituting them, the solv-
ability conditions found in section 4.2.3 and the responses of un0 (T0, T1, T2)
in Eqs.(18) to (20), the combination of frequencies of the exciting terms at
order ε2 equations are:

Body Equations - Eqs.(18) and (19):

| ±2Ω± ωn | , n = 1..2 (21)

Blade Equations - Eq.(20):

| ±2Ω± ωn| , n = 3..6 (22)
The rotor speeds at which a resonance of the second order occurs are

calculated by making Eq.(21) equal to ω1 and ω2 and Eq.(22) equal to ω3..6.
They are represented below as,
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Body equation - Eq.(18):

|ω1| ,
∣∣∣ωi+ωj

2

∣∣∣ , ∣∣∣ωi−ωj

2

∣∣∣ i 6= j → i , j = 1..2 (23)

Body equation - Eq.(19):

|ω2| ,
∣∣∣ωi+ωj

2

∣∣∣ , ∣∣∣ωi−ωj

2

∣∣∣ i 6= j → i , j = 1..2 (24)

Blade equations - Eq.(20):

|ωi| ,
∣∣∣ωi+ωj

2

∣∣∣ , ∣∣∣ωi−ωj

2

∣∣∣ i 6= j → i , j = 3..6 (25)

4.3.2. Solvability Conditions - ε2 equations
The objective of this section is similar to that explained previously in

section 4.2.2 and the same procedure is utilized. Nevertheless, in order to
control the nearness of the parametric resonances of the second order, Ω =
ΩR + ε2σ is considered before scaling the equations of motion in Eq.(1).

It should be noted that the solvability equations will be expressed as a
function of complex amplitude Cn (T2) and/or its conjugate Cn (T2), n = 1..6.

5. Study Case - Anisotropic Rotor

The study of the influence of asymmetric blades on helicopter stability
is considered by examining the boundaries of the ground resonance phe-
nomenon. Wang [16] verified the effect of the in-plane lead-lag stiffness vari-
ation of ±5% at one blade on the regressing lag mode stability for a Bousman
3-bladed rotor.

In this work, however, a wide range of in-plane lead-lag stiffness variations
is considered by altering the lead-lag natural frequency in ±100%. From
a practical point of view, the dissimilarities between blades may exist due
to the aging effects (i.e.: loss of mechanical properties) and/or rupture of
mechanical elements. The 4th blade is assumed to be dissimilar from the
others and FM is applied.

Later, an anisotropic rotor case from those analyzed previously, is studied
by considering the helicopter as a parametrically excited dynamic system.
The unstable regions are predicted by MMS and the results are compared
with those obtained by FM.

Table 1 exposes the reference data of the helicopter with isotropic rotor.
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Table 1: Numerical values of the fuselage and rotor head inputs

Fuselage Rotor
mf = 2903 mb k = 31.9 a = 0.2 b = 2.5

ωx = 6.0π ωy = 8.0π ωy = 3.0 π Izb = 259

5.1. Stability Analysis by FM
Twenty one cases of anisotropic rotor configurations are set out by taking

into account the in-plane lead-lag natural frequency variation of the last blade
(4ωb4) from −100% to +100% by steps of 9% of the referential frequency
described in Table 1.

For each configuration, the evolution of the multiplier characteristic as
a function of rotor speed is computed from Eq.(6) and by considering the
period divided into p=64 parts. The boundaries of instabilities are then
determined and collected.

Repeating this procedure, the stability chart for the ground resonance
phenomenon as a function of the asymmetry parameter 4ωb4 is obtained
and shown in Figure 2. The unstable regions (with red lines) are defined
between the symbols 4 and O.

2 3 4 5 6 7 8
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−20
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∆ 
ω
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]

Figure 2: Stability chart for anisotropic rotor by taking into account the 4th
blade stiffness dissymmetric. Regions between 4 and O are unstable.
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The result highlights the presence of two unstable regions that are not
affect by the asymmetry on the rotor. They correspond to the same regions
found in the isotropic rotor configuration 4ωb4 = 0%, and are located be-
tween rotor speed values ranging from 4.446 to 5.034 Hz and from 5.494 to
6.367 Hz. These instabilities happen due to the coalescence frequencies be-
tween fuselage and an asymmetric rotor mode shape (forward whirling mode)
at a specific range of the rotor speed [16].

Moreover, it is noted that asymmetries higher than 15% cause the occur-
rence of new critical regions. Branches spread from the two zones mentioned
above, creating new critical subregions. Also, unstable movements are also
detected at rotor speeds around 3.0, 3.5 and 4.0 Hz which correspond to ω1,
(ω1+ω2)

2 and ω2.
Nevertheless, small stiffness alterations (|4ωb4| < 15%) increases the dis-

tance between the boundary speeds, making the zones wider.

5.2. Stability Analysis by MMS
A case of anisotropic rotors is set in order to compute a stability analysis

with MMS. An arbitrary case is chosen from those studied in the previous
sections, i.e. 4ωb4 = −40%.

The parametrically excited characteristic of the dynamical system and
the expansions introduced by the perturbation method, highlight the pres-
ence of parametric resonances at first and/or second order equations. These
resonances are illustrated graphically in Figure 3 which shows the evolution
of the natural frequencies (ω1 to ω6) with the evolution of harmonic combi-
nations at ε1 and ε2 order equations. They are plotted as a function of rotor
speed Ω.

The intersection points indicate resonant cases A to H and J to Q, and
Table 2 contains the rotor speed values for all cases. Note that two resonances
may occur simultaneously at the same rotor speed, which explains the use of
lines connecting the points.

5.2.1. Parametric resonant cases - ε1 equations
The boundaries of ground resonance are determined by studying the sta-

bility of the solvability equations for each parametric resonant case. It is
important to note that αk = 1 and βk = rb k

rm k
, for k=1..6, since the blades

have the same geometrical and inertial properties.

• Case A - ΩR = ω1 − ω3..5 = 1.475× (2π)
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(a)

(b)

Figure 3: Evolution of harmonics combinations along with the evolution of
natural frequencies for an anisotropic rotor: (a) at ε1 equations and (b) at
ε2 equations
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Table 2: Rotor speed values (Hz) of the parametric resonant cases found by
MMS for an anisotropic rotor

Resonant Cases of the First Order
A B C D E F G H

1.475 2.02 2.433 2.94 4.192 4.741 5.343 5.855
Resonant Cases of the Second Order

J K L M N O P Q
0.299 0.500 0.916 1.223 1.526 3.000 3.500 4.000

The solvability equations are presented below:

−2 I ω1

(
∂

∂T1
C1

)
e−Iσ T1 +

6∑
n=3

1
2 I

(n−2)α (ωn + ΩR)2Cn = 0 (26)

2 I
(
∂

∂T1
C2

)
ω2 = 0 (27)

−2 I ωn
(
∂

∂T1
Cn

)
− 1

2 I
(6−n)β ω2

1 C1e−Iσ T1 = 0, n = 3..5 (28)

−2 I
(
∂

∂T1
C6

)
ω6 = 0 (29)

The nonexistence of exciting terms at frequencies ω2 and ω6 explain why
Eqs.(27) and (29) are homogeneous and independents. The amplitudes Cn
are functions of T1 and T2.

Differentiating Eq.(26) with respect to T1 and replacing ∂
∂T1
Ck, k =3..5

obtained from Eq.(28), a second order differential equation on C1 is obtained.
Assuming C1 = (Br + IBi) e(I σ T1), where Br and Bi are real functions

of T1 and T2, two new autonomous expressions are found once the real and
imaginary terms are separated. They admit a nontrivial solution having the
form (Br, Bi) = (br, bi) e(ΓT1) where br, bi and Γ are constants.

By arranging them in matrix form, as a function of br and bi, the char-
acteristic polynomial equation PA (Γ , σ) is then obtained as,

PA (Γ , σ) = a4Γ 4 + a2Γ 2 + a0 (30)

17



where, a0 = −0.1905× 107, a2 = −1423σ2− 0.329× 107 and a4 = −1423.
The polynomial characteristic equations of the remainder cases Pk (Γ , σ),

k = {B..H} are found by repeating the procedure developed previously.
They are not represented due to their volume and length.

The stability of the dynamical system is then determined by regarding
the roots (Γ) of the characteristic polynomial equations. The system is sta-
ble when, by varying σ over a certain range, the values of Γ are all imagi-
nary. This implies that Γ 2 should be real and negative. Figure 4 illustrates
separately the evolution of the real and imaginary values of Γ 2 for all the
parametric resonant cases of the first order with respect to the product εσ.

The results highlight that the ground resonance phenomenon appears
only in the last four cases. The boundaries of instability, in Hz, range from
-0.1425 to 0.1425 for case E, from -0.2042 to 0.2042 for case F and G, and,
finally, from -0.3012 to 0.3012 for case H.

5.2.2. Parametric resonant cases - ε2 equations
Similar to the parametric resonant cases of the first order, the stability

analysis of cases J to Q is carried out and the boundaries of instability are
then predicted. Since the blades have the same geometrical and inertial
properties, αk = 1 and βk = rb k

rm k
, for k=1..6.

The solvability equations can be represented as follows in all the resonant
cases:

∂

∂T2

{
C1
C2

}
= [ v1,1 v1,2

v2,1 v2,2 ]
{
C1
C2

}
+
[
v1,1 v1,2
v2,1 v2,2

] { C1
C2

}
(31)

∂

∂T2


C3
...
C6

 =
[ v3,3 ··· v3,6

... ... ...
v6,3 ··· v6,6

]
C3
...
C6

 +
 v3,3 ··· v3,6

... ... ...
v6,3 ··· v6,6



C3
...
C6

 (32)

Coefficients v and v are given numerically. It should be noted that C is
the conjugate term of C and both are functions of T2 only.

• Case J - ΩR = ω3..5 − ω6 = 0.299 × (2π)

The coefficients values of Eqs.(31) and (32) are indicated below for the res-
onant case J.
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Figure 4: Stability analysis of the first order resonant cases A to H - 1)
Evolution of the real part of Γ2 , 2) Evolution of the imaginary part of Γ2

19



v1,1 = 587.9 I v2,2 = 285.4 I
v1,2 = 0 v2,1 = 0
v3,3 = −152.1 I + 0.2804× 10−1 I σ v3,4 = 152.1
v3,5 = 152.1 I v3,6 = 0.1269× 10−2 e(−2I σ T2)

v4,3 = −152.1 v4,4 = 0.2804× 10−1 I σ − 152.13 I
v4,5 = 152.12 v4,6 = 0.1269× 10−2 I e(−2I σ T2)

v5,3 = 152.14 I v5,4 = −152.1
v5,5 = 0.2804× 10−1 I σ − 152.1 I v5,6 = 0.1269× 10−2 e(−2I σ T2)

v6,3 = 174.3e(2I σ T2) v6,4 = 174.3 I e(2I σ T2)

v6,5 = −174.3e(2I σ T2) v6,6 = 0.4583× 10−1 I σ − 37.96 I

Two sets of autonomous equations are obtained once Ck = (Br k + IBi k) e( I σ T2)

for k = {1, 2, 6}, and Ck = (Br k + IBi k) e(−I σ T2) for k=3..5 in Eqs. (31) and
(32). The variables Br k and Bi k are real functions of T2. They admit non-
trivial solutions having the form [Br k, Bi k] = [dr k, di k] e(ΓT1) where Γ , dr k
and di k are constants.

Arranging them in a matrix form as a function of dr k and di k, the polyno-
mial characteristic equations PJ,1 (Γ , σ) and PJ,2 (Γ , σ), originated from Eqs.
(31) and (32) in that order and expressed as a function of Γ and σ, are:

PJ,1 (Γ , σ) = Γ 4 + a1
2Γ 2 + a1

0 (33)
PJ,2 (Γ , σ) = Γ 8 + a2

6Γ 6 + a2
4Γ 4 + a2

2Γ 2 + a2
0 (34)

where,

a1
0 =σ4 − 722.2σ3 + 0.1953× 106 σ2 − 0.2343× 108 σ + 0.1052× 1010

a1
2 = 2σ2 − 722.2σ + 0.6553× 105

a2
0 = σ8 + 58.64σ7 + 912.0σ6 + 1045σ5 − 0.1371× 105 σ4 + ...
−0.1286× 105 σ3 + 0.6024× 105 σ2 − 6.0× 10−12 σ + 1.607× 10−11

a2
2 = 4σ6 + 175.9σ5 + 2635σ4 + 4260σ3 + 4204σ2 − 0.1286× 105 σ + 0.6024× 105

a2
4 = 6σ4 + 175.9σ3 + 2535σ2 + 3214σ + 0.1791× 105

a2
6 = 4σ2 + 58.64σ + 811.4

Previous coefficients are the results of numerical application from Table 1
of which the analytical expressions are not presented in this paper. The

20



polynomial characteristic equations of remainder resonant cases Pk (Γ , σ),
k = {K..Q} , are achieved by following the same actions described previously.

By conforming to the same criteria as those established in section 5.2.1,
stability is determined by considering the roots (Γ) of the characteristic poly-
nomial equations. Figure 5 illustrates separately the evolution of the real and
imaginary parts of Γ 2 with respect now to the product ε2σ.

The analysis indicates unstable oscillations from -0.0288 to 0.0171 Hz for
case O, from -0.0534 to -0.0325 Hz for case P, and from -0.0592 to -0.038 Hz
for the last case Q.

With respect to case N, when regarding the amplitudes of the imaginary
terms, it can be seen that they are smaller than the real ones. The real part
of the exponent obtained for the helicopter responses can be neglected, once
the square root has been extracted (passing from Γ 2 to Γ) and multiplied
by ε2 (passing from T2 to t), leading to small values (∼ 1 × 10−6). Finally,
resonant case N presents stable oscillations.

Comparing the results obtained from FM and MMS in Table 3 high-
lights the predicted boundary speeds of the ground resonance phenomenon.
There are seven instability zones: the last four correspond to parametri-
cal resonances of the first order and the three first are unstable parametric
resonances of the second order.

The shifts between both methods are calculated by taking into account
the mean rotor speed values at each zone.

Table 3: Limits of instability zones predicted by using FM and MMS for an
anisotropic rotor configuration with 4ωb4 = −40% and the shift between the
mean critical rotor speed values

Resonant Case FM MMS Error [%]
1 / O 2.959 2.979 2.971 2.983 0.27
2 / P 3.348 3.462 3.447 3.467 0.20
3 / Q 3.933 3.956 3.941 3.962 0.18
4 / E 4.016 4.384 4.049 4.335 0.97
5 / F 4.516 5.039 4.537 4.945 1.17
6 / G 5.096 5.545 5.139 5.547 0.44
7 / H 5.568 6.339 5.554 6.156 1.57

Regarding in details into the three specific unstable regions (cases P,
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Figure 5: Stability analysis of the second order resonant cases J to Q - 1)
Evolution of the real part of Γ2 , 2) Evolution of the imaginary part of Γ2
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E and H), Figure 6 shows the deformation shapes of the helicopter at the
instants of the maximal amplitude displacement of the fuselage. The ampli-
tude of movements are obtained from temporal responses, computed through
a numerical step-by-step integration method (see Appendix B).

(a) Case P (b) Case E (c) Case H

Figure 6: Rotor Deformation of an Helicopter with one Dissimilar Blade
(pink line) - ∆ωb4 = −40% -, during time integration at a given time step,
with: (a) Ω = 3.45Hz - Case P, (b) Ω = 4.20Hz - Case E and (c) Ω = 5.91Hz
- Case H. The green point denotes the instantaneous centre of gravity of the
blades.

The intersection point between two dashed red lines corresponds to the
rest point of the helicopter and the dashed black lines indicate the level zero
of blade lead-lag oscillations. The pink line represents the dissimilar blade
and the green diamond symbol indicates the position of the rotor center of
mass. In order to help the comprehension and the visualization of Figure 6a,
the amplitudes are multiplied by 500.

The rotor center of mass are shifted from the axis of rotation in all cases,
indicating the presence of a non symmetric rotor deformation. Moreover,
from the temporal responses at a given time, the amplitudes of movement
reached by the blades and fuselage in cases E and H (i.e.: instabilities at first
order) are higher than those obtained in P (i.e.: instability at second order).

Moreover, in case P, the longitudinal and lateral displacements of the
fuselage have the same amplitude level (see Figure B.7). Through the anal-
ysis obtained by MMS, this fact is explained by the presence of parametric
resonance involving both displacements of the fuselage, as verified by the
case P in the Figure 3b.

Regarding the case E in Figure 3a, the longitudinal displacement of the
fuselage and the lead-lag oscillation of the perturbed blade are in resonance
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(evidenced by highest amplitude of u1 and u6 in Figure B.8). The same
analysis for case H highlights the high correspondence between the temporal
results and those obtained by the MMS.

6. Conclusion

In recent decades, helicopter stability (e.g. the ground resonance phe-
nomenon) has attracted much attention. Predicting the critical rotor speeds
at which the phenomenon occurs for isotropic and anisotropic rotor configu-
rations has been studied and the influence of small in-plane stiffness asym-
metries between blades analyzed.

The equations of motions were simplified and the instability regions eas-
ily identified for the isotropic rotor configuration. However, anisotropic rotor
configuration requires considering and treating periodical equations of mo-
tions. Floquet’s Method (FM) has been used frequently to determine the
boundaries of instability in this kind of rotor.

The aim of the present work was to verify the influence of high in-plane
stiffness variation at one blade on stability, specifically the ground resonance
phenomenon. To do this, the classical FM was used and the Method of
Multiple Scales (MMS) was proposed.

With the latter method, the helicopter, considered as a parametrically
excited system, leads to the occurrence of periodic terms of high order ε
equations. In our case we focused on the advantages of using methods that
give analytical responses (i.e, versatility and less CPU time) and on deter-
mining the existence of parametric resonances capable of explaining ground
resonance in helicopters. The stability analysis on each of these resonances
led to the identification of critical regions and identifying their boundary
speeds.

By performing a numerical analysis and using FM, a complex stability
chart was obtained that illustrated the evolution of the instability boundaries
of different anisotropic rotors as a function of rotor speed. The asymmetry
was introduced by varying the in-plane lead-lag natural frequency of one
blade from -100% to +100%. The occurrence of new instability zones was
detected for an in-plane lead-lag variation higher than ±15%.

However, with MMS, the treatment of a parametrically excited system
led to the identification of sixteen parametric resonant cases, of which seven
were identified as exponentially unstable. They were linked to the existence
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of parametric instabilities and expressed as a combination of blade and/or
fuselage natural frequencies.

Great similarity between the results could be seen when comparing the
instability boundaries established with MMS and those with FM (considering
the same asymmetry case). A temporal analysis of the periodical equations
of motions highlight the exponential evolution of the amplitude of oscillation
at three instability regions, beyond the good correspondence with the results
obtained with the MMS.

The prediction of the ground resonance phenomenon was easily and accu-
rately obtained by using MMS. For each resonant case, studying the evolution
of the roots of an analytical expression (i.e. the polynomial characteristic
equation), led to identifying the critical regions. Furthermore, it improved
understanding of the existence of certain instability regions in the stability
chart. The unstable regions at low rotor speed values corresponded to para-
metric instabilities of the second order, whereas the others were parametric
instabilities of the first order.

Appendix A. Responses of un1

The responses un1 for a non-resonant case at order ε1 set of equations are
illustrated as:

u11 =
1
2

(
− i (Ω + ω3)2 α ei(Ω+ω3)T0

(ω1 + Ω + ω3) (−ω1 + Ω + ω3) + iα e−i(Ω−ω3)T0 (Ω− ω3)2

(−ω1 + Ω− ω3) (ω1 + Ω− ω3)

)
C3

+ 1
2

(
α (Ω− ω4)2 e−i(Ω−ω4)T0

(−ω1 + Ω− ω4) (ω1 + Ω− ω4) + α (Ω + ω4)2 ei(Ω+ω4)T0

(ω1 + Ω + ω4) (−ω1 + Ω + ω4)

)
C4

+ 1
2

(
− ie−i(Ω−ω5)T0 (Ω− ω5)2 α

(−ω1 + Ω− ω5) (ω1 + Ω− ω5) + iei(Ω+ω5)T0α (Ω + ω5)2

(ω1 + Ω + ω5) (−ω1 + Ω + ω5)

)
C5

+ 1
2

(
− α (Ω− ω6)2 e−i(Ω−ω6)T0

(−ω1 + Ω− ω6) (ω1 + Ω− ω6) −
α (Ω + ω6)2 ei(Ω+ω6)T0

(ω1 + Ω + ω6) (−ω1 + Ω + ω6)

)
C6

+ [c.c.]
(A.1)
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u21 =
1
2

(
− (Ω + ω3)2 α ei(Ω+ω3)T0

(ω2 + Ω + ω3) (−ω2 + Ω + ω3) −
α (Ω− ω3)2 e−i(Ω−ω3)T0

(−ω2 + Ω− ω3) (ω2 + Ω− ω3)

)
C3

+ 1
2

(
−iα (Ω + ω4)2 ei(Ω+ω4)T0

(ω2 + Ω + ω4) (−ω2 + Ω + ω4) + iα (Ω− ω4)2 e−i(Ω−ω4)T0

(−ω2 + Ω− ω4) (ω2 + Ω− ω4)

)
C4

+ 1
2

(
α (Ω + ω5)2 ei(Ω+ω5)T0

(ω2 + Ω + ω5) (−ω2 + Ω + ω5) + α (Ω− ω5)2 e−i(Ω−ω5)T0

(−ω2 + Ω− ω5) (ω2 + Ω− ω5)

)
C5

+ 1
2

(
− ie−i(Ω−ω6)T0α (Ω− ω6)2

(−ω2 + Ω− ω6) (ω2 + Ω− ω6) + iei(Ω+ω6)T0α (Ω + ω6)2

(ω2 + Ω + ω6) (−ω2 + Ω + ω6)

)
C6

+ [c.c.]
(A.2)

u31 =
1
2

(
−iβ ω2

1ei(Ω+ω1)T0

(ω1 + Ω + ω3) (ω1 + Ω− ω3) + iβ ω2
1e−i(Ω−ω1)T0

(−ω1 + Ω− ω3) (−ω1 + Ω + ω3)

)
C1

+ 1
2

(
− β ω2

2 e−i(Ω−ω2)T0

(−ω2 + Ω− ω3) (−ω2 + Ω + ω3) −
β ω2

2 ei(Ω+ω2)T0

(ω2 + Ω + ω3) (ω2 + Ω− ω3)

)
C2

+ [c.c.]
(A.3)

u41 =
1
2

(
β ω2

1 ei(Ω+ω1)T0

(ω1 + Ω + ω4) (ω1 + Ω− ω4) + β ω2
1 e−i(Ω−ω1)T0

(−ω1 + Ω− ω4) (−ω1 + Ω + ω4)

)
C1

+ 1
2

(
iβ ω2

2 e−i(Ω−ω2)T0

(−ω2 + Ω− ω4) (−ω2 + Ω + ω4) −
iβ ω2

2 ei(Ω+ω2)T0

(ω2 + Ω + ω4) (ω2 + Ω− ω4)

)
C2

+ [c.c.]
(A.4)
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u51 =
1
2

(
iβ ω2

1 ei(Ω+ω1)T0

(ω1 + Ω + ω5) (ω1 + Ω− ω5) −
iβ ω2

1 e−i(Ω−ω1)T0

(−ω1 + Ω− ω5) (−ω1 + Ω + ω5)

)
C1

+ 1
2

(
β ω2

2 e−i(Ω−ω2)T0

(−ω2 + Ω− ω5) (−ω2 + Ω + ω5) + β ω2
2 ei(Ω+ω2)T0

(ω2 + Ω + ω5) (ω2 + Ω− ω5)

)
C2

+ [c.c.]
(A.5)

u61 =
1
2

(
− β ω2

1 ei(Ω+ω1)T0

(ω1 + Ω + ω6) (ω1 + Ω− ω6) −
β ω2

1 e−i(Ω−ω1)T0

(−ω1 + Ω− ω6) (−ω1 + Ω + ω6)

)
C1

+ 1
2

(
−iβ ω2

2 e−i(Ω−ω2)T0

(−ω2 + Ω− ω6) (−ω2 + Ω + ω6) + iβ ω2
2 ei(Ω+ω2)T0

(ω2 + Ω + ω6) (ω2 + Ω− ω6)

)
C2

+ [c.c.]
(A.6)

Appendix B. Temporal Responses

The numerical step-by-step integration method ”Adams113”, in MAT-
LAB R©, is used to compute the temporal responses of a helicopter with one
dissymmetric blade ∆ωb4 = −40% at three critical regions (cases P, E and
H). The rotating speed value considered for the analyses are, in Hz, equal to
3.45, 4.20 and 5.91, respectively.

The initial conditions imposed are 0.1◦ for the lead-lag oscillation of 4th
blade, and zero for all remainder amplitudes and speeds.

Figures B.7 to B.9 illustrate the results obtained at the regions defined
by cases P, E and H, respectively.
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