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MATHEMATICAL FRAMEWORK FOR TRACTION FORCE MICROSCOPYR. Mihel 1, V. Peshetola 1, 2, G. Vitale 2, J. Étienne 1, A. Duperray 3, 4,D. Ambrosi 5, L. Preziosi 2 and C. Verdier 1Abstrat. This paper deals with the Tration Fore Mirosopy (TFM) problem. It onsists inobtaining stresses by solving an inverse problem in an elasti medium, from known experimentallymeasured displaements. In this artile, the appliation is the determination of the stresses exertedby a living ell at the surfae of an elasti gel. We propose an abstrat framework whih formulatesthis inverse problem as a onstrained minimization problem. The mathematial onstraints expressthe biomehanial onditions that the ell must satisfy. From this framework, two methods urrentlyused an be derived, the adjoint method (AM) and the Fourier Transform Tration Cytometry(FTTC) method. An improvement of the FTTC method is also derived using this framework. Thenumerial results are ompared and show the advantage of the AM, in partiular it an apturedetails more aurately.Résumé. Cet artile est onsaré au problème de la Mirosopie à Fore de Tration (TFM).Ce problème onsiste à déterminer les ontraintes exerées par une ellule lors de sa migrationsur un substrat élastique à partir d'une mesure expérimentale des déplaements induits dans esubstrat. Mathématiquement, il s'agit de résoudre un problème inverse pour lequel nous proposonsune formulation abstraite de type optimisation sous ontraintes. Les ontraintes mathématiquesexpriment les onstraintes bioméaniques que doit satisfaire le hamp de ontraintes exeré par laellule. Ce adre abstrait permet de retrouver deux des méthodes de résolution utilisées en pratique,à savoir la méthode adjointe (AM) et la méthode de Cytométrie de Tration par Transformée deFourier (FTTC). Il permet aussi d'ameliorer la méthode FTTC. Les résultats numériques obtenussont ensuite omparés et démontrent l'avantage de la méthode adjointe, en partiulier par sa apaitéà apturer des détails ave une meilleure préision.Key words. Cell motility, Inverse problems, Tikhonov regularization, Adjoint Method (AM), Fourier Trans-form Tration Cytometry (FTTC), L�urve.1. IntrodutionLiving ells have the ability to migrate on di�erent 2D�susbstrates whih are onsidered to be in vitro modelsfor understanding ell motility. Indeed, ells pull on the substrate and an deform it by developing fores,whih are alled tration fores. It is essential to determine suh fores, beause one an then understand howells regulate their adhesion and modify their ytoskeleton [4℄ in order to undergo suh a omplex proess,i.e. migration. To determine tration fores or more preisely tration stresses, assuming that ells do not
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ESAIM: PROCEEDINGS 2/20penetrate into the substrate, biophysiists have proposed to use beads embedded in the substrate [10℄. Byfollowing the positions of beads, as ompared to their initial state, one obtains displaements in the migrationplane. These displaements are denoted by ub and are de�ned on a part Ωb of the whole omputationaldomain (see Fig. 1 below). They are linked to the stresses applied by ells by the elastiity problem. So,the determination of the tration stress �eld from the (partial) knowledge ub of the indued displaementsneeds to solve an inverse elastiity problem. This method has been alled Tration Fore Mirosopy (TFM)and has been onsidered using di�erent formulations, the BEM (Boundary Element Method (BEM) [10℄,the Fourier Transform Tration Cytometry (FTTC) method [7℄, the Tration Reovery from Point Fore(TRPF) [20℄, and �nally the more reent Adjoint Method (AM) [2, 3, 23℄.One important point whih is not often onsidered in previous studies is the fat that the tration stress�eld must satisfy to a set of biomehanial onstraints. First, the ell is not in ontat with the substrate onthe whole omputational domain, but only over a subdomain denoted by Ωc and alled the ell domain (seeFig. 1 below). Therefore stresses are zero outside this ell domain. Next, if the ell moves slowly (as is the

Figure 1 � Shemati representation of the omputational domain. Ω: 2D omputational domain orresponding tothe ell migration plane; Ωc: ell domain, the part of Ω �below� the ell; Ωb: beads domain. See also Fig. 2 page 8.ase) or in a quasistati way, it is in equilibrium and the sum of fores and moments vanish. This an bewritten in mathematial terms as:
supp (T ) ⊂ Ωc,

∫

Ωc

T dx = 0 and ∫

Ωc

x ∧ T dx = 0 (1)where T is the tration stress �eld exerted by ells on the substrate, Ωc is the losure of Ωc, and supp (T )is the support of T , that is the omplement of the largest set where T is identially zero almost everywhere.The three biomehanial onditions de�ned in (1) will be respetively alled loalization onstraint, zero foreonstraint, and zero moment onstraint.Initially, researhers have used the method proposed by Dembo et al. [10℄, but the FTTCmethod [7℄ appeared,whih seemed to provide a more simple framework and to be more e�ient in terms of omputational time.Nevertheless, the FTTC method does not allow to impose the zero moment onstraint and needs to bemodi�ed to aount for one of the biomehanial onditions, the loalization onstraint whih imposes nostresses outside the ell domain. A way to impose this loalization onstraint, alled onstrained�FTTC, hasbeen proposed [7℄. But, to the best of our knowledge, sine then this variant has never been used. In thiswork, we will pay partiular attention to this loalization ondition and we will propose an improvement ofthe lassial FTTC method that allows to impose this onstraint.By ontrast, the adjoint method does not have any di�ulty to impose the biomehanial onstraints (1).The loalization onstraint was imposed in [2℄, then the zero fore onstraint was taken into aount [18℄.



ESAIM: PROCEEDINGS 3/20More reently [23℄, the zero moment onstraint was also imposed. This method ould be thought of as a toolto di�erentiate di�erent ells, in partiular aner ells with di�erent invasiveness [2, 3, 17℄.The outline of this paper is as follows. In the next setion, we present an abstrat variational frameworkwhih allows to formulate the TFM problem as a onstrained minimization problem. In order to insure itsstability, a regularization term is added to the objetive funtion. This framework is used in setion 3 toderive the adjoint method and in setion 4 to improve the FTTC method in order to meet the loalizationonstraint. In setion 5, the issue of the hoie of the regularization parameter is disussed and the trationstresses �elds obtained by using adjoint method and improved FTTC method are ompared in a real ase.2. Abstrat variational framework for the TFM problemIn this setion we de�ne an abstrat variational framework to formulate and solve the TFM problem. Thefuntional framework is desribed in setion 2.1 in terms of spaes and operators. Then, in setion 2.2, wede�ne the unknown tration stress �eld as the solution of a onstrained minimization problem. Finally, insetion 2.3 we reformulate the optimal onditions as a set of unonstrained variational equations involvingthe adjoint state and the displaement �eld as unknowns. The tration stress �eld is then obtained by usinga projetion operator.2.1. Funtional frameworkSpaes. Let H be a real Hilbert spae. We denote by (·, ·)H its salar produt and by ||·||H =
√

(·, ·)Hthe orresponding norm. Let V ⊂ H be a linear subspae of H . We assume that V is dense in H for thetopology indued by the norm ||·||H (V H
= H), and that, equipped with its own norm ||·||V , V is a re�exiveBanah spae suh that the injetion from V into H is ontinuous (V H). Under these onditions, theanonial injetion from the spae H into its dual H ′ de�nes a linear ontinuous injetive operator whoserange is dense in H ′ [6℄. If, by using the Riesz theorem, we identify H with its dual H ′ (H ≡ H ′, that is His hosen as pivot spae for the duality pairing), then the spaes V , H and V ′ form a Gelfand triple:

V H ≡ H ′ V ′ with V
H

= H and H ′V
′

= V ′ (2)Furthermore, the duality pairing satis�es the following relations
〈T , S〉H′,H = (T , S)H ∀ (T , S) ∈ H × H and 〈T , v〉V ′,V = (T , v)H ∀ (T , v) ∈ H × V (3)In the TFM ontext, V and H are respetively displaement and stress spaes and the injetion of V into

H is also ompat. To take into aount biomehanial onstraints (1) and experimental data, we needtwo supplementary spaes. The �rst one is Hc a losed non empty subspae of H related to biomehanialonstraints, (or at least some of these onstraints), and the seond one is Xb, another real Hilbert spaerelated to the experimentally measured displaements ub. Depending on the used formulation and on thenature of ub, Xb is either a �nite dimensional spae (see the setion 4.4, or the formulation used in [23℄),either a losed non empty subspae of H (when ub is a funtion and Ωb an open set). In both ases, we denoteby (·, ·)Xb
and ||·||Xb

the salar produt and its assoiated norm in Xb. Note that under these onditions,the spae Xb an be identi�ed with its dual spae without ontravening with the hoie of the spae H aspivot spae.Elastiity operator. The relationship between the stress �eld T imposed by the ell during its migrationand the displaement u indued in the gel (on the gel surfae) is represented by a ontinuous linear operator
A ∈ L (V, V ′) from V into its dual V ′. We assume the A is V -ellipti in the sense that:

∃α > 0 suh that 〈Av, v〉V ′,V ≥ α ||v||2V ∀v ∈ V (4)Under these onditions, A is bijetive. Furthermore, sine V and V ′ are two Banah spaes, thanks toBanah theorem, the inverse A−1 is a linear ontinuous operator from V ′ into V . Thus, A ∈ Isom (V, V ′)



ESAIM: PROCEEDINGS 4/20and A−1 ∈ Isom (V ′, V ). Hene, all stress �elds T imposed by the ell and the indued displaements u inthe gel are related by:
Au = T in V ′ ⇐⇒ u = A−1T in V (5)In addition, the adjoint operator AT is also an isomorphism and, thanks to re�exivity of V , we have AT ∈

Isom (V, V ′) and A−T ∈ Isom (V, V ′) where A−T denotes the inverse of AT.Observation operator and data. To ompare the theoretial displaements u = A−1T ∈ V to theexperimental beads displaements ub ∈ Xb we use a ontinuous linear operator B ∈ L (V, Xb) whih an beviewed as the observation operator. This omparison involves the residual vetor BA−1T −ub ∈ Xb. As Xban be identi�ed with its dual, we have BT ∈ L (Xb, V ′).2.2. The TFM problem as a onstrained minimization problemTikhonov funtional. Given a positive real-valued parameter ε > 0, we de�ne the so�alled Tikhonovfuntional Jε : T ∈ H 7−→ Jε(T ) ∈ R by
Jε(T ) =

1

2

∣∣∣∣BA−1T − ub

∣∣∣∣2
Xb

+
ε

2
||T ||2H (6)The following two propositions establish the di�erentiability and onvexity properties that are needed.Proposition 2.1 (Di�erentiability). The Tikhonov funtional Jε(·) de�ned by (6) is twie Frehet�di�erentiableeverywhere in H and, for all T ∈ H, its �rst and seond derivatives J ′
ε(T ) ∈ H ′ and J ′′

ε (T ) ∈ L (H × H, R)read
〈J ′

ε(T ), δT 〉H′,H =
(
BA−1T − ub, BA−1δT

)
Xb

+ ε (T , δT )H (7)
〈J ′′

ε (T ), (δT , δS)〉H′,H =
(
BA−1δT , BA−1δS

)
Xb

+ ε (δT , δS)H (8)for all (δT , δS) ∈ H × H.Proof. Diret omputation and appliation of the Frehet derivative de�nition. �Proposition 2.2 (Convexity). The Tikhonov funtional Jε(·) de�ned by (6) is stritly onvex everywherein H.Proof. From equation (8), we have 〈J ′′
ε (T ), (δT , δT )〉H′,H =

∣∣∣∣BA−1δT
∣∣∣∣2

Xb

+ ε ||δT ||2H ≥ ε ||δT ||2H forall δT ∈ H . So, sine ε > 0, J ′′
ε (T ) is H�ellipti for all T ∈ H . Then, the Tikhonov funtional Jε is stritlyonvex everywhere over H [9℄. �Now, we an de�ne rigorously the required stress �eld T ε as the solution of the following onstrained mini-mization problem.Problem 2.3. (Constrained minimization problem) Given ub ∈ Xb, and ε > 0, �nd T ε suh that

T ε ∈ Hc and Jε(T ε) = min
T∈Hc

Jε(T ) (9)This problem is well-posed in the sense that the following theorem holds.Theorem 2.4. The onstrained minimization problem 2.3 has one and only one solution T ε whih satis�esthe following variational equation
T ε ∈ Hc and (

BA−1T ε − ub, BA−1T
)
Xb

+ ε (T ε, T )H = 0 ∀T ∈ Hc (10)Proof. The Tikhonov funtional Jε is stritly onvex everywhere in H (f. prop. 2.2), and Hc is a losedsubspae of the Hilbert spae H , so [6, 9℄, the minimization problem 2.3 has one and only one solution
T ε ∈ Hc. Moreover [6, 9℄, this solution satis�es the Euler equation 〈J ′

ε(T ε), T 〉H′,H = 0 ∀T ∈ Hc whih, byusing de�nition (7) of J ′
ε(T ε), is rewritten as (10). �



ESAIM: PROCEEDINGS 5/20The de�nition (6) of the Tikhonov funtional Jε(·) involves two terms. The �rst one, the residual norm∣∣∣∣BA−1T − ub

∣∣∣∣2
Xb

, measures the goodness of the optimal solution T ε, i.e. its apaity to predit the ex-perimental displaements ub. Qualitatively, if this term is too large, T ε annot be onsidered as a suitablesolution. But a small value is not neessarily a satisfying ondition to meet. Indeed, when a small value of theresidual norm ours, then unertainties in the data ub take too muh weight. As a result, the solution T ε isdominated by high�frequeny omponents with large amplitudes and beomes so irregular that it looses itsphysial meaning. It is the well known instability of the inverse problem solution [12,14℄. So, the seond termin the de�nition of Jε(·), the stress norm ||T ||2H , measures the regularity of the optimal solution T ε. Its role isto restore and enfore the stability of T ε by penalizing its norm. The Tikhonov funtional an be understoodas a balane between two ontraditory requirements: obtaining small residuals with a su�iently smoothsolution. The regularization parameter ε an be viewed as a tuning parameter for this balane. Large valuesof ε lead to very smooth stress �elds with poor residuals. Conversely, smaller values of ε give good residualswith unrealisti stresses. In setion 5, we deal with the manner to hoose this regularization parameter.Another way to regularize the TFM problem is to apply a low-pass �ltering in order to avoid the high-frequeny omponents in the experimental beads displaements [22℄.The formulation of the TFM problem as the onstrained minimization problem 2.3 is mathematially rigorousand is, in our opinion, a fundamental basis of any numerial methods for omputing an approximation ofstresses exerted by the ell. But this formulation is exlusively foused on the minimization aspets and doesnot address more spei� aspets related to the inverse nature of the TFM problem. On this matter, we referto reent work [23℄.2.3. Solving the TFM problemAdjoint state. By using the de�nition of the adjoint operator and the property (3) of the duality pairing,we an reformulate the Xb�salar produt involved in the variational equation (10) as follows
(
BA−1T ε − ub, BA−1T

)
Xb

=
〈
BT

(
BA−1T ε − ub

)
, A−1T

〉
V ′,V

=
〈
A−TBT

(
BA−1T ε − ub

)
, T

〉
V,V ′

=
(
A−TBT

(
BA−1T ε − ub

)
, T

)
HNote that this derivation uses expliitely the identi�ation of the spae Xb with its dual X ′

b.By substituting this last identity in the variational equation (10), we obtain another equivalent harateri-zation of the optimal stress �eld T ε

T ε ∈ Hc and (
A−TBT

(
BA−1T ε − ub

)
, T

)
H

+ ε (T ε, T )H = 0 ∀T ∈ Hc (11)Sine BT ∈ L (Xb, V ′), BT
(
BA−1T ε − ub

) belongs to V ′, and AT ∈ L (V, V ′) is an isomorphism from Vinto its dual V ′, there exists one and only one element pε suh that
pε ∈ V and ATpε = BT

(
BA−1T ε − ub

) in V ′ (12)This element pε ∈ V is the lassial notion of the adjoint state [16℄ applied to the TFM problem.Interpretation of the optimal ondition and projetion operator. The adjoint state pε an be viewedas a simple auxiliary unknown whih allows us to rephrase the haraterization equation (11) of T ε. Indeed,by substituting the adjoint equation (12) into (11) we obtain
T ε ∈ Hc, pε ∈ V and (pε + ε T ε, T )H = 0 ∀T ∈ Hc (13)This new variational equation is nothing else than the haraterization of −ε T ε ∈ Hc as the projetion ofthe adjoint state pε ∈ V (as an element of H) onto the biomehanial onstraints spae Hc [6, 9℄, that is:

T ε = −1

ε
Pc pε in H (14)



ESAIM: PROCEEDINGS 6/20where Pc is the projetion operator from H onto Hc with respet to the salar produt (·, ·)H . Sine Hc is alinear subspae of H , Pc is a linear ontinuous operator from H into H (Pc ∈ L (H, H)), furthermore, Pc isself�adjoint (PT

c = Pc) and idempotent (Pc Pc = Pc).Three �elds problem. As T ε ∈ H , by using the injetion H V ′ involved by the Gelfand triple (2), T εalso belongs to V ′. So we an de�ne the displaement �eld uε related to the stress �eld T ε and de�ned asthe solution of
uε ∈ V and Auε = T ε in V ′ (15)Obviously, existene and uniqueness follow from A ∈ Isom (V, V ′). Next, by substituting T ε for Auε we anrewrite the adjoint equation (12) as

pε ∈ V and ATpε = BT (Buε − ub) in V ′On the other hand, by taking into aount (14) we reformulate (15) as a relationship between uε and pε

uε ∈ V and Auε = −1

ε
Pcpε in V ′ (16)The previous disussion an be summarized by the following problem.Problem 2.5. (Three �elds problem) Given ub ∈ Xb and ε > 0, �nd (pε, uε, T ε) ∈ V × V × Hc suhthat 1. (pε, uε) ∈ V × V is the solution of

ATpε − BTB uε = −BTub in V ′ (17a)
1

ε
Pc pε + Auε = 0 in V ′ (17b)2. then, dedue T ε ∈ Hc by

T ε = −1

ε
Pc pε in H (17)This problem is well�posed and allows to solve the onstrained minimization problem 2.3 as proved by thefollowing theorem.Theorem 2.6. The three �elds problem 2.5 has one and only one solution. Furthermore, the omponent T εof this solution is also the solution of the onstrained minimization problem 2.3.Proof. Existene. The theorem 2.4 establishes the existene of T ε ∈ Hc whih solves the onstrained mini-mization problem 2.3. So, starting from this existene result for T ε, we an reprodue integrally the abovedisussion to establish the existene of a solution (pε, uε, T ε) ∈ V × V ×Hc of the problem 2.5 suh that itsomponent T ε solves the problem 2.3.Uniqueness. Sine the equations (17) are linear, to show uniqueness of their solution it is su�ient to show thatthe only solution of (17) orresponding to ub = 0 is (pε, uε, T ε) = (0, 0, 0). So, let (pε, uε, T ε) ∈ V ×V ×Hcbe a solution of equations (17) orresponding to ub = 0. If ub = 0, sine AT ∈ Isom (V, V ′), equation (17a)yields pε = A−TBTBuε. Thus, equation (17) an be rewritten as

Pc A−TBTBuε + ε Auε = 0By de�nition of the projetion operator Pc (from H onto Hc in the sense of (·, ·)H) and beause Hc is a linearspae, we dedue that
(
A−TBTBuε + ε Auε, T

)
H

= 0 ∀T ∈ Hc and Auε ∈ HcThus, we an hoose T = Auε in the previous variational equation and obtain
(
A−TBTBuε + ε Auε, Auε

)
H

= 0



ESAIM: PROCEEDINGS 7/20By applying the de�nition of the adjoint operators AT and BT, this last equation leads to
||B uε||2Xb

+ ε ||Auε||2H = 0Sine ε > 0, it then follows that Auε = 0 in H . So (Auε, T )H = 0 for all T ∈ H , and sine V H , inpartiular holds for T = uε. Aording to (3) we have (Auε, uε)H = 〈Auε, uε〉V ′,V and the V �elliptiity (4)of the operator A then gives uε = 0. From equation (17a) written with ub = 0, and sine AT ∈ Isom (V, V ′),we dedue that pε = 0. As Pc ∈ L (H, H), it follows from (17) that T ε = 0. This ends the proof. �The problem 2.5 and the theorem 2.6 provides a general framework for using the Tikhonov method in orderto solve the inverse TFM problem. A partiular problem is essentially nothing else than the hoie of anoperator A and a onstraint spae Hc in equations (17). The hoies orresponding to the adjoint and FTTCmethods are disussed in the next setions.Remark 2.7. When the projetion operator Pc is expliitely known, the equations (17) an be diretly usedto de�ne a numerial method to approximate the optimal solution T ε. Indeed, under these onditions theequations (17a) and (17b) de�ne expliitely an unonstrained problem and then the pε�omponent of itssolution an be expliitely alulated by using the projetion step (17). This situation ours when onlythe loalization onstraint and the zero fore onstraint are imposed in the onstrained spae [18℄ (see (22)and (23) in the next setion). This is preisely the situation in whih the adjoint and FTTC methods an beompared.When the zero moment onstraint is also taken into aount, the projetion operator Pc exists but is notexpliitly known. So, the problem 2.5 remains only a theoretial one. To obtain a theoretial formulationwhih an produe a numerial method, it is better to use a formulation whih imposes the zero momentonstraint by duality [23℄ using a Lagrange multiplier.3. Adjoint methodBasially, appliying the adjoint method to the TFM problem onsists in solving a spei� form of the equations(17) involved in the problem 2.5. A spei� form is ahieved by hoosing a partiular operator A involved inthe diret problem (5). This operator expresses the weak form of a boundary value problem desribing theinterations between a ell and the gel during ell migration. In this setion, we start to redue the diretproblem to a 2D boundary value problem de�ned on the gel surfae Ω. Next, we apply the theory desribedin setion 2 in order to reover the original adjoint method applied to the TFM problem [2℄ and its variantobtained by taking into aount the biomehanial onstraints of zero resultant fore [18℄.In order to ompare numerially the adjoint method with the FTTC method, we restrit the biomehanialonstraints taken into aount to the loalization onstraint (supp (T ) ⊂ Ωc) and the zero resultant fore(∫
Ωc

T dx = 0). Indeed, to the best of our knowledge, the FTTC method does not allow to impose the zeromoment onstraint (∫
Ωc

x ∧ T dx = 0).3.1. Redution to a 2D problemGeometry and ative layer. The gel domain is modeled by the parallelepiped Ωg = Ω × ]−hg, 0[ in theeulidian spae R3 with artesian oordinates (x1, x2, x3) = (x, x3). Ω ⊂ R2 is the gel surfae, that is the partof the boundary ∂Ωg on whih the ell migrates, and hg is the gel thikness in the x3 diretion. The horizontalextension of Ωg is about 2 mm while its vertial one is about 70 µm. So, from a mehanial point of view, Ωgan be onsidered as a thin plate. In addition, we assume that (i) the body (gravity) and inertial fores arenegligible in the whole Ωg in omparison with the fores exerted by the ell, (ii) the vertial displaement d3is negligible in omparison with the horizontal ones d1 and d2 and (iii) the ell exerts only tangential stresseson the gel surfae Ω. Under these assumptions and using dimensional analysis, Ambrosi shows [2℄, �rst thatthere exists an ative layer beyond whih the horizontal displaements d1 and d2 vanish, and, seond, that



ESAIM: PROCEEDINGS 8/20in the whole Ωg the σ33 omponent of the stress tensor an be negleted in omparison with the trationstresses exerted by the ell on the surfae Ω. In mathematial terms, we have
x3 ≤ −ha =⇒ uα(x, x3) ≈ 0 ∀(x, x3) ∈ Ωg for α = 1, 2 and σ33 ≈ 0 in Ωgwhere ha denotes the thikness of this ative layer. All these geometrial onepts are shown in �gure 2.

cellBeads

hg

x3

ha

Ωg

Ωc⊂ Ω Ω = ∂Ωg ∩ {x3 = 0}

Figure 2 � Shemati representation of a ell on the elasti substrate. Ωg: 3D elasti subtrate; Ω: 2D alulationdomain orresponding to the ell migration plane (Ω is the interior of ∂Ωg ∩ {x3 = 0}); Ωc: ell domain, the part of
Ω �below� the ell. See also the Fig. 1 page 2.As a onsequene, the �rst hypothesis leads to vanishing of the omponents σ13 and σ23 beyond the ativelayer, that is

σα3 ≈ 0 in Ω × ]−hg,−ha[ for α = 1, 2and the seond one allows us to use the plane stress approximation.From these observations, it is possible to redue the TFM problem to a 2D problem by using a vertialaverage along the ative layer of �elds and equations.Depth-averaged model. The depth�averaged operator is (formally) de�ned as the map whih assoiatesto the funtion ϕ : (x, x3) ∈ Ωg 7−→ ϕ (x, x3) ∈ R the funtion ϕ : x ∈ Ω 7−→ ϕ (x) ∈ R suh that ϕ (x) =
1
ha

∫ 0

−ha

ϕ(x, x3)dx3. By applying this operator to the 3D stress equilibrium equations related to diretions
x1 and x2, and by ombining with the plane stress approximation of the 3D Hooke's law for isotropi andhomogeneous material, we an express the relationship between the depth�averaged displaements uα = dαand the ell tration stress T as

divσ(u) + T = 0 in Ω (18a)
σ(u) = 2 µ2d ε(u) + λ2d div u I in Ω (18b)
ε(u) =

1

2

(
∇ u + ∇ uT

)
in Ω (18)

u = 0 on ∂Ω (18d)where λ2d and µ2d are the 2D Lamé's oe�ients de�ned by
µ2d = ha

E

2(1 + ν)
and λ2d = ha

ν E

1 − ν2with E and ν denote respetively the Young modulus and Poisson ratio of the substrate.The equations (18b) and (18) express the 2D onstitutive law obtained by ombining depth-averaging withthe plane stress requirement. They give the depth�averaged Cauhy stress tensor σ(u) as a funtion of thethe linearized strain tensor ε(u) related to depth�averaged displaements. The boundary ondition (18d)results from the 3D boundary onditions whih impose zero displaements on the lateral part of the boundary
∂Ωg.Data needed to the adjoint method. The Tikhonov funtional Jε de�ned by (6) ompares A−1T withthe experimental data ub. So, sine A−1T must be the solution of the diret problem (18), that is A−1Tmust be a depth�averaged displaement, stritly speaking we need the experimental data ub to involvedepth�averaged values.



ESAIM: PROCEEDINGS 9/203.2. Diret problemFuntional spaes. The spaes H for tration stresses and V for gel displaements are hosen in order tode�ne the solution of the boundary value problem (18) in the weak sense. Thus we use usual Lebesgue andSobolev spaes
H = L2(Ω) = L2(Ω) × L2(Ω) and V = H1

0(Ω) = H1
0 (Ω) × H1

0 (Ω)equipped with their usual salar produts [1, 6℄, that is (u, v)H = (u, v)L2(Ω) =
∫
Ω

u · v dx and (u, v)V =

(u, v)H1

0
(Ω) =

∫
Ω

∇u : ∇ v dx where ∇u : ∇v = Σi,j∂jui ∂jvi. Therefore, we have V ′ = H−1(Ω) =

H−1(Ω) × H−1(Ω) and the Gelfand triple property (2) holds [1, 6℄.Diret problem. The elastiity operator A results from the weak form of the boundary value problem (18).Therefore, if we de�ne the bilinear a(·, ·) on H1
0(Ω) × H1

0(Ω) by
a(u, v) = 2 µ2d

∫

Ω

ε (u) : ε (v) dx + λ2d

∫

Ω

div u div v dx ∀u, v ∈ H1
0(Ω) (19a)we hoose the operator A as the element of L

(
H1

0(Ω), H−1(Ω)
) de�ned by

〈Au, v〉V ′,V = a(u, v) ∀u, v ∈ H1
0(Ω) (19b)The diret problem related to this operator is well-posed as it is showed in the following proposition.Proposition 3.1. The elastiity operator de�ned by (19) satis�es to the H1

0(Ω)�elliptiity ondition (4) andde�nes a self-adjoint isomorphism from H1
0(Ω) to H−1(Ω): A ∈ Isom

(
H1

0(Ω), H−1(Ω)
) and AT = A.Proof. The H1

0(Ω)�elliptiity results from the lassial Korn inequality [8℄ and then the isomorphism propertyresults from the Lax-Milgram lemma [6℄. The self-adjontion of A is a diret onsequene of the de�nition(19). �3.3. Observation operatorData spae and observation operator. We assume that the data is ontinuous in the sense that ex-perimental beads displaements ub are known in a subset Ωb ( Ω whih has a non zero Lebesgue measure(|Ωb| > 0). The ase of pointwise data is onsidered in [23℄. So the data ub must be at least a funtionde�ned on Ωb. But, as indiated in setion 2, the spae Xb must be a Hilbert spae whih an be identi�edwith its dual without ontravening to the identi�ation L2(Ω)′ ≡ L2(Ω). To meet these requirements, wede�ne the Hilbert spae Xb as the following losed subspae of L2(Ω)

Xb =
{

v ∈ L2(Ω) ; supp (v) ⊂ Ωb

} (20)and the value taken by the observation operator B when evaluated at v ∈ H1
0(Ω) as

B v : x ∈ Ω 7−→ (B v) (x) = χ
b
(x)v(x) ∈ R2 (21)where χ

b
(·) stands for the harateristi funtion of the subset Ωb (χ

b
(x) = 1 if x ∈ Ωb and χ

b
(x) = 0 if

x ∈ Ω \ Ωb). Thanks to the Poinaré inequality [1, 6℄, it is lear that B ∈ L
(
H1

0(Ω), Xb

). But, there existsanother way to interpret the operator B, a way that will allow to simplify the appliation of equations (17).Proposition 3.2 (Struture of the observation operator). Let Pb be the L2(Ω)�orthogonal projetionoperator from L2(Ω) onto Xb. Then, the observation operator B ∈ L
(
H1

0(Ω), Xb

) de�ned by (21) satis�esto (1) B is the restrition to H1
0(Ω) of Pb, that is B = Pb|H1

0
(Ω) ;



ESAIM: PROCEEDINGS 10/20(2) B is self�adjoint (BT = B) and idempotent (BB = B).Proof. As Xb is a losed subspae of L2(Ω), the value of Pb when evaluated at v ∈ L2(Ω) is haraterizedby [6, 9℄ Pb v ∈ Xb and (v − Pb v, ϕ)L2(Ω) = 0 ∀ϕ ∈ Xb. Hene, it is easy to verify that Pb v is de�ned asthe funtion Pb v : x ∈ Ω 7−→ (Pbv) (x) = χ
b
(x)v(x) ∈ R2. By omparison with de�nition (21) the �rstpoint holds. The seond point is a property of the projetion onto a losed subspae. �3.4. Constrained spae and projetion operatorConstrained spae and projetion operator. As indiated in the introdution of this setion, we restritthe set of biomehanial onstraints to the ones that the FTTC method an handle. Thus, we hoose theonstrained spae Hc as

Hc =

{
T ∈ L2(Ω) ; supp (T ) ⊂ Ωc and ∫

Ωc

T dx = 0

} (22)It is lear that Hc is a losed subspae of L2(Ω).To use the abstrat equations (17), it remains to identify the projetion operator Pc.Proposition 3.3 (Struture of the projetion operator). The projetion operator Pc belongs to thespae L
(
L2(Ω), L2(Ω)

) and for all T ∈ L2(Ω), the element Pc T is haraterized by
Pc T : x ∈ Ω 7−→ (Pc T ) (x) = χc(x) (T (x) − T Ωc

) ∈ R2 (23a)where T Ωc
and χc(·) denote respetively the average value of T over Ωc and the harateristi funtion of Ωc

T Ωc
=

1

|Ωc|

∫

Ωc

T dx and χc(x) =

{
1 if x ∈ Ωc

0 if x ∈ Ω \ Ωc
(23b)Proof. The proof is very similar to proof of proposition 3.2. First, the funtion PcT de�ned by (23a) belongsto the spae Hc de�ned in (22). Next, for all ϕ ∈ L2(Ω) we have (T − PcT , ϕ)L2(Ω) = (T Ωc

, ϕ)L2(Ωc)
=

|Ωc|T Ωc
ϕΩc

. So, if we hoose ϕ in the spae Hc, we an write that (T − PcT , ϕ)L2(Ω) = 0 ∀ϕ ∈ Hc. Hene,the funtion PcT de�ned by (23a) is the L2(Ω)�orthogonal projetion of T ∈ L2(Ω) onto the onstrainedspae Hc. �3.5. Solving the TFM problem by using adjoint methodBy ombining the results of the urrent setion with the theory developed in setion 2, we an develop thediret formulation of the TFM problem 2.5 with the onstrained spae Hc and the data spae Xb respetivelyde�ned by (22) and (20).Problem 3.4. (Diret formulation of the TFM) Given ub ∈ Xb and ε > 0, �nd (pε, uε) ∈ H1
0(Ω) ×

H1
0(Ω) solution of the following variational equations

a(pε, q) −
∫

Ω

χ
b

uε · q dx = −
∫

Ω

χ
b

ub · q dx ∀ q ∈ H1
0(Ω) (24a)

1

ε

∫

Ω

χc pε · v dx − 1

ε

1

|Ωc|

∫

Ωc

pε dx

∫

Ω

v dx + a(uε, v) = 0 ∀v ∈ H1
0(Ω) (24b)where the bilinear form a(·, ·) is de�ned in (19). Then, dedue T ε ∈ Hc by

T ε = −1

ε

(
χc pε − 1

|Ωc|

∫

Ωc

pε dx

) (25)



ESAIM: PROCEEDINGS 11/20The two weak equations (24) an be interpreted in the usual way as the following two oupled Lamé-Navier-like partial di�ential equations
−µ2d ∆pε − (λ2d + µ2d)∇div pε = χ

b
uε − ub in Ω

−µ2d ∆uε − (λ2d + µ2d)∇ div uε =
1

ε
χc pε − 1

ε

1

|Ωc|

∫

Ωc

pε dx in Ωunder the homogeneous Dirihlet boundary onditions
uε = 0 and pε = 0 on ∂ΩNumerial method. The weak equations (24) are disretized by a �nite element method using loallinear interpolation (P1 element) on an unstrutured mesh. The geometrial �exibility of the meshing toolsallows to inorporate all bead loations as nodes in the mesh and to handle the ell domain Ωc as a spei�subdomain in the mesh. In partiular, the ell �lipodia an be taken into aount in the mesh. The linearsystem of disretized equations is numerially solved by using the bi-onjugate gradient method with diagonalpreonditioning. 4. FTTC methodMathematially, the FTTC method is of the same nature as the adjoint method. It also onsists in solvingthe problem 2.5 in whih the operator A takes a spei� form. This form is desribed in setion 4.1. Thepartiularity of the FTTC method is that the resolution of the diret problem related to this operator isahieved by use of the Fourier analysis. Setion 4.2 summarizes the results of the Fourier analysis used bythe FTTC method. Setion 4.3 presents the lassial FTTC method as well as its onditions and limits ofappliability. In setion 4.4, we onlude by introduing an improved version of the FTTC method satisfyingto the loalization onstraint.4.1. Redution to a 2D problemUnder the assumptions that the gel material presents a linear, homogeneous and isotropi behavior, and thatthe external fores redue to the fores imposed by the ell, the 3D displaement �eld d : (x, x3) ∈ Ωg 7−→

d(x, x3) ∈ R3 an be expressed as a linear funtion depending on the tration stress �eld T : x ∈ Ωc 7−→
T (x) ∈ R2 exerted by the ell on the gel surfae. At least formally, this linear funtion takes the form of anintegral representation whih is nothing else but the onvolution produt G ∗T 3d between the Green Tensor
G3d of the Boussinesq-Cerruti problem [15℄ and T 3d = [T1, T2, 0] = [T , 0]:

d(x, x3) =

∫

x′∈Ωc

G3d (x − x′, x3 − x′
3) T 3d(x′, x′

3) ds(x′) ∀(x, x3) ∈ ΩgHene, the redution to a 2D problem de�ned on the migrating plane Ω of the ell is ahieved by evaluatingthe previous relation on Ω, that is for x ∈ Ω and x3 = 0, and using only the omponents assoiated withdiretions x1 and x2. So, the integral form of the abstrat operator A−1 an be written in the following form:
u = A−1T ⇐⇒ u(x) = (G ∗T ) (x) =

∫

x′∈Ωc

G (x − x′) T (x′) ds(x′) ∀x ∈ Ω (26)When Ωg is the half-spae R2 ×R−⋆, the expression of the Green tensor G3d is rigorously established in [15℄and leads to the 2D redution:
G(x) =

1 + ν

π E

1

|x|3
(

(1 − ν)|x|2 + ν x2
1 ν x1 x2

ν x1 x2 (1 − ν)|x|2 + ν x2
2

) for all x ∈ Ω or ∈ R2 (27)where |x| =
√

x2
1 + x2

2.



ESAIM: PROCEEDINGS 12/20Remark 4.1. The geometrial assumptions used by the adjoint and the FTTC methods are very di�erent.The �rst one assumes that the gel domain an be approximated by a thin plate while the seond one assumesthat it is thik enough to be onsidered as a half-spae.The equations (26) and (27) form the basis of the BEM [10℄ and the FTTC method [7℄.4.2. Fourier analysis for the TFM problemIn this setion we reall some lassial results of Fourier analysis used here. All these results are establishedin [25℄ for the 1D ase. These results are presented for a generi funtion denoted by f whih will be aomponent of the vetors T or u or the tensor G.Continuous Fourier transform. We denote by f̂ , or equivalently Ff , the 2D Fourier transform of thesalar omplex�valued funtion f : x ∈ R2 7−→ f(x) ∈ C. The Fourier transform f̂ = Ff of the funtion fis de�ned by
f̂(ξ) = 〈Ff, ξ〉 =

∫

R2

f(x) exp(−i2π x · ξ) dx ∀ ξ ∈ R2 (28)where ξ denotes the wave vetor (the generi element of the Fourier spae) and i =
√
−1.The Fourier transform f̂ is learly well-de�ned when f ∈ L1(R2). By using the density of the rapidlydereasing funtions spae S (R2) (the Shwartz spae) into L2(R2), the operator F an be extended to

L2(R2) to de�ne an isomorphism from L2(R2) into L2(R2).The omponents of the tration stress T and the displaement u belong to L2(Ω). So, in order to use theFourier analysis, these �elds are extended to be zero on R2 \ Ω to de�ne funtions belonging to L2(R2).Continuous Fourier transform and onvolution. When f and g are two funtions belonging to L2(R2)their onvolution produt f ∗ g is an element of the tempered distributions spae S ′(R2). So, the Fouriertransform f̂ ∗ g exists and satis�es the well-know identity
f̂ ∗ g = f̂ ĝ in S

′(R2) (29)This last identity is the basis of the FTTC method.Disrete Fourier transform and sampling. Usually the numerial approximation of the Fourier oef-�ients (28) is performed by using speialized and optimized algorithms [11℄. These algorithms are imple-mentations of the so-alled disrete Fourier transform (DFT). In the TFM ontext, the DFT approximatesthe integrals (28) by using the retangle method (left-bottom endpoint rule) on a uniform and struturedgrid whose nodes are the points xn = (n1 h1, n2 h2), where hk and nk are respetively the spatial steps andthe index in the diretion xk of the physial spae, with n = (n1, n2). When pratial omputations areperformed, the steps sizes and the number of nodes Nk in the xk�diretion are hosen so that all nodesbelong to Ω for nk = 0, 1, · · · , Nk − 1. But, for theoretial onveniene, we an onsider that this grid oversthe whole R2 in the same manner that the funtions are extended by zero on R2 \ Ω.As a matter of fat, the DFT is more than a simpler way to approximate the integrals (28). Mathematially,the DFT approximates the Fourier transform of the tempered distribution fs =
∑

n∈Z2 f(xn) δxn
where δxnis the Dira measure onentrated at node xn. This distribution is alled the sampling of f related to thenodes xn. The Fourier transform of the sampling fs is the tempered distribution that, for sake of simpliity,we write as the funtion:

f̂s(ξ) =
1

h1 h2

∑

n∈Z2

f̂n (ξ) with f̂n (ξ) = f̂ (ξ1 − n1/h1, ξ2 − n2/h2) ∀ ξ = (ξ1, ξ2) ∈ R2 (30)



ESAIM: PROCEEDINGS 13/20The distributions f̂n are the translated spetra. The distribution f̂s is periodi with period p = (1/h1, 1/h2).So, by using the N1 N2 values of the funtion f at the spatial nodes xn, the DFT an approximate f̂s at
N1 N2 nodes de�ned in the Fourier Spae and ontained in one period of f̂s; for example at the nodes

ξn =

(
2n1 − N1

2N1h1
,
2n2 − N2

2N2h2

) for nk = 0, 1, · · · , Nk − 1 (31)It is natural to think that this approximation of f̂s yields also an approximation of the ontinuous Fouriertransform f̂ . This is true if ertain extra onditions are met.Approximation of the ontinuous Fourier transform. If the funtion f and the spatial grid satisfy thefollowing onditions
∃λc,1, λc,2 ∈ R suh that |ξk| ≥ λc,k =⇒ f̂(ξ) = 0 (32a)

λc,k ≤ 1

2 hk

(32b)the approximation of the Fourier oe�ients f̂s (ξn) obtained using the DFT is also an approximation of theFourier transform f̂ evaluated at node ξn in Fourier spae.Indeed, the ondition (32a) means that the support of the (tempered) distribution f̂ is inluded in [−λc,1, λc,1]×
[−λc,2, λc,2]. Therefore, thanks to the Nyquist ondition (32b), the supports of two translated distributions
f̂n de�ned in (30) do not interset if these distributions orrespond to two distint values of the multi-index n.As a onsequene, no overlapping ours during the summation (30) of the f̂n and then, over eah interval ofthe form [−h1/2 + k1N1, h1/2 + k1N1[× [−h2/2 + k2N2, h2/2 + k2N2[ for k1, k2 ∈ Z, the Fourier transforms
f̂ and f̂s oinide.In pratie, the ondition (32a) is only approximatively satis�ed. However, it an be enfored by using a�ltering tehnique. By ontrast, the Nyquist ondition is satis�ed if the steps sizes of the spatial grid arehosen su�iently small.Sine the DFT approximates the integrals involved in the Fourier oe�ients (28) by using the retanglemethod, the auray of the FTTC method is equivalent to the auray of a P0 �nite element method.4.3. The lassial FTTC methodThe FTTC method as an alternative to the BEM. The FTTC method [7℄ and the BEM [10℄ arelosely related in the sense that the FTTC method an be regarded as an attempt to improve and simplifythe BEM. The BEM onsists in writing the equation (26) for x desribing the beads loations (x ∈ Ωb, Ωbbeing here a disrete and �nite set of isolated points) and with u(x) substituted by the experimental beadsdisplaements ub. After a disretization of the ell domain Ωc using a suitable unstrutured mesh and byusing a Tikhonov regularization method, the BEM haraterizes the nodal values of the stress vetor T asthe solution of a large and dense system of linear equations. The redution of omputation time used by thenumerial resolution of this system and the di�ulty to set a suitable value for the regularization parameterwere the main motivations for introduing the FTTC method.Conerning the omputational ost, the FTTC exploits the fat that the onvolution produt involved in theintegral form (26) beomes a simple produt in the Fourier spae in the sense of (29). The original FTTCmethod [7℄ does not use any regularization proedure; the neessity of suh proedure was shown subsequentlyby Sabass et al. [19℄.Priniples of the FTTC method. The priniples of the FTTC method an be summarized as follows.The omputation domain Ω is a retangular one. It is disretized using a uniform regular grid whose nodesare the xn de�ned in setion 4.2. Experimental beads displaements ub are replaed by their interpolatedvalues ug on this regular grid. For eah wave vetor ξn of the indued uniform grid in Fourier spae, equation(26) is inverted in the omplex plane C2 thanks to property (29) and yields the Fourier transform of the



ESAIM: PROCEEDINGS 14/20stress vetor T̂ (ξn) = Ĝ(ξn)
−1

ûb(ξn). The Fourier omponents of the tration stress are then transformedbak into the physial spae using the inverse Fourier transform Tk = F−1T̂k for k = 1, 2.Appliation of the Fourier transform (28) to the Green tensor de�ned by (27) in the physial spae leads tothe following expression for the Green tensor in the Fourier spae
Ĝ(ξ) =

1 + ν

π E

1

|ξ|3
[

(1 − ν) |ξ|2 + νξ2
2 −ν ξ1ξ2

−ν ξ1ξ2 (1 − ν) |ξ|2 + νξ2
1

] for all wave vetors ξ ∈ R2 (33)In pratie, the diret and inverse Fourier transforms are performed by using the FFT implementation [11℄of the diret and inverse DFT. When the FTTC method was introdued [7℄, it did not use any regularizationproedure. But sine reently [19℄, it is widely known that the FTTC method must be used together with aregularization sheme (see the following setion for the algorithmi aspets).Data needed for the FTTC method. As showed in the above priniples, the FTTC method needsthe knowledge of the experimental beads displaements at every point on the spatial grid used for thedisretization of the gel surfae. But in pratie, experimental data are avaible only on sattered pointsin Ω. So, the implementation of the FTTC method need a supplementary interpolation operator whihestimates the values ug of gel displaements on a regular grid from the knowledge of the experimental beadsdisplaements ub. This aspet of the FTTC method is rarely developped in the litterature. We onsider thisissue in setion 4.4.What biomehanial onstraints are satis�ed? Sine BEM is based on the onvolution integral (26),the tration stresses T neessarily satisfy the loalization onstraint supp (T ) ⊂ Ωc. The lassial FTTCmethod does not allow to satisfy this onstraint. Nevertheless, the original paper [7℄ proposes an iterativevariant of the FTTC method, the so-alled onstrained�FTTC, whih should satisfy this onstraint. But,no onvergene result of this variant has been proved. Furthermore, the onstrained-FTTC modi�es theexperimental beads displaements.By ontrast, the FTTC method allows to impose a zero resultant fore, however this is done over the wholeomputation domain. The FTTC method imposes ∫
Ω

T dx = 0 but, in general, ∫
Ωc

T dx 6= 0. Indeed [7℄,the resultant fore is nothing else than the Fourier oe�ient orresponding to the zero wave vetor, thatis ∫
Ω

T dx = T̂ (ξ)|ξ=0. So, the onstraint ∫
Ω

T dx = 0 is imposed diretly in the Fourier spae by setting
T̂ (ξ)|ξ=0 = 0.The zero moment onstraint ∫

Ωc

x ∧ T dx = 0 is not adressed in the FTTC litterature. Furthermore,mathematially, this onstraint annot be imposed in the Fourier spae.The table 1 below summarizes the main harateristis of the urrently used methods to solve the TFMproblem.Conditions of use and limits of appliability. There exists two kinds of limits of appliability of theFTTC method. The �rst one onerns the validity of the formulation and the seond one is related to theauray of the numerial DFT.The validity of the formulation used to de�ne the diret problem (26) is equivalent to that of the expression(27) of the Green tensor. Hene, it is equivalent to the possibility to approximate the 3D gel domain by ahalf-plane.The auray whih we are disussing here is not the auray of the quadrature formula used to approximatethe Fourier oe�ients (28) but the apaity of the DFT to avoid the overlap of the translated spetra f̂nduring summation (30). It only onerns the (interpolated) beads displaements sine the exat Fouriertransform of the Green tensor is available thanks to (33). As indiated in setion 4.2, the onditions (32) aresu�ient to ahieve this kind of auray. If these onditions are not satis�ed, then the omputed Fouriertransform of the beads displaements is a poor approximation. In the ontext of inverse problems, this lossof auray an be dramati. To avoid these di�ulties, it is su�ient to hoose a spatial step size hk smallenough in order to satisfy ondition (32b).



ESAIM: PROCEEDINGS 15/20Method supp (T ) ⊂ Ωc

∫
Ωc

T dx = 0
∫
Ωc

x ∧ T dx = 0 data preservationBEM yes no no yesFTTC no yes(1) no no(2)p�FTTC yes yes(1) no no(2)AM�diret yes yes no yesAM�dual yes yes yes yesTable 1 � Main harateristis of the urrent methods for solving the TFM problem. The p�FTTC method isintrodued in setion 4.4. AM�diret is the adjoint method presented in setion 3 and de�ned by onstrained spae(22) and the equations (24) and (25). AM�dual is the adjoint method desribed in [23℄. (1) The FTTC and p�FTTCmethods impose only that R

supp(T )
T dx = 0 and (2) use interpolated data.4.4. The projeted FTTC method (p�FTTC)Priniples. The analysis of the TFM problem developed in the setion 2 pointed out the role of the di�erent�ingredients�. In partiular, the formulation obtained with equations (17) splits the resolution into two mainparts. First, we determine the adjoint state pε and the optimal displaement uε by solving the abstratvariational equations (17a) and (17b), whih de�ne an unonstrained problem when the projetion operator

Pc is expliitly known. Then, we dedue the optimal stress �eld T ε by projeting the adjoint state onto thesubspae related to the biomehanial onstraints. We will use this deoupling approah to de�ne a newvariant of the FTTC method: the projeted FTTC method (p�FTTC ). This variant starts with a lassialFTTC method oupled with a Tikhonov regularization and ends by a projetion step whih ensures theloalization ondition.Interpolation operator. As exposed in setion 4.2, the DFT (i) requires to disretize the omputationaldomain using an uniform and strutured grid, and (ii) the knowledge of the beads displaement at every nodein this grid. The role of the interpolation step is to estimate these new displaements, denoted by ug, fromthe knowlegde of the experimental displaements ub. This estimation is performed by using an interpolationoperator whih is a linear operator from R2Nb (Nb denoting the number of beads) into a spei� funtionalspae depending on the regularity imposed to the interpolant.We used the natural neighbor interpolation (see [5℄ for a review of the main methods for solving the sattereddata interpolation problem). This method gives a good balane between auray and omputational time.The interpolant funtion ug an be written as the linear ombination
ug : x ∈ Ω 7−→ ug(x) =

Nb∑

k=1

ϕk(x)ub,k ∈ R2 (34)where ϕk(·) is the shape funtion assoiated with the k-th bead displaement ub,k. The shape funtionshave a ompat support and are globally C0 [21℄ (and even C∞ exept at beads loations). In the sequel, wedenote by Xg the spae of all funtions of the form (34).Tikhonov regularization of the unonstrained FTTC method. Shwarz et al. pointed out [20℄ thatthe TFM problem annot be orretly solved with the BEM without using a regularization method. Thisobservation was on�rmed for the FTTC method [19℄. Here, we derive a Tikhonov regularized FTTC methodby using the framework developed in setion 2.The spaes are hosen as follows. Sine we want to replae the data ub by its interpolant ug de�ned by (34),the spae Xb must be replaed by Xg. So, we hoose V = Xg. On the other hand, we hoose H = L2(Ω).We do not impose any biomehanial onstraints, so Hc = H . Note that sine Xb = Xg is then a �nitedimensional spae, we an simultaneously identify H and Xb with their respetive dual spaes.



ESAIM: PROCEEDINGS 16/20Under these onditions, both operators Pc and B involved in (17) redue to the identity operator.Then, we an rewrite the abstrat equations (17) as the equation A−TA−1T ε + ε T ε = A−Tub. Taking intoaount the expression (26) of the operator A, this equation beomes GT ∗G ∗T ε + ε T ε = GT ∗ub in thephysial spae and, thanks to the identity (29),
ĜT(ξ) Ĝ(ξ) T̂ ε(ξ) + ε T̂ ε(ξ) = ĜT(ξ)ûb(ξ) for ξ ∈ R2 (35)in the Fourier spae. This last equation appears as a regularized form of the normal equation related to

Ĝ(ξ) T̂ ε(ξ) = ûb(ξ).The p�FTTC method. The p�FTTC method improves the lassial FTTC method by allowing to imposethe loalization onstraint with a projetion operator. It an be summarized as follows.(1) Compute the interpolant ug ∈ Xg of the experimental beads displaements ug in the physial spaeand approximate its Fourier transform ûg using the DFT.(2) For eah ξn 6= 0 desribing the non-zero nodes of the disretization grid (31) in the Fourier spae,ompute T̂ ε(ξn) by solving equation (35) for ξ = ξn.(3) Impose the zero total fore onstraint ∫
Ω

T ε dx = 0 (over Ω, not over the ell domain Ωc) in theFourier spae by setting T̂ ε(0) = 0.(4) Then, go bak into the physial spae T ε = F−1T̂ ε by using the inverse�DFT.(5) Finally, impose the loalization onstraint supp (T ε) ⊂ Ωc by applying the projetion operator Pcsde�ned by Pcs T : x ∈ Ω 7−→ (Pcs T ) (x) = χc(x)T (x) ∈ R2.Note that the tration stress T ε alulated by the previous algorithm does not belong to the spae Hc de�nedin (22). In other words, T ε satis�es the loalization onstraint (supp (T ) ⊂ Ωc) but, in general, ∫
Ωc

T ε dx 6= 0.5. Numerial omparison of Adjoint and p�FTTC methodsIn this last setion, results from simulations are presented, using the two di�erent methods, the adjointmethod and the p�FTTC method just presented above. A partiular attention is paid to the hoie of theregularization parameter.Experimental data. Experiments involving GFP�transfeted RT112 ells (from bladder epithelial tissues,rather low invasiveness degree) have been performed on Polyarylamide gels with Young modulus E = 10 kPaand Poisson ratio ν = 1/2. Measurements of �uoresent beads positions have been made using onfoalmirosopy and displaements were dedued using a tehnique previously desribed [3℄.L�urve. There exists several methods [12, 14, 24℄ to selet a suitable value of the regularization parameter
ε. This hoie is a ruial step to yield an aurate approximation of the stress �eld. In order to avoid the useof any additional informations (for example, error level in experimental data), we have hosen the L�urveriterion [13℄. This method is based on a plot of the parametri urve of the stress norm |T ε|2 versus theresidual norm ∣∣A−1T ε − ub

∣∣
2
for all ε > 0 (|v|2 denoting the eulidian norm of a disretization of v). TheL�urves onstruted by the adjoint and p�FTTC methods an be seen in Fig. 3 below (in unusual linearsale).The L�urve depits the in�uene of the regularization parameter on the stress �eld. The one obtained withthe adjoint method an be interpreted as follows. Low values of ε lead to high values of |T ε|2. Indeed, when

ε tends to zero the regularization term vanishes in the Tikhonov funtional (6) and then the stress �eld T εis strongly a�eted by the numerial instabilities. Next, the stability inreases with the value of ε and theL�urve is deomposed into three regions. In the �rst one, |T ε|2 and ∣∣A−1T ε − ub

∣∣
2
dereases simultaneouslyuntil a turning point is reahed. In the seond region, just after this turning point, only |T ε|2 dereases while∣∣A−1T ε − ub

∣∣
2
inreases reasonably. In this region, the urvature is high and the point where the urvatureis maximun is the orner of the L�urve. The third region is haraterized by a low value of the urvature.In this region, |T ε|2 dereases slowly and ∣∣A−1T ε − ub

∣∣
2
inreases steadily. This is due to the importane ofthe regularization term in the Tikhonov funtional. Hene, in this region, the stress �eld is over-regularized.
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Figure 3 � L�urves obtained using the adjoint method (left) and p�FTTC (right). Mehanial parameters: E = 10 kPaand ν = 1/2. Data : Nb = 3,144 beads. Mesh used by the adjoint method: 9,323 nodes, NT = 1,109 nodes in Ωcand 18,332 triangles, P1 interpolation. Spatial grid used by the p�FTTC method: 256× 256 nodes (Nnode = 65,536),
NT = 6,396 nodes in Ωc. Some values of the deimal logarithm of ε are reported on the graphs (red irles). TP:turning point. MCP: maximum urvature point. LP: limit point. εopt: optimal value of the regularization parameterused in Fig. 4, 5 and 6.Finally, for high values of ε the Tikhonov funtional is totally dominated by its regularization term, so |T ε|2tends to zero and the residual norm tends to |ub|2. Hene, the L�urve presents a limit point when ε tendsto in�nity.The L�urve obtained with the p�FTTC method seems di�erent. But, if one admits that its turning pointand its orner are the same, then, all the regions identi�ed in the previous L�urve are present in the L�urveobtained with the p�FTTC method.Seletion of the regularization parameters. In the region of high urvature, the requirements of stabilityfor T ε and of the small value for the residual norm are well balaned. So, the value of ε orresponding to theorner of the L�urve is a natural andidate to give the optimal value of the regularization parameter [13℄.We have heked this value, but, unfortunately, the orresponding stress �eld was unrealisti.To �nd a better estimate of the stresses, we have used the following tehnique. We have visualized the stressvetors orresponding to a range of values of ε hosen in the viinity of the orner of the L�urve. Initially,the stress vetors point in all diretions, with a very irregular manner, then as ε is inreased, a rearrangementof the vetors orientation takes plae and these stresses diretions beome stable. As ε is further inreased,the vetor patterns remain stable in diretion but their norms derease. This last behavior orresponds toover-regularized solutions. Thus the optimum value of ε is hosen as the �rst value leading to a stabilizedorientation for the diretions of the stress vetors. This hosen value is found in the viinity of the highurvature of the urve, but not neessarily at the highest loal urvature. With the data and parametersused in Fig. 3, we have obtained ε = 7.0× 10−6 in the ase of the adjoint method and ε = 1.5× 10−6 in thease of the p�FTTC method.Comparison of the omputed tration stresses. The estimated stress �elds orresponding to theseseleted values of ε an be seen in Fig. 4 (stress vetors) and 5 (stress norm) below. These results seemin good agreement. But although the order of magnitudes are rather similar, some di�erenes are howeverpresent. In partiular (i) the areas of the high stresses are di�erent, (ii) di�erent stress diretions are foundin the lower right and top parts of the ell. Moreover, as shown in Fig 6, the adjoint method yields thestresses in �lipodia (sharp shapes of the ell membrane) while the p�FTTC method has more di�ulties todo that. Finally, the p�FTTC smoothes the stresses more than the adjoint method.
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400 PaFigure 4 � Stresses vetors obtained with the adjoint method (left) and the p�FTTC metod (right). The parametershave the same values as in Fig. 3. Regularizatioin parameter: ε = 7×10−7 for the adjoint method and ε = 1.5×10−6for the p�FTTC method.

Figure 5 � Stresses norms obtained with the adjoint method (left) and the p�FTTC metod (right). The parametershave the same values as in Fig. 4.Conlusion. It an be onluded that the p�FTTC an be a good approximation of the solution but ithas disadvantages as ompared to the AM method. The p�FTTC method is in any ase more aurate thanthe lassial FTTC method [7℄, whih does not ensure the biomehanial onstraints of zero stresses outsidethe ell. Furthermore, the seond ondition (null sum of stresses) is also satis�ed. As one wants to improvethis solution, it is better to use the AM method, in partiular it enables to obtain loal re�nements of thesolution in partiular where �lipodia are loated. It is important to de�ne stress diretions preisely at theseloations, whereas the p�FTTC method does not provide this information at all.6. ConlusionWe have presented an abstrat variational framework whih allows to formulate the inverse problem ofthe TFM by ombining ontrained minimization theory with Tikhonov regularization. The biomehanialonditions satis�ed by the ell are related to mathematial onstraints and are imposed thanks to a projetionoperator. As spei� appliations, the adjoint and the FTTC methods an be derived from this frameworkby hoosing suitable formulations for the diret problem. Furthermore, we have used the projetion operatorof the adjoint method to improve the FTTC method. This improvement imposes the zero tration stress
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