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MATHEMATICAL FRAMEWORK FOR TRACTION FORCE MICROSCOPYR. Mi
hel 1, V. Pes
hetola 1, 2, G. Vitale 2, J. Étienne 1, A. Duperray 3, 4,D. Ambrosi 5, L. Preziosi 2 and C. Verdier 1Abstra
t. This paper deals with the Tra
tion For
e Mi
ros
opy (TFM) problem. It 
onsists inobtaining stresses by solving an inverse problem in an elasti
 medium, from known experimentallymeasured displa
ements. In this arti
le, the appli
ation is the determination of the stresses exertedby a living 
ell at the surfa
e of an elasti
 gel. We propose an abstra
t framework whi
h formulatesthis inverse problem as a 
onstrained minimization problem. The mathemati
al 
onstraints expressthe biome
hani
al 
onditions that the 
ell must satisfy. From this framework, two methods 
urrentlyused 
an be derived, the adjoint method (AM) and the Fourier Transform Tra
tion Cytometry(FTTC) method. An improvement of the FTTC method is also derived using this framework. Thenumeri
al results are 
ompared and show the advantage of the AM, in parti
ular it 
an 
apturedetails more a

urately.Résumé. Cet arti
le est 
onsa
ré au problème de la Mi
ros
opie à For
e de Tra
tion (TFM).Ce problème 
onsiste à déterminer les 
ontraintes exer
ées par une 
ellule lors de sa migrationsur un substrat élastique à partir d'une mesure expérimentale des dépla
ements induits dans 
esubstrat. Mathématiquement, il s'agit de résoudre un problème inverse pour lequel nous proposonsune formulation abstraite de type optimisation sous 
ontraintes. Les 
ontraintes mathématiquesexpriment les 
onstraintes biomé
aniques que doit satisfaire le 
hamp de 
ontraintes exer
é par la
ellule. Ce 
adre abstrait permet de retrouver deux des méthodes de résolution utilisées en pratique,à savoir la méthode adjointe (AM) et la méthode de Cytométrie de Tra
tion par Transformée deFourier (FTTC). Il permet aussi d'ameliorer la méthode FTTC. Les résultats numériques obtenussont ensuite 
omparés et démontrent l'avantage de la méthode adjointe, en parti
ulier par sa 
apa
itéà 
apturer des détails ave
 une meilleure pré
ision.Key words. Cell motility, Inverse problems, Tikhonov regularization, Adjoint Method (AM), Fourier Trans-form Tra
tion Cytometry (FTTC), L�
urve.1. Introdu
tionLiving 
ells have the ability to migrate on di�erent 2D�susbstrates whi
h are 
onsidered to be in vitro modelsfor understanding 
ell motility. Indeed, 
ells pull on the substrate and 
an deform it by developing for
es,whi
h are 
alled tra
tion for
es. It is essential to determine su
h for
es, be
ause one 
an then understand how
ells regulate their adhesion and modify their 
ytoskeleton [4℄ in order to undergo su
h a 
omplex pro
ess,i.e. migration. To determine tra
tion for
es or more pre
isely tra
tion stresses, assuming that 
ells do not
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ESAIM: PROCEEDINGS 2/20penetrate into the substrate, biophysi
ists have proposed to use beads embedded in the substrate [10℄. Byfollowing the positions of beads, as 
ompared to their initial state, one obtains displa
ements in the migrationplane. These displa
ements are denoted by ub and are de�ned on a part Ωb of the whole 
omputationaldomain (see Fig. 1 below). They are linked to the stresses applied by 
ells by the elasti
ity problem. So,the determination of the tra
tion stress �eld from the (partial) knowledge ub of the indu
ed displa
ementsneeds to solve an inverse elasti
ity problem. This method has been 
alled Tra
tion For
e Mi
ros
opy (TFM)and has been 
onsidered using di�erent formulations, the BEM (Boundary Element Method (BEM) [10℄,the Fourier Transform Tra
tion Cytometry (FTTC) method [7℄, the Tra
tion Re
overy from Point For
e(TRPF) [20℄, and �nally the more re
ent Adjoint Method (AM) [2, 3, 23℄.One important point whi
h is not often 
onsidered in previous studies is the fa
t that the tra
tion stress�eld must satisfy to a set of biome
hani
al 
onstraints. First, the 
ell is not in 
onta
t with the substrate onthe whole 
omputational domain, but only over a subdomain denoted by Ωc and 
alled the 
ell domain (seeFig. 1 below). Therefore stresses are zero outside this 
ell domain. Next, if the 
ell moves slowly (as is the

Figure 1 � S
hemati
 representation of the 
omputational domain. Ω: 2D 
omputational domain 
orresponding tothe 
ell migration plane; Ωc: 
ell domain, the part of Ω �below� the 
ell; Ωb: beads domain. See also Fig. 2 page 8.
ase) or in a quasistati
 way, it is in equilibrium and the sum of for
es and moments vanish. This 
an bewritten in mathemati
al terms as:
supp (T ) ⊂ Ωc,

∫

Ωc

T dx = 0 and ∫

Ωc

x ∧ T dx = 0 (1)where T is the tra
tion stress �eld exerted by 
ells on the substrate, Ωc is the 
losure of Ωc, and supp (T )is the support of T , that is the 
omplement of the largest set where T is identi
ally zero almost everywhere.The three biome
hani
al 
onditions de�ned in (1) will be respe
tively 
alled lo
alization 
onstraint, zero for
e
onstraint, and zero moment 
onstraint.Initially, resear
hers have used the method proposed by Dembo et al. [10℄, but the FTTCmethod [7℄ appeared,whi
h seemed to provide a more simple framework and to be more e�
ient in terms of 
omputational time.Nevertheless, the FTTC method does not allow to impose the zero moment 
onstraint and needs to bemodi�ed to a

ount for one of the biome
hani
al 
onditions, the lo
alization 
onstraint whi
h imposes nostresses outside the 
ell domain. A way to impose this lo
alization 
onstraint, 
alled 
onstrained�FTTC, hasbeen proposed [7℄. But, to the best of our knowledge, sin
e then this variant has never been used. In thiswork, we will pay parti
ular attention to this lo
alization 
ondition and we will propose an improvement ofthe 
lassi
al FTTC method that allows to impose this 
onstraint.By 
ontrast, the adjoint method does not have any di�
ulty to impose the biome
hani
al 
onstraints (1).The lo
alization 
onstraint was imposed in [2℄, then the zero for
e 
onstraint was taken into a

ount [18℄.
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ently [23℄, the zero moment 
onstraint was also imposed. This method 
ould be thought of as a toolto di�erentiate di�erent 
ells, in parti
ular 
an
er 
ells with di�erent invasiveness [2, 3, 17℄.The outline of this paper is as follows. In the next se
tion, we present an abstra
t variational frameworkwhi
h allows to formulate the TFM problem as a 
onstrained minimization problem. In order to insure itsstability, a regularization term is added to the obje
tive fun
tion. This framework is used in se
tion 3 toderive the adjoint method and in se
tion 4 to improve the FTTC method in order to meet the lo
alization
onstraint. In se
tion 5, the issue of the 
hoi
e of the regularization parameter is dis
ussed and the tra
tionstresses �elds obtained by using adjoint method and improved FTTC method are 
ompared in a real 
ase.2. Abstra
t variational framework for the TFM problemIn this se
tion we de�ne an abstra
t variational framework to formulate and solve the TFM problem. Thefun
tional framework is des
ribed in se
tion 2.1 in terms of spa
es and operators. Then, in se
tion 2.2, wede�ne the unknown tra
tion stress �eld as the solution of a 
onstrained minimization problem. Finally, inse
tion 2.3 we reformulate the optimal 
onditions as a set of un
onstrained variational equations involvingthe adjoint state and the displa
ement �eld as unknowns. The tra
tion stress �eld is then obtained by usinga proje
tion operator.2.1. Fun
tional frameworkSpa
es. Let H be a real Hilbert spa
e. We denote by (·, ·)H its s
alar produ
t and by ||·||H =
√

(·, ·)Hthe 
orresponding norm. Let V ⊂ H be a linear subspa
e of H . We assume that V is dense in H for thetopology indu
ed by the norm ||·||H (V H
= H), and that, equipped with its own norm ||·||V , V is a re�exiveBana
h spa
e su
h that the inje
tion from V into H is 
ontinuous (V H). Under these 
onditions, the
anoni
al inje
tion from the spa
e H into its dual H ′ de�nes a linear 
ontinuous inje
tive operator whoserange is dense in H ′ [6℄. If, by using the Riesz theorem, we identify H with its dual H ′ (H ≡ H ′, that is His 
hosen as pivot spa
e for the duality pairing), then the spa
es V , H and V ′ form a Gelfand triple:

V H ≡ H ′ V ′ with V
H

= H and H ′V
′

= V ′ (2)Furthermore, the duality pairing satis�es the following relations
〈T , S〉H′,H = (T , S)H ∀ (T , S) ∈ H × H and 〈T , v〉V ′,V = (T , v)H ∀ (T , v) ∈ H × V (3)In the TFM 
ontext, V and H are respe
tively displa
ement and stress spa
es and the inje
tion of V into

H is also 
ompa
t. To take into a

ount biome
hani
al 
onstraints (1) and experimental data, we needtwo supplementary spa
es. The �rst one is Hc a 
losed non empty subspa
e of H related to biome
hani
al
onstraints, (or at least some of these 
onstraints), and the se
ond one is Xb, another real Hilbert spa
erelated to the experimentally measured displa
ements ub. Depending on the used formulation and on thenature of ub, Xb is either a �nite dimensional spa
e (see the se
tion 4.4, or the formulation used in [23℄),either a 
losed non empty subspa
e of H (when ub is a fun
tion and Ωb an open set). In both 
ases, we denoteby (·, ·)Xb
and ||·||Xb

the s
alar produ
t and its asso
iated norm in Xb. Note that under these 
onditions,the spa
e Xb 
an be identi�ed with its dual spa
e without 
ontravening with the 
hoi
e of the spa
e H aspivot spa
e.Elasti
ity operator. The relationship between the stress �eld T imposed by the 
ell during its migrationand the displa
ement u indu
ed in the gel (on the gel surfa
e) is represented by a 
ontinuous linear operator
A ∈ L (V, V ′) from V into its dual V ′. We assume the A is V -ellipti
 in the sense that:

∃α > 0 su
h that 〈Av, v〉V ′,V ≥ α ||v||2V ∀v ∈ V (4)Under these 
onditions, A is bije
tive. Furthermore, sin
e V and V ′ are two Bana
h spa
es, thanks toBana
h theorem, the inverse A−1 is a linear 
ontinuous operator from V ′ into V . Thus, A ∈ Isom (V, V ′)



ESAIM: PROCEEDINGS 4/20and A−1 ∈ Isom (V ′, V ). Hen
e, all stress �elds T imposed by the 
ell and the indu
ed displa
ements u inthe gel are related by:
Au = T in V ′ ⇐⇒ u = A−1T in V (5)In addition, the adjoint operator AT is also an isomorphism and, thanks to re�exivity of V , we have AT ∈

Isom (V, V ′) and A−T ∈ Isom (V, V ′) where A−T denotes the inverse of AT.Observation operator and data. To 
ompare the theoreti
al displa
ements u = A−1T ∈ V to theexperimental beads displa
ements ub ∈ Xb we use a 
ontinuous linear operator B ∈ L (V, Xb) whi
h 
an beviewed as the observation operator. This 
omparison involves the residual ve
tor BA−1T −ub ∈ Xb. As Xb
an be identi�ed with its dual, we have BT ∈ L (Xb, V ′).2.2. The TFM problem as a 
onstrained minimization problemTikhonov fun
tional. Given a positive real-valued parameter ε > 0, we de�ne the so�
alled Tikhonovfun
tional Jε : T ∈ H 7−→ Jε(T ) ∈ R by
Jε(T ) =

1

2

∣∣∣∣BA−1T − ub

∣∣∣∣2
Xb

+
ε

2
||T ||2H (6)The following two propositions establish the di�erentiability and 
onvexity properties that are needed.Proposition 2.1 (Di�erentiability). The Tikhonov fun
tional Jε(·) de�ned by (6) is twi
e Fre
het�di�erentiableeverywhere in H and, for all T ∈ H, its �rst and se
ond derivatives J ′
ε(T ) ∈ H ′ and J ′′

ε (T ) ∈ L (H × H, R)read
〈J ′

ε(T ), δT 〉H′,H =
(
BA−1T − ub, BA−1δT

)
Xb

+ ε (T , δT )H (7)
〈J ′′

ε (T ), (δT , δS)〉H′,H =
(
BA−1δT , BA−1δS

)
Xb

+ ε (δT , δS)H (8)for all (δT , δS) ∈ H × H.Proof. Dire
t 
omputation and appli
ation of the Fre
het derivative de�nition. �Proposition 2.2 (Convexity). The Tikhonov fun
tional Jε(·) de�ned by (6) is stri
tly 
onvex everywherein H.Proof. From equation (8), we have 〈J ′′
ε (T ), (δT , δT )〉H′,H =

∣∣∣∣BA−1δT
∣∣∣∣2

Xb

+ ε ||δT ||2H ≥ ε ||δT ||2H forall δT ∈ H . So, sin
e ε > 0, J ′′
ε (T ) is H�ellipti
 for all T ∈ H . Then, the Tikhonov fun
tional Jε is stri
tly
onvex everywhere over H [9℄. �Now, we 
an de�ne rigorously the required stress �eld T ε as the solution of the following 
onstrained mini-mization problem.Problem 2.3. (Constrained minimization problem) Given ub ∈ Xb, and ε > 0, �nd T ε su
h that

T ε ∈ Hc and Jε(T ε) = min
T∈Hc

Jε(T ) (9)This problem is well-posed in the sense that the following theorem holds.Theorem 2.4. The 
onstrained minimization problem 2.3 has one and only one solution T ε whi
h satis�esthe following variational equation
T ε ∈ Hc and (

BA−1T ε − ub, BA−1T
)
Xb

+ ε (T ε, T )H = 0 ∀T ∈ Hc (10)Proof. The Tikhonov fun
tional Jε is stri
tly 
onvex everywhere in H (
f. prop. 2.2), and Hc is a 
losedsubspa
e of the Hilbert spa
e H , so [6, 9℄, the minimization problem 2.3 has one and only one solution
T ε ∈ Hc. Moreover [6, 9℄, this solution satis�es the Euler equation 〈J ′

ε(T ε), T 〉H′,H = 0 ∀T ∈ Hc whi
h, byusing de�nition (7) of J ′
ε(T ε), is rewritten as (10). �



ESAIM: PROCEEDINGS 5/20The de�nition (6) of the Tikhonov fun
tional Jε(·) involves two terms. The �rst one, the residual norm∣∣∣∣BA−1T − ub

∣∣∣∣2
Xb

, measures the goodness of the optimal solution T ε, i.e. its 
apa
ity to predi
t the ex-perimental displa
ements ub. Qualitatively, if this term is too large, T ε 
annot be 
onsidered as a suitablesolution. But a small value is not ne
essarily a satisfying 
ondition to meet. Indeed, when a small value of theresidual norm o

urs, then un
ertainties in the data ub take too mu
h weight. As a result, the solution T ε isdominated by high�frequen
y 
omponents with large amplitudes and be
omes so irregular that it looses itsphysi
al meaning. It is the well known instability of the inverse problem solution [12,14℄. So, the se
ond termin the de�nition of Jε(·), the stress norm ||T ||2H , measures the regularity of the optimal solution T ε. Its role isto restore and enfor
e the stability of T ε by penalizing its norm. The Tikhonov fun
tional 
an be understoodas a balan
e between two 
ontradi
tory requirements: obtaining small residuals with a su�
iently smoothsolution. The regularization parameter ε 
an be viewed as a tuning parameter for this balan
e. Large valuesof ε lead to very smooth stress �elds with poor residuals. Conversely, smaller values of ε give good residualswith unrealisti
 stresses. In se
tion 5, we deal with the manner to 
hoose this regularization parameter.Another way to regularize the TFM problem is to apply a low-pass �ltering in order to avoid the high-frequen
y 
omponents in the experimental beads displa
ements [22℄.The formulation of the TFM problem as the 
onstrained minimization problem 2.3 is mathemati
ally rigorousand is, in our opinion, a fundamental basis of any numeri
al methods for 
omputing an approximation ofstresses exerted by the 
ell. But this formulation is ex
lusively fo
used on the minimization aspe
ts and doesnot address more spe
i�
 aspe
ts related to the inverse nature of the TFM problem. On this matter, we referto re
ent work [23℄.2.3. Solving the TFM problemAdjoint state. By using the de�nition of the adjoint operator and the property (3) of the duality pairing,we 
an reformulate the Xb�s
alar produ
t involved in the variational equation (10) as follows
(
BA−1T ε − ub, BA−1T

)
Xb

=
〈
BT

(
BA−1T ε − ub

)
, A−1T

〉
V ′,V

=
〈
A−TBT

(
BA−1T ε − ub

)
, T

〉
V,V ′

=
(
A−TBT

(
BA−1T ε − ub

)
, T

)
HNote that this derivation uses expli
itely the identi�
ation of the spa
e Xb with its dual X ′

b.By substituting this last identity in the variational equation (10), we obtain another equivalent 
hara
teri-zation of the optimal stress �eld T ε

T ε ∈ Hc and (
A−TBT

(
BA−1T ε − ub

)
, T

)
H

+ ε (T ε, T )H = 0 ∀T ∈ Hc (11)Sin
e BT ∈ L (Xb, V ′), BT
(
BA−1T ε − ub

) belongs to V ′, and AT ∈ L (V, V ′) is an isomorphism from Vinto its dual V ′, there exists one and only one element pε su
h that
pε ∈ V and ATpε = BT

(
BA−1T ε − ub

) in V ′ (12)This element pε ∈ V is the 
lassi
al notion of the adjoint state [16℄ applied to the TFM problem.Interpretation of the optimal 
ondition and proje
tion operator. The adjoint state pε 
an be viewedas a simple auxiliary unknown whi
h allows us to rephrase the 
hara
terization equation (11) of T ε. Indeed,by substituting the adjoint equation (12) into (11) we obtain
T ε ∈ Hc, pε ∈ V and (pε + ε T ε, T )H = 0 ∀T ∈ Hc (13)This new variational equation is nothing else than the 
hara
terization of −ε T ε ∈ Hc as the proje
tion ofthe adjoint state pε ∈ V (as an element of H) onto the biome
hani
al 
onstraints spa
e Hc [6, 9℄, that is:

T ε = −1

ε
Pc pε in H (14)



ESAIM: PROCEEDINGS 6/20where Pc is the proje
tion operator from H onto Hc with respe
t to the s
alar produ
t (·, ·)H . Sin
e Hc is alinear subspa
e of H , Pc is a linear 
ontinuous operator from H into H (Pc ∈ L (H, H)), furthermore, Pc isself�adjoint (PT

c = Pc) and idempotent (Pc Pc = Pc).Three �elds problem. As T ε ∈ H , by using the inje
tion H V ′ involved by the Gelfand triple (2), T εalso belongs to V ′. So we 
an de�ne the displa
ement �eld uε related to the stress �eld T ε and de�ned asthe solution of
uε ∈ V and Auε = T ε in V ′ (15)Obviously, existen
e and uniqueness follow from A ∈ Isom (V, V ′). Next, by substituting T ε for Auε we 
anrewrite the adjoint equation (12) as

pε ∈ V and ATpε = BT (Buε − ub) in V ′On the other hand, by taking into a
ount (14) we reformulate (15) as a relationship between uε and pε

uε ∈ V and Auε = −1

ε
Pcpε in V ′ (16)The previous dis
ussion 
an be summarized by the following problem.Problem 2.5. (Three �elds problem) Given ub ∈ Xb and ε > 0, �nd (pε, uε, T ε) ∈ V × V × Hc su
hthat 1. (pε, uε) ∈ V × V is the solution of

ATpε − BTB uε = −BTub in V ′ (17a)
1

ε
Pc pε + Auε = 0 in V ′ (17b)2. then, dedu
e T ε ∈ Hc by

T ε = −1

ε
Pc pε in H (17
)This problem is well�posed and allows to solve the 
onstrained minimization problem 2.3 as proved by thefollowing theorem.Theorem 2.6. The three �elds problem 2.5 has one and only one solution. Furthermore, the 
omponent T εof this solution is also the solution of the 
onstrained minimization problem 2.3.Proof. Existen
e. The theorem 2.4 establishes the existen
e of T ε ∈ Hc whi
h solves the 
onstrained mini-mization problem 2.3. So, starting from this existen
e result for T ε, we 
an reprodu
e integrally the abovedis
ussion to establish the existen
e of a solution (pε, uε, T ε) ∈ V × V ×Hc of the problem 2.5 su
h that its
omponent T ε solves the problem 2.3.Uniqueness. Sin
e the equations (17) are linear, to show uniqueness of their solution it is su�
ient to show thatthe only solution of (17) 
orresponding to ub = 0 is (pε, uε, T ε) = (0, 0, 0). So, let (pε, uε, T ε) ∈ V ×V ×Hcbe a solution of equations (17) 
orresponding to ub = 0. If ub = 0, sin
e AT ∈ Isom (V, V ′), equation (17a)yields pε = A−TBTBuε. Thus, equation (17
) 
an be rewritten as

Pc A−TBTBuε + ε Auε = 0By de�nition of the proje
tion operator Pc (from H onto Hc in the sense of (·, ·)H) and be
ause Hc is a linearspa
e, we dedu
e that
(
A−TBTBuε + ε Auε, T

)
H

= 0 ∀T ∈ Hc and Auε ∈ HcThus, we 
an 
hoose T = Auε in the previous variational equation and obtain
(
A−TBTBuε + ε Auε, Auε

)
H

= 0



ESAIM: PROCEEDINGS 7/20By applying the de�nition of the adjoint operators AT and BT, this last equation leads to
||B uε||2Xb

+ ε ||Auε||2H = 0Sin
e ε > 0, it then follows that Auε = 0 in H . So (Auε, T )H = 0 for all T ∈ H , and sin
e V H , inparti
ular holds for T = uε. A

ording to (3) we have (Auε, uε)H = 〈Auε, uε〉V ′,V and the V �ellipti
ity (4)of the operator A then gives uε = 0. From equation (17a) written with ub = 0, and sin
e AT ∈ Isom (V, V ′),we dedu
e that pε = 0. As Pc ∈ L (H, H), it follows from (17
) that T ε = 0. This ends the proof. �The problem 2.5 and the theorem 2.6 provides a general framework for using the Tikhonov method in orderto solve the inverse TFM problem. A parti
ular problem is essentially nothing else than the 
hoi
e of anoperator A and a 
onstraint spa
e Hc in equations (17). The 
hoi
es 
orresponding to the adjoint and FTTCmethods are dis
ussed in the next se
tions.Remark 2.7. When the proje
tion operator Pc is expli
itely known, the equations (17) 
an be dire
tly usedto de�ne a numeri
al method to approximate the optimal solution T ε. Indeed, under these 
onditions theequations (17a) and (17b) de�ne expli
itely an un
onstrained problem and then the pε�
omponent of itssolution 
an be expli
itely 
al
ulated by using the proje
tion step (17
). This situation o

urs when onlythe lo
alization 
onstraint and the zero for
e 
onstraint are imposed in the 
onstrained spa
e [18℄ (see (22)and (23) in the next se
tion). This is pre
isely the situation in whi
h the adjoint and FTTC methods 
an be
ompared.When the zero moment 
onstraint is also taken into a
ount, the proje
tion operator Pc exists but is notexpli
itly known. So, the problem 2.5 remains only a theoreti
al one. To obtain a theoreti
al formulationwhi
h 
an produ
e a numeri
al method, it is better to use a formulation whi
h imposes the zero moment
onstraint by duality [23℄ using a Lagrange multiplier.3. Adjoint methodBasi
ally, appliying the adjoint method to the TFM problem 
onsists in solving a spe
i�
 form of the equations(17) involved in the problem 2.5. A spe
i�
 form is a
hieved by 
hoosing a parti
ular operator A involved inthe dire
t problem (5). This operator expresses the weak form of a boundary value problem des
ribing theintera
tions between a 
ell and the gel during 
ell migration. In this se
tion, we start to redu
e the dire
tproblem to a 2D boundary value problem de�ned on the gel surfa
e Ω. Next, we apply the theory des
ribedin se
tion 2 in order to re
over the original adjoint method applied to the TFM problem [2℄ and its variantobtained by taking into a

ount the biome
hani
al 
onstraints of zero resultant for
e [18℄.In order to 
ompare numeri
ally the adjoint method with the FTTC method, we restri
t the biome
hani
al
onstraints taken into a

ount to the lo
alization 
onstraint (supp (T ) ⊂ Ωc) and the zero resultant for
e(∫
Ωc

T dx = 0). Indeed, to the best of our knowledge, the FTTC method does not allow to impose the zeromoment 
onstraint (∫
Ωc

x ∧ T dx = 0).3.1. Redu
tion to a 2D problemGeometry and a
tive layer. The gel domain is modeled by the parallelepiped Ωg = Ω × ]−hg, 0[ in theeu
lidian spa
e R3 with 
artesian 
oordinates (x1, x2, x3) = (x, x3). Ω ⊂ R2 is the gel surfa
e, that is the partof the boundary ∂Ωg on whi
h the 
ell migrates, and hg is the gel thi
kness in the x3 dire
tion. The horizontalextension of Ωg is about 2 mm while its verti
al one is about 70 µm. So, from a me
hani
al point of view, Ωg
an be 
onsidered as a thin plate. In addition, we assume that (i) the body (gravity) and inertial for
es arenegligible in the whole Ωg in 
omparison with the for
es exerted by the 
ell, (ii) the verti
al displa
ement d3is negligible in 
omparison with the horizontal ones d1 and d2 and (iii) the 
ell exerts only tangential stresseson the gel surfa
e Ω. Under these assumptions and using dimensional analysis, Ambrosi shows [2℄, �rst thatthere exists an a
tive layer beyond whi
h the horizontal displa
ements d1 and d2 vanish, and, se
ond, that



ESAIM: PROCEEDINGS 8/20in the whole Ωg the σ33 
omponent of the stress tensor 
an be negle
ted in 
omparison with the tra
tionstresses exerted by the 
ell on the surfa
e Ω. In mathemati
al terms, we have
x3 ≤ −ha =⇒ uα(x, x3) ≈ 0 ∀(x, x3) ∈ Ωg for α = 1, 2 and σ33 ≈ 0 in Ωgwhere ha denotes the thi
kness of this a
tive layer. All these geometri
al 
on
epts are shown in �gure 2.

cellBeads

hg

x3

ha

Ωg

Ωc⊂ Ω Ω = ∂Ωg ∩ {x3 = 0}

Figure 2 � S
hemati
 representation of a 
ell on the elasti
 substrate. Ωg: 3D elasti
 subtrate; Ω: 2D 
al
ulationdomain 
orresponding to the 
ell migration plane (Ω is the interior of ∂Ωg ∩ {x3 = 0}); Ωc: 
ell domain, the part of
Ω �below� the 
ell. See also the Fig. 1 page 2.As a 
onsequen
e, the �rst hypothesis leads to vanishing of the 
omponents σ13 and σ23 beyond the a
tivelayer, that is

σα3 ≈ 0 in Ω × ]−hg,−ha[ for α = 1, 2and the se
ond one allows us to use the plane stress approximation.From these observations, it is possible to redu
e the TFM problem to a 2D problem by using a verti
alaverage along the a
tive layer of �elds and equations.Depth-averaged model. The depth�averaged operator is (formally) de�ned as the map whi
h asso
iatesto the fun
tion ϕ : (x, x3) ∈ Ωg 7−→ ϕ (x, x3) ∈ R the fun
tion ϕ : x ∈ Ω 7−→ ϕ (x) ∈ R su
h that ϕ (x) =
1
ha

∫ 0

−ha

ϕ(x, x3)dx3. By applying this operator to the 3D stress equilibrium equations related to dire
tions
x1 and x2, and by 
ombining with the plane stress approximation of the 3D Hooke's law for isotropi
 andhomogeneous material, we 
an express the relationship between the depth�averaged displa
ements uα = dαand the 
ell tra
tion stress T as

divσ(u) + T = 0 in Ω (18a)
σ(u) = 2 µ2d ε(u) + λ2d div u I in Ω (18b)
ε(u) =

1

2

(
∇ u + ∇ uT

)
in Ω (18
)

u = 0 on ∂Ω (18d)where λ2d and µ2d are the 2D Lamé's 
oe�
ients de�ned by
µ2d = ha

E

2(1 + ν)
and λ2d = ha

ν E

1 − ν2with E and ν denote respe
tively the Young modulus and Poisson ratio of the substrate.The equations (18b) and (18
) express the 2D 
onstitutive law obtained by 
ombining depth-averaging withthe plane stress requirement. They give the depth�averaged Cau
hy stress tensor σ(u) as a fun
tion of thethe linearized strain tensor ε(u) related to depth�averaged displa
ements. The boundary 
ondition (18d)results from the 3D boundary 
onditions whi
h impose zero displa
ements on the lateral part of the boundary
∂Ωg.Data needed to the adjoint method. The Tikhonov fun
tional Jε de�ned by (6) 
ompares A−1T withthe experimental data ub. So, sin
e A−1T must be the solution of the dire
t problem (18), that is A−1Tmust be a depth�averaged displa
ement, stri
tly speaking we need the experimental data ub to involvedepth�averaged values.
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t problemFun
tional spa
es. The spa
es H for tra
tion stresses and V for gel displa
ements are 
hosen in order tode�ne the solution of the boundary value problem (18) in the weak sense. Thus we use usual Lebesgue andSobolev spa
es
H = L2(Ω) = L2(Ω) × L2(Ω) and V = H1

0(Ω) = H1
0 (Ω) × H1

0 (Ω)equipped with their usual s
alar produ
ts [1, 6℄, that is (u, v)H = (u, v)L2(Ω) =
∫
Ω

u · v dx and (u, v)V =

(u, v)H1

0
(Ω) =

∫
Ω

∇u : ∇ v dx where ∇u : ∇v = Σi,j∂jui ∂jvi. Therefore, we have V ′ = H−1(Ω) =

H−1(Ω) × H−1(Ω) and the Gelfand triple property (2) holds [1, 6℄.Dire
t problem. The elasti
ity operator A results from the weak form of the boundary value problem (18).Therefore, if we de�ne the bilinear a(·, ·) on H1
0(Ω) × H1

0(Ω) by
a(u, v) = 2 µ2d

∫

Ω

ε (u) : ε (v) dx + λ2d

∫

Ω

div u div v dx ∀u, v ∈ H1
0(Ω) (19a)we 
hoose the operator A as the element of L

(
H1

0(Ω), H−1(Ω)
) de�ned by

〈Au, v〉V ′,V = a(u, v) ∀u, v ∈ H1
0(Ω) (19b)The dire
t problem related to this operator is well-posed as it is showed in the following proposition.Proposition 3.1. The elasti
ity operator de�ned by (19) satis�es to the H1

0(Ω)�ellipti
ity 
ondition (4) andde�nes a self-adjoint isomorphism from H1
0(Ω) to H−1(Ω): A ∈ Isom

(
H1

0(Ω), H−1(Ω)
) and AT = A.Proof. The H1

0(Ω)�ellipti
ity results from the 
lassi
al Korn inequality [8℄ and then the isomorphism propertyresults from the Lax-Milgram lemma [6℄. The self-adjon
tion of A is a dire
t 
onsequen
e of the de�nition(19). �3.3. Observation operatorData spa
e and observation operator. We assume that the data is 
ontinuous in the sense that ex-perimental beads displa
ements ub are known in a subset Ωb ( Ω whi
h has a non zero Lebesgue measure(|Ωb| > 0). The 
ase of pointwise data is 
onsidered in [23℄. So the data ub must be at least a fun
tionde�ned on Ωb. But, as indi
ated in se
tion 2, the spa
e Xb must be a Hilbert spa
e whi
h 
an be identi�edwith its dual without 
ontravening to the identi�
ation L2(Ω)′ ≡ L2(Ω). To meet these requirements, wede�ne the Hilbert spa
e Xb as the following 
losed subspa
e of L2(Ω)

Xb =
{

v ∈ L2(Ω) ; supp (v) ⊂ Ωb

} (20)and the value taken by the observation operator B when evaluated at v ∈ H1
0(Ω) as

B v : x ∈ Ω 7−→ (B v) (x) = χ
b
(x)v(x) ∈ R2 (21)where χ

b
(·) stands for the 
hara
teristi
 fun
tion of the subset Ωb (χ

b
(x) = 1 if x ∈ Ωb and χ

b
(x) = 0 if

x ∈ Ω \ Ωb). Thanks to the Poin
aré inequality [1, 6℄, it is 
lear that B ∈ L
(
H1

0(Ω), Xb

). But, there existsanother way to interpret the operator B, a way that will allow to simplify the appli
ation of equations (17).Proposition 3.2 (Stru
ture of the observation operator). Let Pb be the L2(Ω)�orthogonal proje
tionoperator from L2(Ω) onto Xb. Then, the observation operator B ∈ L
(
H1

0(Ω), Xb

) de�ned by (21) satis�esto (1) B is the restri
tion to H1
0(Ω) of Pb, that is B = Pb|H1

0
(Ω) ;



ESAIM: PROCEEDINGS 10/20(2) B is self�adjoint (BT = B) and idempotent (BB = B).Proof. As Xb is a 
losed subspa
e of L2(Ω), the value of Pb when evaluated at v ∈ L2(Ω) is 
hara
terizedby [6, 9℄ Pb v ∈ Xb and (v − Pb v, ϕ)L2(Ω) = 0 ∀ϕ ∈ Xb. Hen
e, it is easy to verify that Pb v is de�ned asthe fun
tion Pb v : x ∈ Ω 7−→ (Pbv) (x) = χ
b
(x)v(x) ∈ R2. By 
omparison with de�nition (21) the �rstpoint holds. The se
ond point is a property of the proje
tion onto a 
losed subspa
e. �3.4. Constrained spa
e and proje
tion operatorConstrained spa
e and proje
tion operator. As indi
ated in the introdu
tion of this se
tion, we restri
tthe set of biome
hani
al 
onstraints to the ones that the FTTC method 
an handle. Thus, we 
hoose the
onstrained spa
e Hc as

Hc =

{
T ∈ L2(Ω) ; supp (T ) ⊂ Ωc and ∫

Ωc

T dx = 0

} (22)It is 
lear that Hc is a 
losed subspa
e of L2(Ω).To use the abstra
t equations (17), it remains to identify the proje
tion operator Pc.Proposition 3.3 (Stru
ture of the proje
tion operator). The proje
tion operator Pc belongs to thespa
e L
(
L2(Ω), L2(Ω)

) and for all T ∈ L2(Ω), the element Pc T is 
hara
terized by
Pc T : x ∈ Ω 7−→ (Pc T ) (x) = χc(x) (T (x) − T Ωc

) ∈ R2 (23a)where T Ωc
and χc(·) denote respe
tively the average value of T over Ωc and the 
hara
teristi
 fun
tion of Ωc

T Ωc
=

1

|Ωc|

∫

Ωc

T dx and χc(x) =

{
1 if x ∈ Ωc

0 if x ∈ Ω \ Ωc
(23b)Proof. The proof is very similar to proof of proposition 3.2. First, the fun
tion PcT de�ned by (23a) belongsto the spa
e Hc de�ned in (22). Next, for all ϕ ∈ L2(Ω) we have (T − PcT , ϕ)L2(Ω) = (T Ωc

, ϕ)L2(Ωc)
=

|Ωc|T Ωc
ϕΩc

. So, if we 
hoose ϕ in the spa
e Hc, we 
an write that (T − PcT , ϕ)L2(Ω) = 0 ∀ϕ ∈ Hc. Hen
e,the fun
tion PcT de�ned by (23a) is the L2(Ω)�orthogonal proje
tion of T ∈ L2(Ω) onto the 
onstrainedspa
e Hc. �3.5. Solving the TFM problem by using adjoint methodBy 
ombining the results of the 
urrent se
tion with the theory developed in se
tion 2, we 
an develop thedire
t formulation of the TFM problem 2.5 with the 
onstrained spa
e Hc and the data spa
e Xb respe
tivelyde�ned by (22) and (20).Problem 3.4. (Dire
t formulation of the TFM) Given ub ∈ Xb and ε > 0, �nd (pε, uε) ∈ H1
0(Ω) ×

H1
0(Ω) solution of the following variational equations

a(pε, q) −
∫

Ω

χ
b

uε · q dx = −
∫

Ω

χ
b

ub · q dx ∀ q ∈ H1
0(Ω) (24a)

1

ε

∫

Ω

χc pε · v dx − 1

ε

1

|Ωc|

∫

Ωc

pε dx

∫

Ω

v dx + a(uε, v) = 0 ∀v ∈ H1
0(Ω) (24b)where the bilinear form a(·, ·) is de�ned in (19). Then, dedu
e T ε ∈ Hc by

T ε = −1

ε

(
χc pε − 1

|Ωc|

∫

Ωc

pε dx

) (25)



ESAIM: PROCEEDINGS 11/20The two weak equations (24) 
an be interpreted in the usual way as the following two 
oupled Lamé-Navier-like partial di�ential equations
−µ2d ∆pε − (λ2d + µ2d)∇div pε = χ

b
uε − ub in Ω

−µ2d ∆uε − (λ2d + µ2d)∇ div uε =
1

ε
χc pε − 1

ε

1

|Ωc|

∫

Ωc

pε dx in Ωunder the homogeneous Diri
hlet boundary 
onditions
uε = 0 and pε = 0 on ∂ΩNumeri
al method. The weak equations (24) are dis
retized by a �nite element method using lo
allinear interpolation (P1 element) on an unstru
tured mesh. The geometri
al �exibility of the meshing toolsallows to in
orporate all bead lo
ations as nodes in the mesh and to handle the 
ell domain Ωc as a spe
i�
subdomain in the mesh. In parti
ular, the 
ell �lipodia 
an be taken into a

ount in the mesh. The linearsystem of dis
retized equations is numeri
ally solved by using the bi-
onjugate gradient method with diagonalpre
onditioning. 4. FTTC methodMathemati
ally, the FTTC method is of the same nature as the adjoint method. It also 
onsists in solvingthe problem 2.5 in whi
h the operator A takes a spe
i�
 form. This form is des
ribed in se
tion 4.1. Theparti
ularity of the FTTC method is that the resolution of the dire
t problem related to this operator isa
hieved by use of the Fourier analysis. Se
tion 4.2 summarizes the results of the Fourier analysis used bythe FTTC method. Se
tion 4.3 presents the 
lassi
al FTTC method as well as its 
onditions and limits ofappli
ability. In se
tion 4.4, we 
on
lude by introdu
ing an improved version of the FTTC method satisfyingto the lo
alization 
onstraint.4.1. Redu
tion to a 2D problemUnder the assumptions that the gel material presents a linear, homogeneous and isotropi
 behavior, and thatthe external for
es redu
e to the for
es imposed by the 
ell, the 3D displa
ement �eld d : (x, x3) ∈ Ωg 7−→

d(x, x3) ∈ R3 
an be expressed as a linear fun
tion depending on the tra
tion stress �eld T : x ∈ Ωc 7−→
T (x) ∈ R2 exerted by the 
ell on the gel surfa
e. At least formally, this linear fun
tion takes the form of anintegral representation whi
h is nothing else but the 
onvolution produ
t G ∗T 3d between the Green Tensor
G3d of the Boussinesq-Cerruti problem [15℄ and T 3d = [T1, T2, 0] = [T , 0]:

d(x, x3) =

∫

x′∈Ωc

G3d (x − x′, x3 − x′
3) T 3d(x′, x′

3) ds(x′) ∀(x, x3) ∈ ΩgHen
e, the redu
tion to a 2D problem de�ned on the migrating plane Ω of the 
ell is a
hieved by evaluatingthe previous relation on Ω, that is for x ∈ Ω and x3 = 0, and using only the 
omponents asso
iated withdire
tions x1 and x2. So, the integral form of the abstra
t operator A−1 
an be written in the following form:
u = A−1T ⇐⇒ u(x) = (G ∗T ) (x) =

∫

x′∈Ωc

G (x − x′) T (x′) ds(x′) ∀x ∈ Ω (26)When Ωg is the half-spa
e R2 ×R−⋆, the expression of the Green tensor G3d is rigorously established in [15℄and leads to the 2D redu
tion:
G(x) =

1 + ν

π E

1

|x|3
(

(1 − ν)|x|2 + ν x2
1 ν x1 x2

ν x1 x2 (1 − ν)|x|2 + ν x2
2

) for all x ∈ Ω or ∈ R2 (27)where |x| =
√

x2
1 + x2

2.



ESAIM: PROCEEDINGS 12/20Remark 4.1. The geometri
al assumptions used by the adjoint and the FTTC methods are very di�erent.The �rst one assumes that the gel domain 
an be approximated by a thin plate while the se
ond one assumesthat it is thi
k enough to be 
onsidered as a half-spa
e.The equations (26) and (27) form the basis of the BEM [10℄ and the FTTC method [7℄.4.2. Fourier analysis for the TFM problemIn this se
tion we re
all some 
lassi
al results of Fourier analysis used here. All these results are establishedin [25℄ for the 1D 
ase. These results are presented for a generi
 fun
tion denoted by f whi
h will be a
omponent of the ve
tors T or u or the tensor G.Continuous Fourier transform. We denote by f̂ , or equivalently Ff , the 2D Fourier transform of thes
alar 
omplex�valued fun
tion f : x ∈ R2 7−→ f(x) ∈ C. The Fourier transform f̂ = Ff of the fun
tion fis de�ned by
f̂(ξ) = 〈Ff, ξ〉 =

∫

R2

f(x) exp(−i2π x · ξ) dx ∀ ξ ∈ R2 (28)where ξ denotes the wave ve
tor (the generi
 element of the Fourier spa
e) and i =
√
−1.The Fourier transform f̂ is 
learly well-de�ned when f ∈ L1(R2). By using the density of the rapidlyde
reasing fun
tions spa
e S (R2) (the S
hwartz spa
e) into L2(R2), the operator F 
an be extended to

L2(R2) to de�ne an isomorphism from L2(R2) into L2(R2).The 
omponents of the tra
tion stress T and the displa
ement u belong to L2(Ω). So, in order to use theFourier analysis, these �elds are extended to be zero on R2 \ Ω to de�ne fun
tions belonging to L2(R2).Continuous Fourier transform and 
onvolution. When f and g are two fun
tions belonging to L2(R2)their 
onvolution produ
t f ∗ g is an element of the tempered distributions spa
e S ′(R2). So, the Fouriertransform f̂ ∗ g exists and satis�es the well-know identity
f̂ ∗ g = f̂ ĝ in S

′(R2) (29)This last identity is the basis of the FTTC method.Dis
rete Fourier transform and sampling. Usually the numeri
al approximation of the Fourier 
oef-�
ients (28) is performed by using spe
ialized and optimized algorithms [11℄. These algorithms are imple-mentations of the so-
alled dis
rete Fourier transform (DFT). In the TFM 
ontext, the DFT approximatesthe integrals (28) by using the re
tangle method (left-bottom endpoint rule) on a uniform and stru
turedgrid whose nodes are the points xn = (n1 h1, n2 h2), where hk and nk are respe
tively the spatial steps andthe index in the dire
tion xk of the physi
al spa
e, with n = (n1, n2). When pra
ti
al 
omputations areperformed, the steps sizes and the number of nodes Nk in the xk�dire
tion are 
hosen so that all nodesbelong to Ω for nk = 0, 1, · · · , Nk − 1. But, for theoreti
al 
onvenien
e, we 
an 
onsider that this grid 
oversthe whole R2 in the same manner that the fun
tions are extended by zero on R2 \ Ω.As a matter of fa
t, the DFT is more than a simpler way to approximate the integrals (28). Mathemati
ally,the DFT approximates the Fourier transform of the tempered distribution fs =
∑

n∈Z2 f(xn) δxn
where δxnis the Dira
 measure 
on
entrated at node xn. This distribution is 
alled the sampling of f related to thenodes xn. The Fourier transform of the sampling fs is the tempered distribution that, for sake of simpli
ity,we write as the fun
tion:

f̂s(ξ) =
1

h1 h2

∑

n∈Z2

f̂n (ξ) with f̂n (ξ) = f̂ (ξ1 − n1/h1, ξ2 − n2/h2) ∀ ξ = (ξ1, ξ2) ∈ R2 (30)



ESAIM: PROCEEDINGS 13/20The distributions f̂n are the translated spe
tra. The distribution f̂s is periodi
 with period p = (1/h1, 1/h2).So, by using the N1 N2 values of the fun
tion f at the spatial nodes xn, the DFT 
an approximate f̂s at
N1 N2 nodes de�ned in the Fourier Spa
e and 
ontained in one period of f̂s; for example at the nodes

ξn =

(
2n1 − N1

2N1h1
,
2n2 − N2

2N2h2

) for nk = 0, 1, · · · , Nk − 1 (31)It is natural to think that this approximation of f̂s yields also an approximation of the 
ontinuous Fouriertransform f̂ . This is true if 
ertain extra 
onditions are met.Approximation of the 
ontinuous Fourier transform. If the fun
tion f and the spatial grid satisfy thefollowing 
onditions
∃λc,1, λc,2 ∈ R su
h that |ξk| ≥ λc,k =⇒ f̂(ξ) = 0 (32a)

λc,k ≤ 1

2 hk

(32b)the approximation of the Fourier 
oe�
ients f̂s (ξn) obtained using the DFT is also an approximation of theFourier transform f̂ evaluated at node ξn in Fourier spa
e.Indeed, the 
ondition (32a) means that the support of the (tempered) distribution f̂ is in
luded in [−λc,1, λc,1]×
[−λc,2, λc,2]. Therefore, thanks to the Nyquist 
ondition (32b), the supports of two translated distributions
f̂n de�ned in (30) do not interse
t if these distributions 
orrespond to two distin
t values of the multi-index n.As a 
onsequen
e, no overlapping o

urs during the summation (30) of the f̂n and then, over ea
h interval ofthe form [−h1/2 + k1N1, h1/2 + k1N1[× [−h2/2 + k2N2, h2/2 + k2N2[ for k1, k2 ∈ Z, the Fourier transforms
f̂ and f̂s 
oin
ide.In pra
ti
e, the 
ondition (32a) is only approximatively satis�ed. However, it 
an be enfor
ed by using a�ltering te
hnique. By 
ontrast, the Nyquist 
ondition is satis�ed if the steps sizes of the spatial grid are
hosen su�
iently small.Sin
e the DFT approximates the integrals involved in the Fourier 
oe�
ients (28) by using the re
tanglemethod, the a

ura
y of the FTTC method is equivalent to the a

ura
y of a P0 �nite element method.4.3. The 
lassi
al FTTC methodThe FTTC method as an alternative to the BEM. The FTTC method [7℄ and the BEM [10℄ are
losely related in the sense that the FTTC method 
an be regarded as an attempt to improve and simplifythe BEM. The BEM 
onsists in writing the equation (26) for x des
ribing the beads lo
ations (x ∈ Ωb, Ωbbeing here a dis
rete and �nite set of isolated points) and with u(x) substituted by the experimental beadsdispla
ements ub. After a dis
retization of the 
ell domain Ωc using a suitable unstru
tured mesh and byusing a Tikhonov regularization method, the BEM 
hara
terizes the nodal values of the stress ve
tor T asthe solution of a large and dense system of linear equations. The redu
tion of 
omputation time used by thenumeri
al resolution of this system and the di�
ulty to set a suitable value for the regularization parameterwere the main motivations for introdu
ing the FTTC method.Con
erning the 
omputational 
ost, the FTTC exploits the fa
t that the 
onvolution produ
t involved in theintegral form (26) be
omes a simple produ
t in the Fourier spa
e in the sense of (29). The original FTTCmethod [7℄ does not use any regularization pro
edure; the ne
essity of su
h pro
edure was shown subsequentlyby Sabass et al. [19℄.Prin
iples of the FTTC method. The prin
iples of the FTTC method 
an be summarized as follows.The 
omputation domain Ω is a re
tangular one. It is dis
retized using a uniform regular grid whose nodesare the xn de�ned in se
tion 4.2. Experimental beads displa
ements ub are repla
ed by their interpolatedvalues ug on this regular grid. For ea
h wave ve
tor ξn of the indu
ed uniform grid in Fourier spa
e, equation(26) is inverted in the 
omplex plane C2 thanks to property (29) and yields the Fourier transform of the
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tor T̂ (ξn) = Ĝ(ξn)
−1

ûb(ξn). The Fourier 
omponents of the tra
tion stress are then transformedba
k into the physi
al spa
e using the inverse Fourier transform Tk = F−1T̂k for k = 1, 2.Appli
ation of the Fourier transform (28) to the Green tensor de�ned by (27) in the physi
al spa
e leads tothe following expression for the Green tensor in the Fourier spa
e
Ĝ(ξ) =

1 + ν

π E

1

|ξ|3
[

(1 − ν) |ξ|2 + νξ2
2 −ν ξ1ξ2

−ν ξ1ξ2 (1 − ν) |ξ|2 + νξ2
1

] for all wave ve
tors ξ ∈ R2 (33)In pra
ti
e, the dire
t and inverse Fourier transforms are performed by using the FFT implementation [11℄of the dire
t and inverse DFT. When the FTTC method was introdu
ed [7℄, it did not use any regularizationpro
edure. But sin
e re
ently [19℄, it is widely known that the FTTC method must be used together with aregularization s
heme (see the following se
tion for the algorithmi
 aspe
ts).Data needed for the FTTC method. As showed in the above prin
iples, the FTTC method needsthe knowledge of the experimental beads displa
ements at every point on the spatial grid used for thedis
retization of the gel surfa
e. But in pra
ti
e, experimental data are avaible only on s
attered pointsin Ω. So, the implementation of the FTTC method need a supplementary interpolation operator whi
hestimates the values ug of gel displa
ements on a regular grid from the knowledge of the experimental beadsdispla
ements ub. This aspe
t of the FTTC method is rarely developped in the litterature. We 
onsider thisissue in se
tion 4.4.What biome
hani
al 
onstraints are satis�ed? Sin
e BEM is based on the 
onvolution integral (26),the tra
tion stresses T ne
essarily satisfy the lo
alization 
onstraint supp (T ) ⊂ Ωc. The 
lassi
al FTTCmethod does not allow to satisfy this 
onstraint. Nevertheless, the original paper [7℄ proposes an iterativevariant of the FTTC method, the so-
alled 
onstrained�FTTC, whi
h should satisfy this 
onstraint. But,no 
onvergen
e result of this variant has been proved. Furthermore, the 
onstrained-FTTC modi�es theexperimental beads displa
ements.By 
ontrast, the FTTC method allows to impose a zero resultant for
e, however this is done over the whole
omputation domain. The FTTC method imposes ∫
Ω

T dx = 0 but, in general, ∫
Ωc

T dx 6= 0. Indeed [7℄,the resultant for
e is nothing else than the Fourier 
oe�
ient 
orresponding to the zero wave ve
tor, thatis ∫
Ω

T dx = T̂ (ξ)|ξ=0. So, the 
onstraint ∫
Ω

T dx = 0 is imposed dire
tly in the Fourier spa
e by setting
T̂ (ξ)|ξ=0 = 0.The zero moment 
onstraint ∫

Ωc

x ∧ T dx = 0 is not adressed in the FTTC litterature. Furthermore,mathemati
ally, this 
onstraint 
annot be imposed in the Fourier spa
e.The table 1 below summarizes the main 
hara
teristi
s of the 
urrently used methods to solve the TFMproblem.Conditions of use and limits of appli
ability. There exists two kinds of limits of appli
ability of theFTTC method. The �rst one 
on
erns the validity of the formulation and the se
ond one is related to thea

ura
y of the numeri
al DFT.The validity of the formulation used to de�ne the dire
t problem (26) is equivalent to that of the expression(27) of the Green tensor. Hen
e, it is equivalent to the possibility to approximate the 3D gel domain by ahalf-plane.The a

ura
y whi
h we are dis
ussing here is not the a

ura
y of the quadrature formula used to approximatethe Fourier 
oe�
ients (28) but the 
apa
ity of the DFT to avoid the overlap of the translated spe
tra f̂nduring summation (30). It only 
on
erns the (interpolated) beads displa
ements sin
e the exa
t Fouriertransform of the Green tensor is available thanks to (33). As indi
ated in se
tion 4.2, the 
onditions (32) aresu�
ient to a
hieve this kind of a

ura
y. If these 
onditions are not satis�ed, then the 
omputed Fouriertransform of the beads displa
ements is a poor approximation. In the 
ontext of inverse problems, this lossof a

ura
y 
an be dramati
. To avoid these di�
ulties, it is su�
ient to 
hoose a spatial step size hk smallenough in order to satisfy 
ondition (32b).
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∫
Ωc

T dx = 0
∫
Ωc

x ∧ T dx = 0 data preservationBEM yes no no yesFTTC no yes(1) no no(2)p�FTTC yes yes(1) no no(2)AM�dire
t yes yes no yesAM�dual yes yes yes yesTable 1 � Main 
hara
teristi
s of the 
urrent methods for solving the TFM problem. The p�FTTC method isintrodu
ed in se
tion 4.4. AM�dire
t is the adjoint method presented in se
tion 3 and de�ned by 
onstrained spa
e(22) and the equations (24) and (25). AM�dual is the adjoint method des
ribed in [23℄. (1) The FTTC and p�FTTCmethods impose only that R

supp(T )
T dx = 0 and (2) use interpolated data.4.4. The proje
ted FTTC method (p�FTTC)Prin
iples. The analysis of the TFM problem developed in the se
tion 2 pointed out the role of the di�erent�ingredients�. In parti
ular, the formulation obtained with equations (17) splits the resolution into two mainparts. First, we determine the adjoint state pε and the optimal displa
ement uε by solving the abstra
tvariational equations (17a) and (17b), whi
h de�ne an un
onstrained problem when the proje
tion operator

Pc is expli
itly known. Then, we dedu
e the optimal stress �eld T ε by proje
ting the adjoint state onto thesubspa
e related to the biome
hani
al 
onstraints. We will use this de
oupling approa
h to de�ne a newvariant of the FTTC method: the proje
ted FTTC method (p�FTTC ). This variant starts with a 
lassi
alFTTC method 
oupled with a Tikhonov regularization and ends by a proje
tion step whi
h ensures thelo
alization 
ondition.Interpolation operator. As exposed in se
tion 4.2, the DFT (i) requires to dis
retize the 
omputationaldomain using an uniform and stru
tured grid, and (ii) the knowledge of the beads displa
ement at every nodein this grid. The role of the interpolation step is to estimate these new displa
ements, denoted by ug, fromthe knowlegde of the experimental displa
ements ub. This estimation is performed by using an interpolationoperator whi
h is a linear operator from R2Nb (Nb denoting the number of beads) into a spe
i�
 fun
tionalspa
e depending on the regularity imposed to the interpolant.We used the natural neighbor interpolation (see [5℄ for a review of the main methods for solving the s
attereddata interpolation problem). This method gives a good balan
e between a

ura
y and 
omputational time.The interpolant fun
tion ug 
an be written as the linear 
ombination
ug : x ∈ Ω 7−→ ug(x) =

Nb∑

k=1

ϕk(x)ub,k ∈ R2 (34)where ϕk(·) is the shape fun
tion asso
iated with the k-th bead displa
ement ub,k. The shape fun
tionshave a 
ompa
t support and are globally C0 [21℄ (and even C∞ ex
ept at beads lo
ations). In the sequel, wedenote by Xg the spa
e of all fun
tions of the form (34).Tikhonov regularization of the un
onstrained FTTC method. S
hwarz et al. pointed out [20℄ thatthe TFM problem 
annot be 
orre
tly solved with the BEM without using a regularization method. Thisobservation was 
on�rmed for the FTTC method [19℄. Here, we derive a Tikhonov regularized FTTC methodby using the framework developed in se
tion 2.The spa
es are 
hosen as follows. Sin
e we want to repla
e the data ub by its interpolant ug de�ned by (34),the spa
e Xb must be repla
ed by Xg. So, we 
hoose V = Xg. On the other hand, we 
hoose H = L2(Ω).We do not impose any biome
hani
al 
onstraints, so Hc = H . Note that sin
e Xb = Xg is then a �nitedimensional spa
e, we 
an simultaneously identify H and Xb with their respe
tive dual spa
es.
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onditions, both operators Pc and B involved in (17) redu
e to the identity operator.Then, we 
an rewrite the abstra
t equations (17) as the equation A−TA−1T ε + ε T ε = A−Tub. Taking intoa

ount the expression (26) of the operator A, this equation be
omes GT ∗G ∗T ε + ε T ε = GT ∗ub in thephysi
al spa
e and, thanks to the identity (29),
ĜT(ξ) Ĝ(ξ) T̂ ε(ξ) + ε T̂ ε(ξ) = ĜT(ξ)ûb(ξ) for ξ ∈ R2 (35)in the Fourier spa
e. This last equation appears as a regularized form of the normal equation related to

Ĝ(ξ) T̂ ε(ξ) = ûb(ξ).The p�FTTC method. The p�FTTC method improves the 
lassi
al FTTC method by allowing to imposethe lo
alization 
onstraint with a proje
tion operator. It 
an be summarized as follows.(1) Compute the interpolant ug ∈ Xg of the experimental beads displa
ements ug in the physi
al spa
eand approximate its Fourier transform ûg using the DFT.(2) For ea
h ξn 6= 0 des
ribing the non-zero nodes of the dis
retization grid (31) in the Fourier spa
e,
ompute T̂ ε(ξn) by solving equation (35) for ξ = ξn.(3) Impose the zero total for
e 
onstraint ∫
Ω

T ε dx = 0 (over Ω, not over the 
ell domain Ωc) in theFourier spa
e by setting T̂ ε(0) = 0.(4) Then, go ba
k into the physi
al spa
e T ε = F−1T̂ ε by using the inverse�DFT.(5) Finally, impose the lo
alization 
onstraint supp (T ε) ⊂ Ωc by applying the proje
tion operator Pcsde�ned by Pcs T : x ∈ Ω 7−→ (Pcs T ) (x) = χc(x)T (x) ∈ R2.Note that the tra
tion stress T ε 
al
ulated by the previous algorithm does not belong to the spa
e Hc de�nedin (22). In other words, T ε satis�es the lo
alization 
onstraint (supp (T ) ⊂ Ωc) but, in general, ∫
Ωc

T ε dx 6= 0.5. Numeri
al 
omparison of Adjoint and p�FTTC methodsIn this last se
tion, results from simulations are presented, using the two di�erent methods, the adjointmethod and the p�FTTC method just presented above. A parti
ular attention is paid to the 
hoi
e of theregularization parameter.Experimental data. Experiments involving GFP�transfe
ted RT112 
ells (from bladder epithelial tissues,rather low invasiveness degree) have been performed on Polya
rylamide gels with Young modulus E = 10 kPaand Poisson ratio ν = 1/2. Measurements of �uores
ent beads positions have been made using 
onfo
almi
ros
opy and displa
ements were dedu
ed using a te
hnique previously des
ribed [3℄.L�
urve. There exists several methods [12, 14, 24℄ to sele
t a suitable value of the regularization parameter
ε. This 
hoi
e is a 
ru
ial step to yield an a

urate approximation of the stress �eld. In order to avoid the useof any additional informations (for example, error level in experimental data), we have 
hosen the L�
urve
riterion [13℄. This method is based on a plot of the parametri
 
urve of the stress norm |T ε|2 versus theresidual norm ∣∣A−1T ε − ub

∣∣
2
for all ε > 0 (|v|2 denoting the eu
lidian norm of a dis
retization of v). TheL�
urves 
onstru
ted by the adjoint and p�FTTC methods 
an be seen in Fig. 3 below (in unusual linears
ale).The L�
urve depi
ts the in�uen
e of the regularization parameter on the stress �eld. The one obtained withthe adjoint method 
an be interpreted as follows. Low values of ε lead to high values of |T ε|2. Indeed, when

ε tends to zero the regularization term vanishes in the Tikhonov fun
tional (6) and then the stress �eld T εis strongly a�e
ted by the numeri
al instabilities. Next, the stability in
reases with the value of ε and theL�
urve is de
omposed into three regions. In the �rst one, |T ε|2 and ∣∣A−1T ε − ub

∣∣
2
de
reases simultaneouslyuntil a turning point is rea
hed. In the se
ond region, just after this turning point, only |T ε|2 de
reases while∣∣A−1T ε − ub

∣∣
2
in
reases reasonably. In this region, the 
urvature is high and the point where the 
urvatureis maximun is the 
orner of the L�
urve. The third region is 
hara
terized by a low value of the 
urvature.In this region, |T ε|2 de
reases slowly and ∣∣A−1T ε − ub

∣∣
2
in
reases steadily. This is due to the importan
e ofthe regularization term in the Tikhonov fun
tional. Hen
e, in this region, the stress �eld is over-regularized.
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Figure 3 � L�
urves obtained using the adjoint method (left) and p�FTTC (right). Me
hani
al parameters: E = 10 kPaand ν = 1/2. Data : Nb = 3,144 beads. Mesh used by the adjoint method: 9,323 nodes, NT = 1,109 nodes in Ωcand 18,332 triangles, P1 interpolation. Spatial grid used by the p�FTTC method: 256× 256 nodes (Nnode = 65,536),
NT = 6,396 nodes in Ωc. Some values of the de
imal logarithm of ε are reported on the graphs (red 
ir
les). TP:turning point. MCP: maximum 
urvature point. LP: limit point. εopt: optimal value of the regularization parameterused in Fig. 4, 5 and 6.Finally, for high values of ε the Tikhonov fun
tional is totally dominated by its regularization term, so |T ε|2tends to zero and the residual norm tends to |ub|2. Hen
e, the L�
urve presents a limit point when ε tendsto in�nity.The L�
urve obtained with the p�FTTC method seems di�erent. But, if one admits that its turning pointand its 
orner are the same, then, all the regions identi�ed in the previous L�
urve are present in the L�
urveobtained with the p�FTTC method.Sele
tion of the regularization parameters. In the region of high 
urvature, the requirements of stabilityfor T ε and of the small value for the residual norm are well balan
ed. So, the value of ε 
orresponding to the
orner of the L�
urve is a natural 
andidate to give the optimal value of the regularization parameter [13℄.We have 
he
ked this value, but, unfortunately, the 
orresponding stress �eld was unrealisti
.To �nd a better estimate of the stresses, we have used the following te
hnique. We have visualized the stressve
tors 
orresponding to a range of values of ε 
hosen in the vi
inity of the 
orner of the L�
urve. Initially,the stress ve
tors point in all dire
tions, with a very irregular manner, then as ε is in
reased, a rearrangementof the ve
tors orientation takes pla
e and these stresses dire
tions be
ome stable. As ε is further in
reased,the ve
tor patterns remain stable in dire
tion but their norms de
rease. This last behavior 
orresponds toover-regularized solutions. Thus the optimum value of ε is 
hosen as the �rst value leading to a stabilizedorientation for the dire
tions of the stress ve
tors. This 
hosen value is found in the vi
inity of the high
urvature of the 
urve, but not ne
essarily at the highest lo
al 
urvature. With the data and parametersused in Fig. 3, we have obtained ε = 7.0× 10−6 in the 
ase of the adjoint method and ε = 1.5× 10−6 in the
ase of the p�FTTC method.Comparison of the 
omputed tra
tion stresses. The estimated stress �elds 
orresponding to thesesele
ted values of ε 
an be seen in Fig. 4 (stress ve
tors) and 5 (stress norm) below. These results seemin good agreement. But although the order of magnitudes are rather similar, some di�eren
es are howeverpresent. In parti
ular (i) the areas of the high stresses are di�erent, (ii) di�erent stress dire
tions are foundin the lower right and top parts of the 
ell. Moreover, as shown in Fig 6, the adjoint method yields thestresses in �lipodia (sharp shapes of the 
ell membrane) while the p�FTTC method has more di�
ulties todo that. Finally, the p�FTTC smoothes the stresses more than the adjoint method.
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400 PaFigure 4 � Stresses ve
tors obtained with the adjoint method (left) and the p�FTTC metod (right). The parametershave the same values as in Fig. 3. Regularizatioin parameter: ε = 7×10−7 for the adjoint method and ε = 1.5×10−6for the p�FTTC method.

Figure 5 � Stresses norms obtained with the adjoint method (left) and the p�FTTC metod (right). The parametershave the same values as in Fig. 4.Con
lusion. It 
an be 
on
luded that the p�FTTC 
an be a good approximation of the solution but ithas disadvantages as 
ompared to the AM method. The p�FTTC method is in any 
ase more a

urate thanthe 
lassi
al FTTC method [7℄, whi
h does not ensure the biome
hani
al 
onstraints of zero stresses outsidethe 
ell. Furthermore, the se
ond 
ondition (null sum of stresses) is also satis�ed. As one wants to improvethis solution, it is better to use the AM method, in parti
ular it enables to obtain lo
al re�nements of thesolution in parti
ular where �lipodia are lo
ated. It is important to de�ne stress dire
tions pre
isely at theselo
ations, whereas the p�FTTC method does not provide this information at all.6. Con
lusionWe have presented an abstra
t variational framework whi
h allows to formulate the inverse problem ofthe TFM by 
ombining 
ontrained minimization theory with Tikhonov regularization. The biome
hani
al
onditions satis�ed by the 
ell are related to mathemati
al 
onstraints and are imposed thanks to a proje
tionoperator. As spe
i�
 appli
ations, the adjoint and the FTTC methods 
an be derived from this frameworkby 
hoosing suitable formulations for the dire
t problem. Furthermore, we have used the proje
tion operatorof the adjoint method to improve the FTTC method. This improvement imposes the zero tra
tion stress
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Figure 6 � Stress �eld near a �lipod obtained with the adjoint method (left) and the p�FTTC method (right). Theparameters have the same values as in Fig. 3.
ondition outside the 
ell and it is a
hieved using the regularized FTTC method followed by a proje
tionstep. This improved FTTC, the so-
alled p�FTTC, yields a

eptable results.The numeri
al simulations have shown qualitative agreement between the adjoint and FTTC methods andhave emphasized the 
hoi
e of the value of the regularization parameter as the 
riti
al step. This 
hoi
e wasa
hieved by using the L�
urve 
riterion in a semi-manual mode. But this issue requires further mathemati
aldis
ussions and numeri
al experiments. In parti
ular a test 
ase is needed to de�nitely 
on
lude on this
hoi
e and to 
ompare the a

ura
y of both methods.Referen
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