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Approximate computations with modular curves

Jean-Marc Couveignes∗ and Bas Edixhoven

Abstract. This article gives an introduction for mathematicians interested in numerical computations in
algebraic geometry and number theory to some recent progress in algorithmic number theory, emphasising
the key role of approximate computations with modular curves and their Jacobians. These approximations
are done in polynomial time in the dimension and the required number of significant digits. We explain
the main ideas of how the approximations are done, illustrating them with examples, and we sketch some
applications in number theory.
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11-G-18, 14-G-35, 14-G-40.
Keywords. Drinfeld modules, L-functions, Weil conjecture.

1. Introduction

The purpose of this article is to give an introduction to the main results of the book [BCEJM]
and their generalization in the PhD thesis [Bru1] and in [Bru2], as well as some applications, and
most of all to explain the essential role played by approximate computations. The intended reader
is a mathematician interested in numerical computations in algebraic geometry or number theory.

The results concern fast algorithms in number theory and more precisely, fast computation of
Fourier coefficients of modular forms. These coefficients, with Ramanujan’s τ -function as a typical
example, have deep arithmetic significance and are important in various areas of mathematics, from
number theory and algebraic geometry to combinatorics and lattices.

The fastest previously known algorithms for computing these Fourier coefficients took expo-
nential time, except in some special cases. The case of elliptic curves (Schoof’s algorithm) was at
the birth of elliptic curve cryptography around 1985. The results mentioned above give an algo-
rithm for computing coefficients of modular forms in polynomial time. For example, Ramanujan’s
τ(p) with p a prime number can be computed in time bounded by a fixed power of log p.

Such fast computation of Fourier coefficients is itself based on the main result of the book: the
computation, in polynomial time, of Galois representations over finite fields attached to modular
forms by the Langlands program.

The computation of the Galois representations uses their realisation, following Shimura and
Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is
then to perform the necessary computations in time polynomial in the dimension of these nonlin-
ear algebraic varieties. Exact computations involving systems of polynomial equations in many
variables take exponential time. This is avoided by numerical approximations with a precision
that suffices to derive exact results from them. Bounds for the required precision – in other
words, bounds for the height of the rational numbers that describe the Galois representation to
be computed – are obtained from Arakelov theory.

This article is organised as follows. Sections 2 and 3 are concerned with numerical methods
used in the context of complex algebraic curves and their Jacobian varieties. Sections 4 and 5
describe how to get exact results about torsion points on modular curves using these numerical
methods. Section 4 focuses on the genus 1 curveX11 while Section 5 deals with the general modular
curve X`. As an application, Section 6 gives two examples of fast computation of coefficients of
modular forms: Ramanujan’s τ -function, and the classical sums of squares problem.

∗Research supported by ANR (project ALGOL ANR-07-BLAN-0248) and by DGA maîtrise de l’information.
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2. Algorithms for curves and Jacobians

Let X be a connected, smooth, projective algebraic curve over the field C of complex numbers.
The set X(C) of complex points of X is a Riemann surface. Let g be the genus of X and let
(ωk)1≤k≤g be a basis for the space of holomorphic differentials on X. We fix a point b ∈ X(C)
and we denote by Yb the set of homotopy classes of paths on X(C) starting at b. The universal
cover fb : Yb → X(C) maps every path to its end point. The fundamental group π1(X(C), b) ⊂ Yb
is the subset of (homotopy classes of) closed paths. It acts on Yb, with quotient X(C). We have
an integration map φb : Yb → Cg defined by

φb(γ) = (
∫
γ

ω1, . . . ,

∫
γ

ωg).

The image of π1(X(C), b) by φb is a lattice Λ in Cg. It is called the lattice of periods. It is a free
Z-module of rank 2g. The quotient Cg/Λ is a complex torus. It is the set of complex points J(C)
on the Jacobian variety J of X. The integration map φb : Yb → Cg induces a map between the
quotients X(C)→ J(C). This map is a morphism of varieties X → J . We call this morphism φb
also. For every positive integer k we denote φkb : Xk → J the morphism that maps (P1, . . . , Pk)
onto φb(P1) + · · · + φb(Pk). Since the image in J does not depend on the ordering on the points
Pj , we write X(k) for the k-th symmetric power of X. We note that X(k) is the quotient of
Xk by the action of the symmetric group. It is a nonsingular variety. We define the morphism
φ

(k)
b : X(k) → J that maps {P1, . . . , Pk} onto φb(P1) + · · · + φb(Pk). For k = g the map φ(g)

b is
birational and surjective. It is not an isomorphism unless g ≤ 1. Its fibers are projective linear
spaces, mostly (but not all) points. A degree g effective divisor P = P1 + · · · + Pg is said to be
non-special if the map φ(g)

b is a local diffeomorphism at P . Otherwise we say that P is special. This
definition does not depend on the chosen origin b. The set of special effective degree g divisors is
the singular locus of φ(g)

b . All these maps φ(k)
b are called Abel-Jacobi maps. In particular

φ
(g)
b ({P1, . . . , Pg}) =

∑
1≤j≤g

(
∫ Pj

b

ωk)k mod Λ,

where we can integrate
∫ Pj

b
ωk along any path between b and Pj , provided we keep the same

path for all k. We can apply the Abel-Jacobi map to any divisor on X. We set φb(
∑
j ejPj) =∑

j ejφ
(1)
b (Pj). We note that for degree zero divisors, the image does not depend on the origin b.

A divisor is said to be principal if it is the divisor of a non-zero meromorphic function on X. Two
divisors are said to be linearly equivalent when their difference is principal. Any principal divisor
has degree zero. A degree zero divisor is principal if and only its image by φb is zero. So the set
J(C) = Cg/Λ of complex points on the Jacobian is canonically identified with the group Pic0(X)
of linear equivalence classes of degree zero divisors on X.

We now list important algorithmic problems related to the Abel-Jacobi map. We illustrate
them on the simple example of the projective curve X with equation

(2.0.1) Y 2Z − Y Z2 = X3 −X2Z.

This curve has genus 1. We write x = X/Z and y = Y/Z. The unique (up to a multiplicative
constant) holomorphic differential on X is

ω = dx

2y − 1 = dy

x(3x− 2) .

We choose the point b = [0 : 1 : 0] as origin for the integration map. For every computational
problem we shall consider, we will also explain what can be proven when X is a modular curve X`

and ` (therefore g) tends to infinity. The definition of the modular curve X` is given in Section 5.
See also textbooks [Di-Sh, Ste] where X` is often denoted X1(`).
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2.1. Computing the lattice of periods. We first need a basis for the singular homology group
H1(X(C),Z). If X is the genus one curve given by equation (2.0.1), such a basis can be deduced
from the study of the degree two map x : X → P1 that sends (x, y) onto x and [0 : 1 : 0] to ∞.
This map is ramified at ∞ and the three roots of 4x3 − 4x2 + 1. We lift a simple loop around ∞
and one of these three roots. We then lift a simple loop around ∞ and another root. We thus
obtain two elements in H1(X(C),Z) that form a basis for it.

Integrating a differential along a path is easy. We express the differential in terms of local
coordinates. We then reduce to integrating converging power series. We integrate term by term.
In case X is the curve given in equation (2.0.1), we obtain a basis (Ω1,Ω2) for the lattice Λ of
periods where

Ω1 = 6.346046521397767108443973084,
Ω2 = −3.173023260698883554221986542 + 1.458816616938495229330889613i.

These calculation are made e.g. using the [PARI] system.

>a1=0;a2=-1;a3=-1;a4=0;a6=0;
>X=[a1,a2,a3,a4,a6];X=ellinit(X);
>X.omega
[6.346046521397767108443973084,
-3.173023260698883554221986542 + 1.458816616938495229330889613*I]

When dealing with general modular curves, an explicit basis for both the singular homology and
the de Rham cohomology is provided by the theory of Manin symbols [Man, Merel, Cre, Fre, Ste].
Computing (good approximations of) periods is then achieved in time polynomial in the genus and
the required accuracy [Cou2]. The practical side is described in [Bos1, §6.3]. Textbooks [Coh],
[Cre, Chapter 3] give even faster techniques for genus 1 curves, but we shall not need them.

2.2. Computing with divisor classes. A degree zero divisor class can be represented by a
point in the torus Cg/Λ = J(C). It can also be represented by a divisor of the form

(2.2.1) P1 + · · ·+ Pg − gb

in this class. This latter representation is not always unique. It is however unique for most classes
because φ(g)

b is birational. The addition problem in this context is the following: given two degree
g effective divisors P = P1 + · · · + Pg and Q = Q1 + · · · + Qg, one would like to compute a
degree g effective divisor R = R1 + · · · + Rg such that the divisor class of R − gb is the sum of
the divisor classes of P − gb and Q − gb. So we look for g complex points R1, . . . , Rg such that
P1 + · · ·+ Pg +Q1 + · · ·+Qg − 2gb is linearly equivalent to R1 + · · ·+Rg − gb. This is achieved
using the Brill-Noether algorithm [Bri-Noe, Vol]. This algorithm uses a complete linear space L
of forms or functions. This space should have dimension ≥ 2g + 1. For example, assuming g ≥ 4,
we may take for L the space of all holomorphic quadratic differential forms. We compute once
for all a basis for this space. Then the Brill-Noether algorithm alternates several steps of two
different natures. Sometimes we are given a form (function) and we want to compute its divisor.
Sometimes we are given an effective divisor D and we want to compute a basis for the subspace
L(−D) consisting of forms (functions) vanishing at this divisor.

The first problem (finding zeros of a given form) can be reduced, using a convenient coordinate
system, to the following problem: given a power series f(z) =

∑
k≥0 fkz

k with radius of conver-
gence ≥ 1, find approximations of its zeros in the disk D(0, 1/2) with center 0 and radius 1/2.
It is clear (see [Cou1, §5.4]) that, for the purpose of finding zeros, one can replace f(z) by its
truncation

∑
0≤k≤K fkz

k at a not too large order K. We then reduce to the classical problem of
computing zeros of polynomials. A survey of this problem is given in [Cou1, §5.3].

The second problem (finding the subspace of functions vanishing at given points) boils down
to finding the kernel of the matrix having entries the values of the functions in the chosen basis
of L at the given points.
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The only difficulty then is to control the conditioning of these two problems. This is done in
two steps. We first prove [Cou1, §5.4] that the zeros of a holomorphic function on a closed disk
are well conditioned unless this function is small everywhere on this disk. We then prove [Cou2,
§12.7] that the form we consider cannot be small everywhere on any of the charts we consider,
unless it has very small coordinates in the chosen basis of L.

The resulting algorithm for computing in the group of divisor classes of modular curves is
polynomial time in the genus and the required direct accuracy [Cou2, Theorem 12.9.1]. By direct
accuracy we mean that the error is measured in the target space of the integration map, namely
the torus Cg/Λ. Saying that the direct accuracy is bounded from above by ε means that the
returned divisor R′ = R′1 + · · ·+R′g is such that

φb(R′ −R) = φ
(g)
b (R′)− φ(g)

b (R)

is bounded from above by ε for the maxnorm in Cg. This does not necessarily imply that the Rj
are close to the R′j . Indeed, in case R = R1 + · · ·+ Rg is special, there exists a non-trivial linear
pencil of divisors R′ such that φ(g)

b (R′) = φ
(g)
b (R). Controlling the distance between R and R′ will

only be possible in some cases.
In the special case when X is the curve given by equation (2.0.1) the map φ(1)

b : X → J is an
isomorphism because the genus is 1. Computing with divisor classes is then very simple and the
Brill-Noether algorithm takes a simple form. The space L consists of all degree 1 homogeneous
forms, and a basis for it is made of the three projective coordinates X, Y and Z. Given P and
Q, one considers the unique projective line ∆1 through P and Q. In case P = Q we take ∆1 to
be the tangent to X at P . The line ∆1 meets X at three points: P , Q and a third point that
we call S. We consider the unique projective line ∆2 through S and the origin b. The line ∆2
meets X at three points: b, S and a third point that we call R. On can easily check that P +Q is
linearly equivalent to b+R or equivalently P − b+Q− b is equivalent to R− b. The coordinates
of R can be computed using very simple formulae [Sil, Chapter III]. We illustrate this using the
[PARI] system. We call P the point [0 : 0 : 1]. We first compute Q such that Q − b is linearly
equivalent to 2(P − b). We write Q− b ≡ 2(P − b) using the ≡ symbol for linear equivalence. We
then compute R such that R − b ≡ P − b + Q − b ≡ 3(P − b). We then compute S such that
S − b ≡ Q− b+R− b ≡ 5(P − b).

>P=[0,0];
>Q=elladd(X,P,P)
[1, 1]
>R=elladd(X,P,Q)
[1, 0]
>S=elladd(X,Q,R)
[0]

The answer for S means that S is just the origin b = [0 : 1 : 0]. So the divisor P − b has order 5
in the Picard group Pic(X), the group of divisors modulo linear equivalence.

2.3. The direct Jacobi problem. Given a divisor on X we want to compute its image by φb
in the complex torus J(C) = Cg/Λ. It suffices to explain what to do when the divisor consists of
a single point P . For every 1 ≤ k ≤ g we then have to compute

∫ P
b
ωk. So we integrate ωk along

any path from b to P . We split the chosen path in several pieces according to the various charts in
our atlas for the Riemann surface X(C). On every chart, the differentials ωk can be expressed in
terms of the local coordinate. We then reduce to computing integrals of the form

∫ 1
2

0 f(z)dz where
f(z) is holomorphic on the unit disk. Such an integral can be computed term by term. When X
is a modular curve, we have a convenient system of charts and a basis for L consisting of forms
having small coefficients in their expansions at every chart. There is long standing tradition with
stating and proving bounds for these coefficients. It culminates with the so-called Ramanujan
conjecture. This conjecture was proved by Deligne as a consequence of [Del1] and his proof of the
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analog of the Riemann hypothesis in the Weil conjectures in [Del2]. In case X is the elliptic curve
given by equation (2.0.1) we take for P the point [0 : 0 : 1] and find that

φ
(1)
b (P ) =

∫ P

b

ω = 2.538418608559106843377589234 mod Λ.

This integral is computed using the [PARI] system.

> ellpointtoz(X,[0,0])
2.538418608559106843377589234

We notice that
φ

(1)
b (P ) = 2Ω1

5 mod Λ.

So 5(P − b) is a principal divisor as already observed at the end of section 2.3.

2.4. The inverse Jacobi problem. At this point we have two different ways of representing
a degree zero class of equivalence of divisors. We can be given a divisor in this class like the one
in equation (2.2.1). Such a divisor will be called a reduced divisor. We can also be given a vector
in Cg modulo the lattice of periods Λ. It is of course very easy to compute with such vectors.
We also have seen in section 2.2 how to compute with reduced divisors. So both representations
are convenient for computational purposes. We also have seen in section 2.3 how to pass from
a reduced divisor to the corresponding point in the torus Cg/Λ applying the Abel-Jacobi map.
We now consider the inverse problem: given a point α mod Λ in the torus Cg/Λ, find some
P = P1 + · · ·+ Pg such that the reduced divisor P − gb is mapped onto α mod Λ by φb.

Using an iterative method We can try an iterative method like the secant’s method. We
illustrate the secant’s method in case X is the curve given by equation (2.0.1) and

(2.4.1) α = (Ω1 + Ω2)/11 = 0.2884566600635348685656 + 0.1326196924489541117573i.

Starting from P0 = (50 − 50i,−223.147 + 547.739i) and P1 = (20 − 20i,−54.587 + 137.965i) we
obtain an approximation up to 10−26 after eighteen iterations. We use the [PARI] system and
declare a function for the secant method.

>secant(alpha,P0,P1,K)=
{
local(f0,f1,x0,x1,x2,P2,P3);
for(k=1,K,
f0=ellpointtoz(X,P0)-alpha;f1=ellpointtoz(X,P1)-alpha;
x0=P0[1];x1=P1[1];
x2=x1-f1*(x1-x0)/(f1-f0);
P2=[x2,ellordinate(X,x2)[1]];P3=[x2,ellordinate(X,x2)[2]];
if(abs(P2[2]-P0[2])> abs(P3[2]-P0[2]) ,P2=P3,);
P0=P1;P1=P2;
);
return(P2);
}

The four parameters of this function are the target point in C/Λ, the two initial approximate
values of P , and the number of iterations. We then type

>alpha=(omega1+omega2)/11;
x0=50-50*I;x1=20-20*I;
P0=[x0,ellordinate(X,x0)[2]];P1=[x1,ellordinate(X,x1)[2]];
secant(alpha,P0,P1,18)
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Below are the results of iterations 14 to 18. We only give the values taken by the x-coordinate.

6.796891402429021881380876803 - 7.525836023544396684018482041i
6.796539495414535904114103146 - 7.525907619429540863361002543i
6.796539142100022043003057330 - 7.525908029913269174706910680i
6.796539142094915910541452272 - 7.525908029899464322147329306i
6.796539142094915911068237206 - 7.525908029899464321854796862i

The continuation method Iterative methods only work if the starting approximation is close
enough to the actual solution. Such an initial approximation can be provided by the solution of a
different though close inverse problem. Coming back to our example, we will start from any point
on X. Say P0 = (0, 0). We compute the image α0 mod Λ of P0 by the integration map. We then
choose any P−1 that is close enough to P0.

>P0=[0,0];
alpha0=ellpointtoz(X,P0);
Pm1=[0.1,ellordinate(X,0.1)[2]];

We now move slowly from α0 to α. We set α1 = α0 +0.1(α−α0) and we solve the inverse problem
for α1 using the secant’s method with initial values P−1 and P0.

>P1=secant(alpha0+0.1*(alpha-alpha0),Pm1, P0,5)
[0.218773824415936734050679268 - 0.0122309960881052801981765895*I,
0.0388323642082357612959944279 - 0.00390018046133107189481433241*I]

We now set α2 = α0 + 0.2(α − α0) and we solve the inverse problem for α2 using the secant’s
method with initial values P0 and P1.

>P2=secant(alpha0+0.2*(alpha-alpha0),P0, P1,5)
[0.410237833586311839505201998 - 0.0205989424813431290064696558*I,
0.111775424533436210193603161 - 0.00838376796781394064004855129*I]

We continue until we reach α

>P3=secant(alpha0+0.3*(alpha-alpha0),P1, P2,5);
...

P9=secant(alpha0+0.9*(alpha-alpha0),P7, P8,5);
P10=secant(alpha,P8, P9,10)
[6.796539142094915911068237205 - 7.525908029899464321854796861*I,
-8.056577776742775028742861296 + 30.05694612451787404370259256*I]

This continuation method is very likely to succeed provided the integration map has a nice local
behaviour all along the path from α0 to α. This is how practical computations have been realised
in [Bos1] for modular curves. It is however difficult to prove that this method works because the
integration map φ(g)

b has a singular locus as soon as g > 1, and we do not know how to provably
and efficiently find a path from α0 mod Λ to α mod Λ that keeps away from the singular locus.

3. Provably solving the inverse Jacobi problem

We have presented in section 2.4 a heuristic algorithm for the inverse Jacobi problem. This
algorithm is based on continuation. It seems difficult to prove it however because that would
require a good control on the singular locus of the Jacobi map. In this section we present the
algorithm introduced in [Cou2]. This algorithm only requires a good control of the Jacobi map
locally at a chosen divisor in X(g). This is a much weaker condition and it is satisfied for modular
curves. An important feature of this algorithm is the use of fast exponentiation rather than
continuation. The principle of fast exponentiation is recalled in section 3.1. The algorithm for
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the inverse Jacobi problem itself is given in section 3.2. Section 3.3 sketches the proof of this
algorithm. Proving in this context means proving the existence of a Turing machine that returns
a correct answer in a given time. One has to prove both the correctness of the result and a bound
for the running time. This bound here will be polynomial in the genus of the curve and the
required accuracy of the result.

3.1. Fast exponentiation in groups. Assume we are given a group G. The group law in G will
be denoted multiplicatively. We assume that G is computational. This means that we know how
to represent elements in G, how to compare two given elements, how to invert a given element,
and how to multiply two given elements.

The exponentiation problem in G is the following: we are given an element g in G and an
integer e ≥ 2, and we want to compute ge as an element in G. A first possibility would be to set
a1 = g and to compute ak = ak−1 × g for 2 ≤ k ≤ e. This requires e− 1 multiplications in G. It
is well known, however, that we can do much better. We write the expansion of e in base 2,

e =
∑

0≤k≤K
εk2k,

and we set b0 = g and bk = b2
k−1 for 1 ≤ k ≤ K. We then notice that

ge =
∏

0≤k≤K
bεk

k .

So we can compute ge at the expense of a constant times log e operations in G. The algorithm
above is called fast exponentiation and it admits many variants and improvements [Gor]. Its first
known occurrence dates back to Piṅgala’s Chandah-sûtra (before -200). See [DatSin, I,13].

3.2. Solving the Jacobi inverse problem by linear algebra. Recall that we have two dif-
ferent ways of representing an equivalence class of divisors of degree zero: reduced divisors or
classes in the torus Cg/Λ. We have seen that both models are computational. The Abel-Jacobi
map φ(g)

b : X(g) → Cg/Λ is computational also. We want to invert it (although we know it is not
quite injective). More precisely we assume we are given some α in Cg and we look for a degree g
effective divisor on X such that φ(g)

b (P ) = φb(P − gb) = α mod Λ. It seems difficult to prove the
heuristic methods given in section 2.4 for this purpose. So we present here a variant for which we
can give a proof, at least when X is a modular curve X`. We illustrate this method in the case
where X is the curve given in equation (2.0.1). We still aim at the α given in equation (2.4.1).

We need a non-special effective divisor P0 of degree g. Since g = 1 we can take any point on
X. For example P0 = (0, 0). We note that the affine coordinate x is a local parameter at P0. We
choose a small real number ε. The smaller ε the better the precision of the final result. Here we
choose ε = 0.0001. We consider two points P1 and P2 that are very close to P0. The first point
P1 is obtained by adding ε to the x-coordinate of P0. The second point P2 is obtained by adding
εi to the x-coordinate of P0.

P0=[0,0];
P1=[0.0001,ellordinate(X,0.0001)[2]];
P2=[0.0001*I,ellordinate(X,0.0001*I)[2]];

We now compute the image α1 mod Λ of P1 − P0 by the Abel-Jacobi map. We also compute the
image α2 mod Λ of P2 − P0. We note that α1 mod Λ is very close to 0 ∈ C/Λ. This is because
P0 and P1 are close. We assume that α1 is the smallest complex number in its class modulo Λ.
We make the same assumption for α2. Then α1 and α2 are two small complex numbers, and they
form an R-basis of C. This is because the integration map φ(g)

b is a local diffeomorphism at P0 (or
equivalently P0 is a non-special divisor) and ε has been chosen small enough.

alpha1=ellpointtoz(X,P1)-ellpointtoz(X,P0);
alpha2=ellpointtoz(X,P2)-ellpointtoz(X,P0)-omega1-omega2;
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Recall that our target in the torus C/Λ is α mod Λ where α is the complex number given in
equation (2.4.1). So we compute the two real coordinates of α in the basis (α1, α2).

>M=[real(alpha1), real(alpha2); imag(alpha1), imag(alpha2)];
coord=M^(-1)*[real(alpha),imag(alpha)]~
[-2884.566581407009845250155464, -1326.196933330853847302268151]~

We deduce that α is very close to α′ = −2884α1−1326α2. And the class α′ mod Λ is the image by
φb of −2884(P1−P0)−1326(P2−P0). The linear equivalence class of the latter divisor is therefore
a good approximation for our problem. There remains to compute a reduced divisor P − gb in this
class using the methods presented in section 2.2. Since the integers 2884 and 1326 are rather big,
we use the fast exponentiation algorithm presented in section 3.1.

>coord=truncate(coord)
[-2884, -1326]~
>D1=ellsub(X,P1,P0);D2=ellsub(X,P2,P0);
P=elladd(X,ellpow(X,D1,coord[1]),ellpow(X,D2,coord[2]))
[6.798693122986621316758396123 - 7.528977879167267357619566769*I,
-8.059779911380488392224788509 + 30.07437308400090422713306570*I]

We now check that the image of P − P0 by φb is close to α

>ellpointtoz(P)
0.2884000018811813146007079855 + 0.1325999988977252987328424662*I
>alpha
0.2884566600635348685656351402 + 0.1326196924489541117573536012*I

For a better approximation we should start with a smaller ε.

3.3. Matter of proof. The main concern when proving the algorithm in section 3.2 is to prove
that we can find an initial divisor P0 that is non-special. In fact we must guarantee a quantified
version of this non-speciality condition. The differential of φ(g)

b at P0 should be non singular and
its norm should not be too small. We can prove that such a condition holds true for modular curves
[Cou2, §12.6.7] because we have a very sharp description of these curves in the neighbourhood
of the points called cusps. As a consequence we prove [Cou2, Theorem 12.10.5] that the inverse
Jacobi problem for modular curves can be solved in deterministic polynomial time in the genus
and the required direct accuracy. Recall that direct accuracy means that the error is measured in
the target space Cg/Λ. The main difference between the algorithm in this section and the one
in section 2.4 is that we only need here to control the local behaviour of φ(g)

b at P0 while the
algorithm in section 2.4 requires that the map φ(g)

b be non-singular above the whole path from α0
to α.

In some cases it will be desirable to control the inverse error that is the error on the output
divisor P in X(g). This will be possible when we can prove that φ(g) : X(g) → J is a local
diffeomorphism at P (that is P is non-special). We will also need a lower bound for the norm of
the differential of φ(g) at P . Such a lower bound can be provided by arithmetic.

4. Computing torsion points I

In this and the next section we will assume that X is a modular curve and ` a prime number. We
will be interested in `-torsion points in the torus J(C) = Cg/Λ. A point

a = α mod Λ

is an `-torsion point if and only if α lies in 1
`Λ. So the `-torsion subgroup of J(C) is 1

`Λ/Λ and it
has cardinality `2g. This group is also denoted J [`].
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Some of these torsion points carry important arithmetic information. The values taken by
algebraic functions at these points generate interesting number fields. We want to compute these
fields. In this section we will focus on a special case. We will assume that X is the genus 1 curve
given in equation (2.0.1) and ` = 11. A more general situation will be studied in the next section 5.
We notice that the curve in equation (2.0.1) is indeed the modular curve known as X11. Since X
has genus 1, the map φb : X → J is an isomorphism mapping b = [0 : 1 : 0] onto the origin. So the
affine coordinate x and y induce algebraic functions x◦φ−1

b and y ◦φ−1
b on J . There are 112 = 121

points of 11 torsion in J and 0 is one of them. We will be interested in the values taken by x◦φ−1
b

at the remaining 120 points of 11-torsion. On can check that x ◦ φ−1
b takes the same value at two

opposite points. So there only remain 60 values of interest. These are algebraic numbers and they
form a single orbit under the action of the Galois group Gal(Q/Q). So it is natural to consider
their annihilating polynomial

(4.0.1) H(T ) =
∏

0 6=a∈J[11]/±1

(
T − x(φ−1(a))

)
.

This is an irreducible polynomial in Q[T ]. Computing such polynomials is a cornerstone in the
algorithmic of modular forms and Galois representations.

4.1. An algebraic approach. The polynomial in equation (4.0.1) is known as the 11-th division
polynomial ψ11 of the genus one curve X. For every k ≥ 1 one can define the k-th division
polynomial ψk(T ) to be the annihilating polynomial of the x-coordinates of all non-zero k-torsion
points on X. These polynomials can be computed using recursion formulae [Eng, Section 3.6] [Sil,
Exercise 3.7] that follow from the simple algebraic form of the addition law on X. Using these
recursion formulae we find

H(T ) = T 60 − 20T 59 + 112T 58 + 1855T 57 + · · ·+ 1321T 4 − 181T 3 + 22T 2 − 2T + 1/11.

So we have an efficient algebraic method to compute H(T ). We will explain in section 5 why it
seems difficult to us to generalize this algebraic method to curves of higher genus.

4.2. Using complex approximations. In this section we compute complex approximations of
the coefficients of H(T ). We also explain how one can deduce the exact value of these coefficients
from a sharp enough complex approximation. We have seen in sections 2.4 and 3 how to invert
the map φb. Given a point a in the torus Cg/Λ we can compute a complex approximation of some
reduced divisor Pa − gb such that φb(Pa − bg) = a. Since here the genus is one, Pa consists of a
single point on X, and it is uniquely defined. In case a = (Ω1 + Ω2)/11 we already found that the
x-coordinate x(Pa) of Pa is

6.796539142094915911068237206− 7.525908029899464321854796862i

up to an error of 10−27. We let a run over the 60 elements in (J [11]− {0})/± 1 and compute the
60 corresponding values of x(Pa) with the same accuracy. We then compute their sum and find
it is equal to 20 up to an error of 10−25. This suggests that the coefficient of T 59 in H(T ) is −20.
In order to turn this heuristic into a proof, we need some information about the coefficients of
H(T ). We know that these coefficients are rational numbers. We need an upper bound on their
height. The height of a rational number is the maximum of the absolute values of its numerator
and denominator. We explain in the next section 4.3 how a good approximation and a good
bound on the height suffice to characterise and compute a rational number. In case X is the curve
given in equation (2.0.1) an upper bound on the height of the coefficients of H(T ) can be proved
by elementary means. For example we know that the denominator of these coefficients is either
1 or 11. In case X is a modular curve, similar bounds will be necessary. These bounds have
been proved by the second author in collaboration with de Jong in [Ed-Jo1] and [Ed-Jo2], using
Arakelov theory and arithmetic geometry together with a result of Merkl in [Merkl] on upper
bounds for Green functions.
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All the coefficients of H(T ) are computed in the same way. They are symmetric functions of
the x(Pa), so we can compute sharp approximations for them. We deduce their exact values using
an a priori bound on their height.

4.3. Recovering a rational number from a good approximation. In the previous sec-
tion 4.2 we claimed that a rational number x = a/b can be recovered from a sharp enough
complex approximation, provided we have an a priori bound on the height of x. We recall that the
height of a rational number a/b, with a and b integers that are relatively prime, is max{|a|, |b|}.
The rational number x = a/b is known if we know an upper bound h for its height and an approx-
imation y of it (in R, say), with |x− y| < 1/(2h2). Indeed, if x′ = a′/b′ also has height at most h,
and x′ 6= x, then

|x− x′| =
∣∣∣∣ab − a′

b′

∣∣∣∣ =
∣∣∣∣ab′ − ba′bb′

∣∣∣∣ ≥ 1
|bb′|

≥ 1/h2.

We also note that there are good algorithms to deduce x from such a pair of an approximation y
and a bound h, for example, by using continued fractions, as we will now explain.

In practice we will use rational approximations y of x. Every rational number y can be written
uniquely as

[a0, a1, . . . , an] = a0 +
1

a1 +
1

. . .
an−1 +

1
an

,

where n ∈ Z≥0, a0 ∈ Z, ai ∈ Z>0 for all i > 0, and an > 1 if n > 0. To find these ai, one defines
a0 := byc and puts n = 0 if y = a0; otherwise, one puts y1 := 1/(y−a0) and a1 = by1c and n = 1 if
y1 = a1, and so on. The rational numbers [a0, a1, . . . , ai] with 0 ≤ i ≤ n are called the convergents
of the continued fraction of y. Then one has the following well-known result (see Theorem 184
from [Ha-Wr]).

Proposition 4.3.1. Let y be in Q, a and b in Z with b 6= 0, and∣∣∣a
b
− y
∣∣∣ < 1

2b2 .

Then a/b is a convergent of the continued fraction of y.

5. Computing torsion points II

In this section we describe how we compute the fields of definition of certain torsion points in
Jacobians of modular curves. We recommend [Di-Sh] to those who are interested in an introduction
to the theory of modular forms.

Let SL2(Z) denote the group of 2 by 2 matrices with coefficients in Z and with determinant
one. It acts on the complex upper half plane H via fractional linear transformations

(5.1)
(
a b
c d

)
· z = az + b

cz + d
.

The standard fundamental domain F for SL2(Z) acting on H (see Figure 1) consists of the z with
|z| ≥ 1 and |<(z)| ≤ 1/2. It is not bounded, hence not compact. Viewing H as the open northern
hemisphere in P1(C) = C ∪ {∞}, with boundary the equator P1(R), we see that the closure F of
F in P1(C) is the union of F and the point ∞.

For every prime number ` we let Γ` denote the subset of SL2(Z) consisting of the ( a bc d ) with
c, a − 1 and d − 1 divisible by `. Then Γ` is a subgroup of SL2(Z), of index `2 − 1. We assume
that ` ≥ 5 from now on. Then the action of Γ` on H is free. Each z in H has a neighbourhood U
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−1/2 1/2−1 1

F

Figure 1. Standard fundamental domain F for SL2(Z) acting on H

such that all γU for γ in Γ` are disjoint. The quotient Γ`\H is therefore a Riemann surface that
we denote by Y`, and the quotient map H→ Y` is a covering map, that is, each point y in Y` has
an open neighbourhood U such that the inverse image of U in H is the disjoint union of copies of
U , indexed by the inverse image of y.

The Riemann surface Y` is not compact. A fundamental domain F` in H for Γ` can be gotten
as the union of the γF , where γ ranges over a set of representatives of Γ`\ SL2(Z)/{1,−1}. Such a
set consists of (`2− 1)/2 elements and it can easily be found. We can compactify Y` to a compact
Riemann surface X` by adding `−1 points, called cusps, the points of P1(R) that lie in the closure
of F` in P1(C). These points lie in fact in P1(Q) and can easily be written down. All this leads
to an explicit topological and analytic description of X`. It is covered by coordinate disks around
the cusps. For example, the function

(5.2) q : H→ C, z 7→ e2πiz,

restricted to the set of z with =(z) > 1/`, induces a coordinate on a disk in X` around the cusp∞.
Indeed, the image under q of this region is the punctured disk of radius e−2π/` around 0, and the
cusp ∞ fills the puncture. The genus g` of X` is equal to (`− 5)(`− 7)/24. For ` = 11 the genus
is 1, and indeed, X11 is the elliptic curve X11 given by equation (2.0.1).

It is of course a miracle that such an analytically defined Riemann surface as X11 is defined
over Q, that is, can be described as a curve in a projective space given by a equations with
coefficients in Q. But this is true for all `, and it is explained as follows, for ` > 13. The theory
of modular forms gives that the C-vector spaces Ω1(X`) of holomorphic differentials on X` have
bases consisting of 1-forms ω whose pullback to H is of the form (

∑
n≥1 anq

n)·(dq)/q with all an
in Z. Quotients of such ω and ω′ in Ω1(X`) then provide sufficiently many rational functions on
X` to embed it into a projective space, such that the image is given by homogeneous polynomial
equations with coefficients in Q.

We let J` denote the Jacobian variety of X`. It is also defined over Q, as well as its group law.
This means that the group law is described by quotients of polynomials with coefficients in Q.
Therefore, for all P and Q in J` and for each σ in Aut(C), the automorphism group of the field C,
we have σ(P +Q) = σ(P ) + σ(Q). For each integer m ≥ 1 the kernel J`[m] of the multiplication
by m map is finite (it consists of m2g` elements) and preserved by the action of Aut(C). This
implies that all P in J`[m] have coordinates in the algebraic closure Q of Q in C, that is, for each
rational function f on J` that is defined over Q and has no pole at P , the value f(P ) of f at P is
in Q. The analytic description above of X` gives us an analytic description of J`.

We are interested in certain subgroups V` of the `-torsion subgroup J`[`] of J` that are invariant
under the Galois group Gal(Q/Q) and consist of `2 elements. These V` can be described explicitly
and efficiently in terms of certain operators called Hecke operators on the first homology group
of X`. The whole point is to understand them algebraically, with their Gal(Q/Q)-action.

The subgroup V` defines a commutative Q-algebra A` of dimension `2 as Q-vector space, the
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coordinate ring of V` over Q. This algebra A` consists of the functions f : V` → Q with the
property that for all σ in Gal(Q/Q) and all P in V` we have f(σ(P )) = σ(f(P )). Addition and
multiplication are pointwise. Each f` in A` with the property that the f`(P ) are all distinct is a
generator, and A` is then given as Q[T ]/(Hf`

), with

Hf`
=
∏
P∈V`

(T − f`(P )) in Q[T ].

A direct approach for computing A` or Hf`
algebraically, as in Section 4.1 in the case of the

division polynomial ψ11, is very unlikely to succeed in time polynomial in `, because in the case
of V` one has to work with the algebraic variety J`, whose dimension grows quadratically with `.
Writing down polynomial equations with coefficients in Q for J` and V` is probably still possible,
in time polynomial in `. But computing a Q-basis of A` from the equations in a standard way
uses Groebner basis methods, which, as far as we know, take time exponential or even worse in
the number of variables, that is, exponential or worse in `.

For this reason we replace, in [BCEJM], exact computations by approximations. There are
then two problems to be dealt with. The first is to show that f` can be chosen so that the
logarithm of the height of the coefficients of Hf`

, that is, the number of digits of their numerator
and denominator, does not grow faster than a power of `. This problem is solved in [Ed-Jo1],
[Merkl] and [Ed-Jo2], using arithmetic algebraic geometry and analysis on Riemann surfaces. The
second problem is to show that for the same choice of f`, the values f`(P ) at all P in V` can be
approximated in C with a precision of n digits in time polynomial in n+ `. This is done in [Cou2].
The chapters [Bos1] and [Bos2] contain real computations using the method of Section 2.4, for
prime numbers ` ≤ 23.

Let us now explain how we choose f` (up to some technicalities; the precise setup is given
in [Ed3, §8.2]) and say some words about the approximation of the f`(P ). Standard functions on
Jacobian varieties such as J` are theta functions. But a problem is that these are usually given
as power series in g` variables, and as g` grows this can make the number of terms that must be
evaluated for a sufficiently good approximation grow exponentially in `. In other words, we know
no method to approximate their values fast enough (of course, it is not excluded that such methods
do exist). Our solution is to transfer the problem from J` to Xg`

` , via the Abel-Jacobi map. We
choose h` a suitable non-constant rational function on X`, defined over Q, of small degree and with
small coefficients. Then we take as origin a suitable divisor of degree g` on X`, defined over Q.
This divisor is carefully chosen in [Ed3] to have the following property: for each P in V` there is a
unique effective divisor QP = QP,1 + · · ·+QP,g`

on X`, such that its image under the Abel-Jacobi
map is P . Then we define f`(P ) = h`(QP,1) + · · · + h`(QP,g`

). Rather magically, the problem of
power series in many variables has disappeared. The function h` is locally given by a power series
in one variable. We evaluate it at each QP,i separately. The Abel-Jacobi map (see Section 2) is
given by a sum of g` integrals of g`-tuples of holomorphic 1-forms in one variable. The analytic
description above of X` and J` should make it clear that the Abel-Jacobi map and the function
h` can be well approximated with standard tools. That means that the only remaining problem is
the inversion of the Abel-Jacobi map, that is, the approximation of the divisors QP , but that was
discussed and solved in Sections 2 and 3. The main result obtained in [BCEJM] is the following
theorem.

Theorem 5.3. There is a deterministic algorithm that on input a prime number ` ≥ 11 computes
the Q-algebra A` in time polynomial in `.

A probabilistic algorithm for computing A` is also given in [BCEJM]. It relies on p-adic
approximations rather than complex approximations. In [Cou3] it is explained how such p-adic
approximations can be computed efficiently. From a theoretical point of view, a probabilistic
algorithm is not quite as satisfactory as a deterministic one. From a practical point of view, it is
just as good. In our case the probabilistic algorithm has a simpler proof than the deterministic
one. And Peter Bruin [Bru1, Bru2] has been able to generalize it to a much wider class of V`-
like modular spaces. Finding a similar generalization for the deterministic algorithm is an open
problem at this time.
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6. Applications and open questions

The main motivation for all the work done in [BCEJM] is the application in number theory to
the fast computation of coefficients of modular forms. Instead of attempting to present this in
the most general case we give two examples: Ramanujan’s τ -function, and powers of Jacobi’s
θ-function.

Recall that q : H → C is the function z 7→ e2πiz. The discriminant modular form ∆ is the
holomorphic function on H given by the converging infinite product

(6.1) ∆ = q
∏
n≥1

(1− qn)24.

The holomorphic function ∆ has a power series expansion in q,

(6.2) ∆ =
∑
n≥1

τ(n)qn,

whose coefficients, which are integers, define Ramanujan’s τ -function. It can be shown that for all
( a bc d ) in SL2(Z), and for all z in H, we have

(6.3) ∆
(
az + b

cz + d

)
= (cz + d)12∆(z).

Functions f : H→ C that are given by a power series
∑
n≥1 an(f)qn with this symmetry under the

action of SL2(Z) on H with the exponent 12 replaced by an integer k are called cuspidal modular
forms of weight k on SL2(Z). The complex vector spaces S(SL2(Z), k) of cuspidal modular forms
of weight k are finite dimensional. The dimension grows roughly as k/12. More precisely, for
k < 12 the space S(SL2(Z), k) is zero, and S(SL2(Z), 12) is one-dimensional, generated by ∆. The
fact that each g in GL2(Q) with det(g) > 0 acts on H and normalises SL2(Z) up to finite index
leads to operators Tk,g on the S(SL2(Z), k). These operators are named after Hecke. For each
integer n ≥ 1 there is an operator Tk,n; for n prime it is the one induced by the matrix ( n 0

0 1 ) and
for general n it is a bit more complicated. As the space S(SL2(Z), 12) is one-dimensional, each
T12,n acts on it as multiplication by a scalar. This scalar turns out to be the coefficient τ(n) of
qn in the power series of ∆. Well known relations between the Hecke operators imply relations
between the τ(n) that are summarised in the identity of Dirichlet series, for s in C with real part
<(s) large enough:

(6.4)
∑
n≥1

τ(n)n−s =
∏
p

(1− τ(p)p−s + p11p−2s)−1.

Here the product is over all prime numbers, and both sides converge for <(s) > 13/2. In fact, it
is a famous theorem of Deligne ([Del1] and [Del2]) that for all primes p one has

(6.5) |τ(p)| ≤ 2p11/2,

as conjectured by Ramanujan.
The identity of Dirichlet series shows that for n and m with greatest common divisor 1 we have

τ(nm) = τ(n)τ(m), and that for p prime and r ≥ 2 we have τ(pr) = τ(p)τ(pr−1) − p11τ(pr−2).
Therefore, the computation of τ(n) is reduced to that of the τ(p) for p dividing n. We can now
state one of the main theorems of [BCEJM].

Theorem 6.6. There is a deterministic algorithm that on input an integer n ≥ 1 together with
its factorisation into prime factors computes τ(n) in time polynomial in logn.

Before this result, the fastest known algorithms to compute τ(n) took time exponential in
logn. For example, if one computes the product in (6.1) up to order n by multiplying the necessary
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factors, then one spends time at least linear in n. To prove the theorem, it suffices to show that for
p prime τ(p) can be computed in time polynomial in log p. This will be done using Theorem 5.3.

The fact that modular forms have an enormous amount of symmetry as in (6.3) is certainly
powerful, but it does not suffice at this point. What is needed is Galois symmetry, which is also
behind Deligne’s famous result mentioned above. A lot could be said on this, but this is not an
appropriate place for that.

In a nutshell: modular forms give elements in de Rham cohomology of complex algebraic
varieties defined over Q, and the singular homology with torsion coefficients Z/`Z of those complex
varieties can be defined algebraically (Grothendieck, Artin, Deligne) and therefore has an action
by Gal(Q/Q).

For example, ∆ gives rise, for every prime integer ` ≥ 11, to a certain subgroup V` of the
`-torsion of the Jacobian J` of X`. This subgroup V` has cardinality `2. For ` 6= p the image of
τ(p) in Z/`Z is determined by the action of Gal(Q/Q) on this V`. The addition map V`×V` → V`
induces a Q-algebra morphism called co-addition from A` to A` ⊗ A`, that is, from Q[T ]/(Hf`

)
to Q[T1, T2]/(Hf`

(T1), Hf`
(T2)). Computing τ(p) modulo ` (for p 6= `) is then done by reducing

A` with its co-addition modulo p and computing on this reduction A`,p a certain relation between
the co-addition and the Frobenius map that sends a in A`,p to ap, just as in Schoof’s algorithm for
elliptic curves (see Section 1.2 of [Ed1, §1.2]). For more detail the interested reader is referred to
Section 2.4 of [Ed2, §2.4] and the references therein. The point is that this advanced machinery
can actually be used for computing τ(p) mod ` in time polynomial in log p and `.

In order to recover the actual value of τ(p) as an integer, we compute τ(p) modulo several
small primes `. If the product of these small primes is bigger than 4p5.5 then we deduce τ(p) using
inequality (6.5) and Chinese remainder theorem [Coh, 1.3.3].

We now come to our second example: the classical question in how many ways a positive
integer n can be written as a sum of d ≥ 1 squares of integers. Let us write rd(n) for this number,
that is, rd(n) = #{x ∈ Zd : x2

1 + · · · + x2
d = n}. Then rd(n) is the coefficient of qn in the formal

power series θd, with

(6.7) θd =
∑
n≥0

rd(n)qn =
∑
x∈Zd

qx
2
1+···+x2

d =
(∑
x1∈Z

qx
2
1

)
· · ·

(∑
xd∈Z

qx
2
d

)
= θd1 in Z[[q]].

The formal power series θ1 defines a holomorphic complex function on the complex upper half
plane θ : H → C by viewing q as the function q : z 7→ e2πiz. Poisson’s summation formula then
shows that for all z ∈ H we have

(6.8) θ(−1/4z) = (−2iz)1/2θ(z),

where the square root is continuous and positive for z in i·R>0. This functional equation for θ,
together with the obvious one θ(z + 1) = θ(z), imply that θ is a modular form of weight 1/2, and
therefore that θd (interpreted as a function on H) is a modular form of weight d/2.

This fact is the origin of many results concerning the numbers rd(n). The famous explicit
formulas for the rd(n) for even d up to 10 due to Jacobi, Eisenstein and Liouville (see [Mil] and
Chapter 20 of [Ha-Wr]) owe their existence to it. In order to state these formulas, let

∑
d|m denote

summation over the positive divisors d of m, with the convention that there are no such d if m is
not an integer, and let χ : Z→ C be the map that sends n to 0 if n is even, to 1 if n is of the form
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4m+ 1 and to −1 if n is of the form 4m− 1. Then we have:

r2(n) = 4
∑
d|n

χ(d),

r4(n) = 8
∑
2-d|n

d+ 16
∑

2-d|(n/2)

d,

r6(n) = 16
∑
d|n

χ
(n
d

)
d2 − 4

∑
d|n

χ(d)d2,

r8(n) = 16
∑
d|n

d3 − 32
∑

d|(n/2)

d3 + 256
∑

d|(n/4)

d3,

r10(n) = 4
5
∑
d|n

χ(d)d4 + 64
5
∑
d|n

χ
(n
d

)
d4 + 8

5
∑

d∈Z[i], |d|2=n

d4.

In the last formula, Z[i] is the set of Gaussian integers a+ bi in C with a and b in Z.
Using these formulas, the numbers rd(n) for d in {2, 4, 6, 8, 10} can be computed in time

polynomial in logn, if n is given with its factorisation in prime numbers. This is not the case for
the formulas that were found a bit later by Glaisher for rd(n) for some even d ≥ 12. We give the
formula that he found for d = 12, as interpreted by Ramanujan:

(6.9) r12(n) = 8
∑
d|n

d5 − 512
∑

d|(n/4)

d5 + 16an, where
∑
n≥1

anq
n = q

∏
m≥1

(1− q2m)12.

Computing an by multiplying out the factors 1 − q2m up to order n takes time at least linear in
n, hence exponential in logn. We know of no direct way to compute the an in time polynomial
in logn, even if n is given with its factorisation. However,

∑
n≥1 anq

n is a modular form, and
therefore we can compute an in time polynomial in logn, if n is given with its factorisation, via the
computation of Galois representations. The same is true for the rd(n) for all even d. The explicit
formulas for d ≤ 10 correspond precisely to the cases where the Galois representations that occur
are of dimension one, whereas for d ≥ 12 genuine two-dimensional Galois representations always
occur, as proved by Ila Varma in her master’s thesis [Var].

We conclude that from an algorithmic perspective the classical problem of computing the rd(n)
for even d and n given with its factorisation into primes is solved for all even d. The question as
to the existence of formulas has a negative answer, but for computations this does not matter.

Open questions Finally, we should point out that the algorithms in theorems 5.3 and 6.6,
despite their polynomial time complexity, are not so practical at present. However, Bosman’s
computation of the V` associated with ∆ for ` in {13, 17, 19} enabled him to further study Lehmer’s
conjecture on the values of τ(n) modulo n. See Lygeros and Rozier [Ly-Ro] for a more classical
experimental approach. A challenge for the near future is to design and implement a practical
variant of these algorithms.
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