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Pour des problèmes elliptiques linéaires ou monotones, l'effet de l'intégration numérique sur la méthode des éléments finis est analysé dans [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF][START_REF] Strang | Variational crimes in the finite element method[END_REF] et [START_REF] Feistauer | Finite element solution of nonlinear elliptic problems[END_REF]. Cependant, il n'existe à notre connaissance aucune analyse de vitesses de convergence pour des problèmes nonlinéaires de type nonmonotones. Dans [START_REF] Feistauer | An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type[END_REF], la convergence H 1 de la solution numérique est établie, mais sans vitesse de convergence et seulement pour des éléments finis linéaires par morceaux. L'objet de cet article est d'analyser l'influence des erreurs de quadrature pour la méthode des éléments finis appliquée à la classe d'équations elliptiques quasi-linéaires non-monotones [START_REF] Abdulle | On a-priori error analysis of Fully Discrete Heterogeneous Multiscale FEM[END_REF]. Sous des hypothèses usuelles sur le maillage pour des problèmes non-linéaires, sur la régularité des coefficients et des données, et sur les formules de quadrature (Q1),(Q2), également usuelles tant pour des problèmes avec intégration numérique (voir [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF] ou [START_REF] Ciarlet | Basic error estimates for elliptic problems[END_REF]Sect. 29]) que pour des problèmes non-linéaires [START_REF] Feistauer | An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type[END_REF][START_REF] Xu | Two-grid discretization techniques for linear and nonlinear PDE[END_REF][START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF], nous prouvons des estimations optimales d'erreur pour les normes H 1 et L 2 de la méthode d'éléments finis [START_REF] Abdulle | A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems[END_REF], pour des élements simpliciaux ou quadrilatéraux d'ordre arbitraire. Nous prouvons également l'unicité de la solution numérique.

Une application importante de notre étude est une analyse (avec discrétisation totale des échelles à la fois macroscopiques et microscopiques) d'une méthode d'homogénéisation numérique du type [START_REF] Abdulle | On a-priori error analysis of Fully Discrete Heterogeneous Multiscale FEM[END_REF][START_REF] Abdulle | The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs[END_REF][START_REF] Abdulle | A priori and a posteriori error analysis for numerical homogenization: a unified framework[END_REF][START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF] pour une classe de problèmes non-linéaires d'homogénisation. La méthode d'homogénéisation numérique considérée peut être interprétée comme une méthode des éléments finis mise en oeuvre sur un schéma macroscopique, avec intégration numérique en la variable macroscopique, couplée à des schémas microscopiques mis en oeuvre sur des micro-cellules contenues dans le maillage macroscopique. Pour la classe de problèmes nonmonotones [START_REF] Hlaváček | On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type[END_REF], il n'existait jusqu'alors qu'une analyse semi-discrete et pour les dimensions d ≤ 2. Notre analyse, avec discrétisation totale, permet de traiter la dimension d ≤ 3. De plus, nous proposons une analyse de convergence (optimale) dans la norme L 2 . Nous améliorons aussi l'estimation de l'erreur dite de résonnance et démontrons la convergence de la méthode de Newton utilisée pour calculer en pratique une solution du système non-linéaire. Plus de détails sur les résultats et l'analyse présentée ici sont donnés dans [START_REF] Abdulle | A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems[END_REF] (une seule échelle) et [START_REF] Abdulle | Fully discrete analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems[END_REF] (problèmes multi-échelles).

Introduction

We study finite element (FE) discretizations of second-order quasilinear elliptic problems of the form

-∇ • (a(x, u(x))∇u(x)) = f (x) in Ω, u(x) = 0 on ∂Ω, (1) 
where Ω is a bounded polyhedron in R d with d ≤ 3. We make the following assumptions on the tensor a(x, s) = (a mn (x, s)) 1≤m,n≤d :

-the coefficients a mn (x, s) are continuous functions on Ω × R which are uniformly Lipschitz continuous with respect to s, i.e.,

∃Λ 1 > 0, |a mn (x, s 1 ) -a mn (x, s 2 )| ≤ Λ 1 |s 1 -s 2 |, ∀x ∈ Ω, ∀s 1 , s 2 ∈ R, ∀ 1 ≤ m, n ≤ d. (2) 
-a(x, s) is uniformly coercive and bounded, i.e.,

∃λ, Λ 0 > 0, λ ξ 2 ≤ a(x, s)ξ • ξ, a(x, s)ξ ≤ Λ 0 ξ , ∀ξ ∈ R d , ∀x ∈ Ω, ∀s ∈ R. (3) 
Since ( 2)-( 3) hold, it is known [START_REF] Hlaváček | On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type[END_REF] that (1) has a unique solution u ∈ H 1 0 (Ω) for all f ∈ L 2 (Ω). For linear or monotone elliptic problems, the effect of numerical quadrature in FEM has been analysed in [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF][START_REF] Strang | Variational crimes in the finite element method[END_REF] and [START_REF] Feistauer | Finite element solution of nonlinear elliptic problems[END_REF]. To the best of our knowledge, there exist no analysis of the convergence rates for FEM with numerical quadrature applied to nonlinear problems of non-monotone type, as considered in this paper. In [START_REF] Feistauer | An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type[END_REF], the convergence in H 1 of the method is shown for piecewise finite elements, but without convergence rates. In the absence of numerical quadrature, optimal apriori error estimates in the H 1 and L 2 norms for FE methods (FEMs) were first given in [START_REF] Douglas | A Galerkin method for a nonlinear Dirichlet problem[END_REF].

Equations as [START_REF] Abdulle | On a-priori error analysis of Fully Discrete Heterogeneous Multiscale FEM[END_REF] enter in the modeling of many important problems, we mention the infiltration of water in porous medium, the study of electrical potential or thermal diffusion in materials. As exact integration in FEMs is rarely possible, it is important to quantify the effect of numerical quadrature. Optimal convergence rates in the H 1 and L 2 norms are proved in this case. The practical implementation of the non-linear FEM requires a Newton method. We also establish the convergence of this latter method (crucial in applications) and the uniqueness of the FE solution for a sufficiently fine FE mesh. If a(x, s) becomes independent of s, we recover the results of [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF] on FEMs with numerical quadrature for linear problems (polyhedral domain case).

Application to numerical homogenization methods is then considered. In contrast to previous results [START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF] obtained for nonmonotone homogenisation problems in dimension d ≤ 2 (based on 2d-Green function logarithmic estimates) for the H 1 norm and for a semi-discrete formulation, we obtain optimal convergence results for dimensions d ≤ 3 and for a fully discrete method, which takes into account the microscale FE discretization (see [START_REF] Abdulle | On a-priori error analysis of Fully Discrete Heterogeneous Multiscale FEM[END_REF][START_REF] Abdulle | The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs[END_REF][START_REF] Abdulle | A priori and a posteriori error analysis for numerical homogenization: a unified framework[END_REF] in the context of linear problems). In addition, our results are also valid for arbitrary high-order elements of simplicial or quadrilateral type, optimal error estimates are obtained for the L 2 norm, and improved estimates are obtained for the resonance error. More details on the results and the analysis presented here are given in [START_REF] Abdulle | A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems[END_REF] (one-scale problems) and [START_REF] Abdulle | Fully discrete analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems[END_REF] (multi-scale problems) .

Finite element method with numerical quadrature

We consider a conformal shape regular family of partitions T h of Ω in simplicial or quadrilateral elements K of diameter h K and denote h := max K∈T h h K . We consider the family of FE spaces S 0 (Ω,

T h ) := {v h ∈ H 1 0 (Ω); v h | K ∈ R (K), ∀K ∈ T h },
where R (K) is the space P (K) of polynomials on K of total degree at most if K is a simplicial FE, or the space Q (K) of polynomials on K of degree at most in each variable if K is a quadrilateral FE. We define a quadrature formula {x j , ωj } J j=1 on a reference element K, where xj are integration points and ωj are quadrature weights. The quadrature formula {x Kj , ω Kj } J j=1 is then defined as usual on any element K of the triangulation using a C 1 -diffeomorphism. We make the following assumptions, which are similar to the case of linear elliptic problems (see [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF] or [8, Sect. 29]):

(Q1) ωj > 0, j = 1, . . . , J, J j=1 ωj |∇p(x j )| 2 ≥ λ ∇p 2 L 2 ( K) , ∀p(x) ∈ R ( K), with λ > 0; (Q2) K p(x)dx = J j=1 ωj p(x j ), ∀p(x) ∈ R σ ( K), where σ = max(2 -2, ) if K is a simplicial FE, or σ = max(2 -1, + 1) if K is a rectangular FE.
Consider for v, w scalar or vector functions that are piecewise continuous with respect to the partition T h of Ω, the semi-definite inner product (u, v) h := K∈T h J j=1 ω Kj u(x Kj )v(x Kj ). The FE solution of (1) with numerical integration reads: find

u h ∈ S 0 (Ω, T h ) such that (a(•, u h )∇u h , ∇w h ) h = F h (w h ) ∀w h ∈ S 0 (Ω, T h ), (4) 
where the linear form F h (w h ) is an approximation of Ω f (x)w h (x)dx obtained for example by using a quadrature formula. If f ∈ W ,r (Ω) with 1 ≤ r ≤ ∞ and > d/r, then f is continuous on Ω and one can take F h (w h ) := (f, w h ) h . The existence of the FE solution u h ∈ S 0 (Ω, T h ) in ( 4) can be shown for all h > 0 using the Brouwer fixed point theorem. Details can be found for example in [START_REF] Douglas | A Galerkin method for a nonlinear Dirichlet problem[END_REF].

3.

Convergence rates for FEM with numerical quadrature for nonlinear problems Theorem 3.1 [START_REF] Abdulle | A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems[END_REF] Consider u the solution of problem (1). Let ≥ 1. Let d/ < r ≤ ∞. Let µ = 0 or 1. Assume (Q1), (Q2), that the family of triangulations is quasi-uniform, and

1 u ∈ H +1 (Ω) ∩ W 1,∞ (Ω), a ∈ (W +µ,∞ (Ω × R)) d×d , f ∈ W +µ,r (Ω).
In addition to (2), (3), assume that the operator

L * ϕ = -∇ • (a(•, u) T ∇ϕ) + ∂ u a(•, u)∇u • ∇ϕ satisfies 2 ϕ H 2 (Ω) ≤ C( L * ϕ L 2 (Ω) + ϕ H 1 (Ω) ), for all ϕ ∈ H 2 (Ω) ∩ H 1 0 (Ω). (5) 
Assume further that ∂ u a mn ∈ W 1,∞ (Ω × R), and that the coefficients a mn (x, s) are twice differentiable with respect to s, with the first and second order derivatives continuous and bounded on Ω × R, for all m, n = 1 . . . d.

1. Except for the W 1,∞ assumption on u and the smoothness of s → a(x, s) assumed to treat the non-linearity (as in [START_REF] Douglas | A Galerkin method for a nonlinear Dirichlet problem[END_REF]), the smoothness assumptions of Thm. 3.1 are identical to those classically assumed for linear problems [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF], [START_REF] Ciarlet | Basic error estimates for elliptic problems[END_REF]Sect. 29].

2.

The assumption (5) on the adjoint L * of the linearized operator L associated to (1) is also required for L 2 estimates in the case of linear problems [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF]. Using classical H 2 regularity results, it is automatically satisfied -owing to the assumptions on the coefficients of L * -if the domain Ω is a convex polyhedron Then there exists h 0 > 0 such that for all h ≤ h 0 , the solution u h of (4) is unique and the following H 1 and L 2 error estimates hold,

if µ = 0, 1, u -u h H 1 (Ω) ≤ Ch for all h ≤ h 0 , (6) 
if µ = 1, u -u h L 2 (Ω) ≤ Ch +1 for all h ≤ h 0 , (7) 
where the constant C is independent of h.

Inspired by [START_REF] Douglas | A Galerkin method for a nonlinear Dirichlet problem[END_REF], the proof of Theorem 3.1 is conducted in three main steps.

Step 1. Using the compact injection H 1 (Ω) ⊂ L 2 (Ω), the boundedness of a numerical solution in H 1 0 (Ω) and the uniqueness in H 1 0 (Ω) of the exact solution of (1), we show,

u -u h L 2 (Ω) → 0 for h → 0. ( 8 
)
Step 2. We derive the following H 1 a-priori error bound

u -u h H 1 (Ω) ≤ C(h + u -u h L 2 (Ω) ), for all h > 0. ( 9 
)
The additional term u -u h L 2 (Ω) in the right-hand side is due to the non-monotonicity of the differential operator of (1). The proof of ( 9) relies on an estimate for (a(u h )∇u h , ∇w h )-(a(u h )∇u h , ∇w h ) h (obtained by using the Bramble-Hilbert lemma), uniform bounds for the semi-definite inner product (v, w) T h := K∈T h J j=1 ω Kj v(x Kj ) • w(x Kj ) (defined for piecewise continuous functions v, w) and the use of the Gagliardo-Niremberg inequality

v 2 L 3 (Ω) ≤ C v L 2 (Ω) v H 1 (Ω) for all v ∈ H 1 (Ω), for d ≤ 3.
Step 3. Using an Aubin-Nitsche duality argument and (5), we show that there exists

h 1 > 0 such that u -u h L 2 (Ω) ≤ C(h +µ + u -u h 2 H 1 (Ω) ), for all h ≤ h 1 . (10) 
We consider the FEM solution with numerical quadrature associated to the indefinite linear elliptic problem L * . We first show that L * is an isomorphism and then derive error estimates generalizing a compactness result of Schatz [START_REF] Schatz | An observation concerning Ritz-Galerkin methods with indefinite bilinear forms[END_REF] to FEM with numerical quadrature.

Proof of the H 1 and L 2 estimates. Substituting ( 9) into (10) (with µ = 0), we obtain

u -u h H 1 (Ω) ≤ C(h + u -u h 2 H 1 (Ω) ), for all h ≤ h 1 .
Substituting (8) into (9), we obtain u -u h H 1 (Ω) → 0 for h → 0. We deduce in the above inequality 1 -C u -u h H 1 (Ω) ≥ δ > 0 for all h ≤ h 2 , with h 2 small enough (but independent of the particular solution u h ) hence, ( 6) is established for all h ≤ min{h 1 , h 2 }. The estimate [START_REF] Ciarlet | The combined effect of curved boundaries and numerical integration in isoparametric finite element method[END_REF] is deduced by substituting (6) into [START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF] with µ = 1. The uniqueness of the FEM solution follows from Theorem 3.2. 2 Theorem 3.2 Consider u h a solution of (4). Under the assumptions of Theorem 3.1, there exist h 0 , δ > 0 such that if h ≤ h 0 and σ h z h 0 -u h H 1 (Ω) ≤ δ, then the sequence {z h k } for the Newton method3 

N h (z h k ; z h k+1 -z h k , v h ) = F h (v h ) -(a(z h k )∇z h k , ∇v h ) h , ∀v h ∈ S 0 (Ω, T h ), (11) 
is well defined, and

z h k+1 -u h H 1 (Ω) ≤ Cσ h z h k -u h 2 H 1 (Ω) , ( 12 
)
where C is a constant independent of h, k.

In the above theorem,

σ h := sup v h ∈S 0 (Ω,T h ) v h L ∞ (Ω) / v h H 1 (Ω)
. Using the quasi-uniformity of the family of triangulations, one can show the standard estimates σ h ≤ C(1 + | ln h|) 1/2 for d = 2, and σ h ≤ Ch -1/2 for d = 3, where C is independent of h.

Remark 1 Notice that the requirement of a quasi-uniform mesh for the family of triangulations is often assumed for the analysis of FEM for nonlinear problems [START_REF] Feistauer | An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type[END_REF][START_REF] Xu | Two-grid discretization techniques for linear and nonlinear PDE[END_REF][START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF]. In our proof, we need it in Step 3 to have an a-priori estimate in W 1,6 (Ω) for the FEM solution (with numerical quadrature) associated to L * . We further need this assumption in the uniqueness result below. However, if u H 2 (Ω) or the Lipschitz constant are small enough such that Cλ -1 Λ 1 u H 2 (Ω) < 1, where C depends only on Ω and the polynomial degree of the FE space, then (5) and u ∈ W 1,∞ (Ω) are not required to prove the uniqueness result, and removing in addition the assumptions of quasi-uniform meshes and h ≤ h 0 , the H 1 estimate (6) still holds.

Application to numerical homogenization.

We consider a class of nonlinear nonmonotone multiscale problems

-∇ • (a ε (x, u ε (x)))∇u ε (x)) = f (x) in Ω, u ε (x) = 0 on ∂Ω, (13) 
with a d×d tensor a ε (x, x) satisfying ( 2), (3) uniformly in ε. Here ε represent a small scale in the problem.

The following homogenization result is shown in [6, Theorem 3.6]: there exists a subsequence of {a (•, s)} (again indexed by ε) such that the corresponding sequence of solutions {u ε } converges weakly to u 0 in H 1 (Ω), where u 0 is solution of the so-called homogenized problem

-∇ • a 0 (x, u 0 (x))∇u 0 (x) = f (x) in Ω, u 0 (x) = 0 on ∂Ω, (14) 
with a homogenized tensor a 0 (x, s) which can be shown to have similar properties as assumed for a ε (x, s).

The FE-HMM method for computing a numerical approximation u H of u 0 , essentially similar to the method proposed in [START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF] 4 reads as follows. It is based on a macroscopic FEM defined on QF with a macro FE space S 0 (Ω, T H ) (defined as in Sect. 2), and microscopic FEMs recovering the missing macroscopic tensor at the macroscopic quadrature points. For each macro element K ∈ T H and each integration point x Kj ∈ K, j = 1, . . . , J, we define the sampling domains K δj = x Kj + (-δ, δ) d , (δ ≥ ε). For each K δj , we then define a micro FE space S q (K δj , T h ) ⊂ W (K δj ) with simplicial or quadrilateral FEs and a conformal and shape regular family of triangulations T h . The space W (K δj ) is either the Sobolev space W (K δj ) = W 1 per (K δj ) = {z ∈ H 1 per (K δj ); K δ j zdx = 0} for a periodic coupling or W (K δj ) = H 1 0 (K δj ) for a coupling through Dirichlet boundary conditions. ) denotes the solution of the following micro problem [START_REF] Xu | Two-grid discretization techniques for linear and nonlinear PDE[END_REF] with parameter s = u H (x Kj ). Find w h,s Kj such that w h,s Kj -(w H (x Kj )+(x-x Kj )•∇w H (x Kj )) ∈ S q (K δj , T h ) and K δ j a ε (x, s)∇w h,s Kj (x) • ∇z h (x)dx = 0 ∀z h ∈ S q (K δj , T h ). ( 16)

FE-HMM

We make the following smoothness and structure assumptions on the tensor. 

4 .

 4 In[START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF] [START_REF] Strang | Variational crimes in the finite element method[END_REF] is based on exact micro functions v K j , w K j instead of the FE micro functions v h,s K j , w h,s K j and the microproblems are nonlinear (see[10, equs. (5.3)-(5.4)]).

  Find u H ∈ S 0 (Ω, T H ) such that B H (u H ; u H , w H ) = F H (w H ), ∀w H ∈ S 0 (Ω, T H ), where B H (u H ; v H , w H ) := Kj |K δj | K δ j a ε (x, u H (x Kj ))∇v
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h,u H (x K j ) Kj (and similarly for v h,u H (x K j ) Kj

We define N h (z h ; v h , w h ) := (a(•, z h )∇v h , ∇w h ) h + (v h ∂ua(•, z h )∇z h , ∇w h ) h .

(H1) Given q ∈ N, the cell functions ψ i,s Kj ∈ W (K δj ) such that K δ j a ε (x, s)∇ψ i,s Kj (x) • ∇z(x)dx = -K δ j a ε (x, s)e i • ∇z(x)dx, ∀z ∈ W (K δj ).

(17) satisfy the bound |ψ i,s Kj | H q+1 (K δ j ) ≤ Cε -q |K δj |, with C independent of ε, the quadrature point x Kj , the domain K δj , and the parameter s for all i = 1 . . . d. Here, e 1 , . . . , e d denotes the canonical basis of R d . The same assumption also holds with the tensor a ε replaced by (a ε ) T in (17). (H2) for all m, n = 1, . . . , d, we assume a ε mn (x, s) = a mn (x, x/ε, s), where a mn (x, y, s) is y-periodic in Y , and the map (x, s) → a mn (x, •, s) is Lipschitz continuous and bounded from Ω × R into W 1,∞ per (Y ). Following the framework presented in Sect. 3, we obtain the following H 1 and L 2 a-priori estimates. Theorem 4.1 [START_REF] Abdulle | Fully discrete analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems[END_REF] Let ≥ 1, q ≥ 1 and µ = 0 or 1. In addition to the assumptions of Theorem 3.1 on problem [START_REF] Schatz | An observation concerning Ritz-Galerkin methods with indefinite bilinear forms[END_REF], assume (H1), (H2), and assume that a ε satisfies (2), (3). Then, there exist H 0 > 0 and r 0 > 0 such at if H ≤ H 0 and h/ε ≤ r 0 then

and δ ε ∈ N, and a ε (x, s) is replaced by a(x Kj , x/ε, s) in ( 15),( 16),(17),

where we also assume δ ≤ r 0 or δ + ε/δ ≤ r 0 in the first and third cases, respectively. We use the notation

with first and second derivatives bounded by Cε -1 , then for sufficiently fine meshes and modeling errors (e.g. in the second case of Theorem 4.1, for (h/ε) 2q ≤ H ≤ H 1 ), one can show the convergence of a Newton method, and the uniqueness of the numerical solution u H . Notice that in the third case with non-perodic boundary conditions for the micro-macro coupling (i.e. W (K δj ) = H 1 0 (K δj )) we obtain the resonance error estimate r M OD ≤ C(δ + ε/δ) (similar as for linear problems), whereas r M OD ≤ C(δ + (ε/δ) 1/2 ) has been obtain in [START_REF] Ming | Analysis of the heterogeneous multiscale method for elliptic homogenization problems[END_REF]Thm. 5.5].