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Table S1: Changes in the reactions of C0-C6 species. 

Reactions        A  n Ea  References  

C0-C2 reaction base        
HO2+CO=CO2+OH        1.6x10

5
 2.2 17.9  [38]  

H2O2(+M)=2OH(+M)   2.0x10
12
 0.9 48.7  [19] 

  HE/0.44/ AR/0.68/ O2/0.79/ N2/1.00/ CO2/1.06/ H2O/5.1/ H2O2/5.2/ 

  LOW  /3.65x10
24
   -2.3   4.8749x10

4
/         

  TROE /0.43 1 1.0x10
8
/        

HCHO+OH=CHO+H2O       7.8x10
7
 1.6 -1.06  [39]  

C2H+OH=C2H2+O              1.8x10
13
   0.0 0.0  [40] 

C3-C5 reaction base 
C2H3CHO+O2=CH2CHCO+OOH         3.0x10

13
   0.0 38.5  estimated

a
  

C3H6+OH=HCHO+C2H5    1.5x10
12
 0.0 -0.9  [41]   

C3H6+OH=CH3+CH3CHO   1.5x10
12
 0.0 -0.9  [41]  

C3H7+O2=HO2+C3H6   3.7x10
16
 -1.63 3.42  [42] 

C4H4+C2H2=C6H5+H                 1.0x10
9
  0.0 30.0  [43] 

C4H5+O2=CHO+C2H3CHO   5.7x10
28
 -5.31 6.5  estimated

b
  

C4H5+O2=C2H4+CO+CHO   1.1x10
29
 -5.31 6.5  estimated

b
  

C4H5+O2=C4H4+HO2   5.2x10
15
 -1.26 3.31  estimated

b
  

C4H6-1=C3H3+CH3   3.0x10
15
  0.0 75.8  [44]  

C5H4O+H=C5H3O+H2                 8.1x10
7
  2.03 15.9  estimated

c
  

C5H4OH+HO2=>OH+OH+C5H4O  3.0x10
12
 0.0 0  estimated

d
  

C5H6=C5H5+H    5.0x10
15
 0.0 78.7  [45]  

C5H7=C3H4+C2H3            2.0x10
13
   0.0 54.5  estimated

e
  

C5H7=C2H3+C3H4            2.0x10
13
  0.0 38.1  estimated

e
  

C5H8+O2=C5H7+OOH          4.0x10
12
    0.0 60.1  estimated

f
  

Reactions of aromatic species  
C6H5+C3H6=C6H6+C3H5          7.9x10

13
 0.0 11.9  [20]  

C6H5OH+C5H5=C6H5O+C5H6  2.7x10
14
 0.0 25.2  [21]  

C6H5OH+C3H5=C6H5O+C3H6  2.7x10
14
 0.0 25.2  [21]   

C6H5OH+C4H5=C6H5O+C4H6  2.7x10
14
 0.0 25.2  [21]   

C6H4OH+CH3=HOC6H4CH3  5.0x10
12
 0.0 0.0  estimated

d
  

Notes: The rate constants are given at 1 atm (  ) in cm3, mol, s, kcal units. 
a -factor taken equal to that proposed by Marinov [46] and  taken equal to the enthalpy of reaction calculated by the software Thergas 
[17]. 
bRate constant taken equal to that of C2H3+O2=HCHO+CHO [47]. 
cRate constant taken equal to that of the similar reaction for benzene [22]. 
dRate constants of unimolecular initiations or combinations calculated using software KINGAS [25]. 
e -factor taken equal to that proposed by Heyberger et al. [48] and activation energy estimated using the Evans-Polanyi correlation 

proposed by Sirjean et al. [31] for -scissions of alkyl radicals.  
fRate constant of this bimolecular initiation with oxygen molecule has been calculated as proposed by Ingham et al. [26]  with  taken 
equal to the enthalpy of reaction calculated by the software Thergas [14] based on the group additivity methods proposed by Benson 

[15].  
 

 

  



2 

 

Table S2: Added secondary mechanisms of the oxidation of ethylbenzene  

Reactions    A  n Ea  References  

Added reactions of styrene 

styrene+HO2=>C6H5CH2CHO+OH     1.0x10
12
     0.0  14.2   estimated

a
 

styrene+HO2=>C6H5COCH3+OH     1.0x10
12
     0.0 14.2  estimated

a
 

styrene+O=C6H5CH2CHO      1.5x10
8
     1.45 0.9  estimated

b
 

styrene+O=C6H5COCH3     1.5x10
8
     1.45 0.9   estimated

b
 

 

Reactions of cumene  

Unimolecular initiation 

C6H5+iC3H7=cumene              1.0x10
12
    0.0   0.0    estimated

c
  

Bimolecular initiation 

cumene+O2=>CH3styre+H+HO2     1.4x10
12
  0.0 33.6   estimated

d
  

cumene+O2=C9H11-1+HO2       2.4x10
13
    0.0    52.3   estimated

d
  

Metatheses 

cumene+O=OH+C9H11-1              1.0x10
14   

0.0    7.85   estimated
e
  

cumene+H=H2+C9H11-1              5.7x10
7
     2.0    7.70   estimated

e
  

cumene+OH=H2O+C9H11-1            5.3x10
6
     2.0    0.45   estimated

e
  

cumene+HO2=H2O2+C9H11-1          1.2x10
12
     0.0    17.0   estimated

e
  

cumene+CH3=CH4+C9H11-1           6.0x10
-1
     4.0    8.2   estimated

e
  

cumene+O=>OH+CH3styre+H          2.1x10
11
     0.0    0.0     estimated

f
  

cumene+H=>H2+CH3styre+H          9.7x10
5
     2.37  5.81   estimated

g
 

cumene+OH=>H2O+CH3styre+H        1.7x10
9
     1.0    0.87   estimated

f
 

cumene+OOH=>H2O2+CH3styre+H      1.3x10
11
    0.0    14.0   estimated

f
 

cumene+CH3=>CH4+CH3styre+H       1.3     3.76   6.98   estimated
g
 

Decomposition 

C9H11-1=styrene+CH3          2.0x10
13
   0.0   31.0   estimated

a
 

C9H11-1=C3H6+C6H5            2.0x10
13
   0.0   38.5   estimated

a
 

C9H11-1=CH3styre+R1H           1.6x10
13  

0.0   34.3   estimated
a
 

C9H11-1+O2=CH3styre+HO2  7.5x10
10
 0.0 2.5   estimated

a
 

C9H11-1+H=cumene             1.0x10
14
   0.0    0.0     estimated

h
 

 

Reactions of methylstyrene (CH3styre) 

Unimolecular initiation 

C6H5C2H2+R4CH3=CH3styre          4.0x10
11
     0.0   0.0      estimated

c
  

Bimolecular initiation 

CH3styre+O2=>C3H4+C6H5+HO2       1.2x10
13
      0.0   49.0    estimated

d
 

Metatheses 

CH3styre+H=C2H3C6H4CH2+H2     1.7x10
5
  2.5  2.5     estimated

a
 

CH3styre+OH=C2H3C6H4CH2+H2O   3.0x10
6
  2.0  -0.3   estimated

a
 

CH3styre+O=>OH+C3H4+C6H5         5.1x10
13
  0.0   7.85  estimated

e
 

CH3styre+H=>H2+C3H4+C6H5         2.8x10
7
    2.0   7.70    estimated

e
 

CH3styre+OH=>H2O+C3H4+C6H5       2.7x10
6
      2.0   0.45    estimated

e
 

CH3styre+HO2=>H2O2+C3H4+C6H5     6.0x10
11
     0.0   17.0    estimated

e
 

CH3styre+CH3=>CH4+C3H4+C6H5      3.0x10
-1 

4.0    8.2    estimated
e
 

 

Reactions of benzofuran  

C6H5O+C2H2=>benzofuran+H         1.2x10
10
     0.0    0.46   estimated

i
 

C8H8O+H=C6H5O+C2H4              5.7x10
10
  1.43 5.65  estimated

g
 

C8H7O+H=C8H8O                     1.0x10
14
     0.0    0.0  estimated

h
 

C8H8O+H=C8H7O+H2   9.6x10
6
 2.0 5.0     estimated

e
 

C8H8O+O=C8H7O+OH   1.6x10
13
 0.0 5.2     estimated

e
 

C8H8O+OH=C8H7O+H2O   2.6x10
6
    2.0   -0.77  estimated

e
 

C8H8O+CH3=C8H7O+CH4              2.0x10
11
 0.0 9.6     estimated

e
 

C8H8O+H=C8H7O-1+H2   8.0x10
13
 0.0 6.4    estimated

j
 

C8H8O+O=C8H7O-1+OH   4.2x10
11
 0.0    -2.0     estimated

j
 

C8H8O+OH=C8H7O-1+H2O  3.5x10
9
 1.0    -1.13   estimated

j
 

C8H8O+CH3=C8H7O-1+CH4        1.1x10
12
 0.0 9.1     estimated

j
 

C8H7O=benzofuran+H               3.3x10
10
  0.88   35.7  estimated

k
 

C8H7O-1+H=C8H8O                  1.0x10
14
     0.0    0.0   estimated

h
 

C8H7O-1=benzofuran+H            1.2x10
11
    0.98   42.2   estimated

g
 

C8H7O+O2=benzofuran+HO2         1.6x10
12
   0.0   5.0   estimated

a
 

C8H7O-1+O2=benzofuran+HO2   1.6x10
12
   0.0   15.2   estimated

a
  

benzofuran+OH=>C6H4CH3+CO2      1.4x10
12
    0.0   -1.04   estimated

l
 

benzofuran+OH=>C6H5CO+HCHO       1.4x10
12
    0.0   -1.04   estimated

l 

benzofuran+O=>C6H5CO+CO+H      6.0x10
4
     2.56  -1.13   estimated

l 
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Reactions of acetophenone  

C6H5COCH3+H=>H2+CH2CO+C6H5  2.8x10
7
     2.0    7.70   estimated

e
 

C6H5COCH3+OH=>H2O+CH2CO+C6H5     5.3 x10
6
     2.0    0.45   estimated

e
   

C6H5COCH3+HO2=>H2O2+CH2CO+C6H5 6.0x10
11
     0.0    17.0   estimated

e
 

C6H5COCH3+CH3=>CH4+CH2CO+C6H5 3.0x10
-1
     4.0    8.2   estimated

e 

 

Reactions of benzeneacetaldehyde  

C6H5CH2CHO+H=>H2+CO+benzyl      4.0 x10
13
 0.0    4.2     estimated

m
 

C6H5CH2CHO+OH=>H2O+CO+benzyl 4.2 x10
12
 0.0    0.5     estimated

m
 

C6H5CH2CHO+OOH=>H2O2+CO+benzyl 1.0 x10
12
     0.0    10.0     estimated

m
 

C6H5CH2CHO+CH3=>CH4+CO+benzyl 2.0 x10
-6
    0.0    2.5     estimated

m
 

C6H5CH2CHO+C2H5=>C2H6+CO+benzyl  1.3 x10
12
     0.0    8.5E3     estimated

m
 

Notes:  The rate constants are given at 1 atm (  ) in cm3, mol, s, kcal units. 

a: Rate constant taken equal to that proposed by Touchard et al. [37][49] in the case of alkenes, allylic and alkenyl radicals. 

b: Estimated from the rate constant of the addition of O atoms to 1,3-butadiene [11]. 
c: Rate constants of unimolecular initiations or combinations calculated using software KINGAS [25]. 

d: Rate constant of this bimolecular initiation with oxygen molecule has been calculated as proposed by Ingham et al. [26]  with  
taken equal to the enthalpy of reaction calculated by the software Thergas [14] based on the group additivity methods proposed by 

Benson [15].  

e: Rate constants taken equal to the values proposed by Buda et al. [27] in the case of the similar reactions in models of alkanes 

oxidation. 

f:  Rates constant taken equal to that of the similar reaction of toluene [8] taking into account the number abstractable H atoms. 

g:           Rate constant taken equal to that theoretically calculated with CBS-QB3 method with Gausssian03 [17] by Tian et al. in the case of 
toluene [22] taking into account the number abstractable H atoms. 

h: Rate constant taken equal to that of the recombination of H atoms with alkyl radicals as proposed by Allara and Shaw [50]. 

i: Rate constant taken equal to that of the addition of OH radicals to acetylene as proposed by Baulch et al. [51]. 
j:           Rate constant taken equal to that of the similar reaction in the case of toluene [8] with A multiplied by 2/3 to take into account the 

number abstractable H atoms and with an activation energy 2 kcal/mol lower due to the abstraction of secondary H atoms instead of 

primary ones. 
k    Rate constant taken equal to that proposed in the case of indanyl radicals [35]. 

l:        Rate constant taken equal to that proposed by Heyberger et al. for addition to alkenes [48]. 

m:  Estimated as in the case of the reactions of aldehydes in the secondary mechanisms generated by EXGAS [25]. 
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Table S3: Other changes in the primary mechanism of the oxidation of benzene and 

toluene for better reproducing low temperature reactivity (see description in [23]). 

 

Reactions        A  n Ea References n° 

C6H5+O2=>C6H5O2   1.86x10
13
 -0.22 -0.71 [52]  (1) 

C6H5O2=>C6H5+O2   6.36x10
19
 -1.37 48.74 [52]   (2) 

C6H5O2=>C6H5O+O   1.27x10
15
 -0.25 38.54 [52]  (3) 

C6H5O2+OOH=C6H5OOH+O2  2.0x10
11
 0.0 -1.3 Estimated

a
 (4) 

C6H5OOH=C6H5O+OH   1.5x10
16
 0.0 43.0 Estimated

a
 (5) 

toluene+O2=benzyl+HO2        1.8x10
12
    0.0    39.7  [51]  (6) 

toluene+CH3O=benzyl+CH3OH   2.12x10
10
  0.0  3.0 [52]  (7) 

toluene+CH3OO=benzyl+CH3OOH  1.02x10
4
  2.5  12.3 [52]  (8) 

toluene+C6H5O2=benzyl+C6H5OOH 1.02x10
4
  2.5  12.3 Estimated

b
 (9) 

benzyl+CH3OO=>C6H5CH2O+CH3O 5.0x10
12
 0.0 0.0 Estimated

c
 (10) 

benzyl+C2H5OO=>C6H5CH2O+C2H5O 5.0x10
12
 0.0 0.0 Estimated

c
 (11) 

benzyl+HO2=C6H5CH2OOH        8.21x10
4
    2.2    -5.13 [54]  (12) 

C6H5CH2OOH=C6H5CH2O+OH  3.29x10
13
 0.42 39.9   [54]  (13)  

C6H5CH2OOH=C6H5CHO+H2O  7.45x10
8
 1.19 46.04  [54]  (14) 

C6H5CH2O=R1H+C6H5CHO  5.26x10
28
 -5.08 22.2 [55]  (15) 

C6H5CH2O=C6H6#+R5CHO  2.37x10
32
 -6.09 28.8 [55]    (16) 

C6H5CH2O=C6H5#+HCHO   7.21x10
33
 -6.21 36.8 [55]    (17)  

C6H4CH3+O2=>OOC6H4CH3  3.72x10
13
 -0.22 -0.71 [52]  (18) 

OOC6H4CH3=>C6H4CH3+O2  6.36x10
19
 -1.37 48.74 [52]  (19) 

OOC6H4CH3=>OC6H4CH3+O  1.27x10
15
 -0.25 38.5 [52]  (20) 

C6H5CH2OO+H=C6H5CH2O+OH  3.8x10
14
 -0.19 1.89  [56]  (21) 

C6H5CH2OO+H=C6H5CH2OOH          4.35x10
60
 -15.9 11.4  [56]  (22) 

C6H5CH2OO+H=benzyl+HO2        1.96x10
4
 2.47 1.43 [56]  (23) 

Notes: The rate constants are given at 1 atm (k= ATnexp(-Ea/RT)) in cm3, mol, s, kcal units.  
 a Rate constants taken equal to the values proposed by Buda et al. [27] in the case of the similar reactions in models of alkanes oxidation. 

b Rate constants of unimolecular initiations or combinations calculated using software KINGAS [25].  

c: Rate constant taken equal to that of reaction (5). 
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Table S4: Reactions modified in the secondary mechanisms of toluene (see description in 

[23]). 

 

Reactions         A  n Ea References n° 

 

Reactions modified in the secondary mechanism toluene  

C6H5CHO+CH3=C6H5CO+CH4   2.0x10
-6
 5.6 2.5 estimated

a
 (24) 

C6H5CHOH=C6H5CHO+H    2.0x10
13
 0.0 36.3 estimated

b 
(25)

 

bibenzyl+H=C6H6+C8H9-1         5.6x10
8
      1.43   5.65 estimated

c 
(26) 

bibenzyl+OH=C6H5OH+C8H9-1         7.8x10
2
     2.88 3.2 estimated

d
   (27) 

C14H13+O2= stilbene+HO2   1.6x10
12
 0.00 15.2 estimated

e
 (28) 

C14H13+OOH=>R2OH+C6H5CHO+benzyl   8.2x10
4
    2.20   -5.13  estimated

f
 (29) 

C14H13 is C6H5•CHCH2C6H5 

 

Added submechanism for stilbene (C6H5CHCHC6H5) 

stilbene+H=>C6H6+C2H2+C6H5        5.7x10
8
    1.43  5.65 estimated

c 
(30) 

stilbene+OH=C6H5OH+C6H5C2H2        7.8x10
2
    2.88   3.2   estimated

d
  (31) 

stilbene+OH=C6H5CHO+benzyl        1.0x10
13
      0.0    5.9 estimated

g
  (32) 

 

Added submechanism for phenylbenzyl ether (C6H5OCH2C6H5) 

C6H5CH2O+toluene=C6H5OCH2C6H5+CH3 7.8x10
2
       2.88 3.22   estimated

d
 (33) 

C6H5O+benzyl=C6H5OCH2C6H5        1.0x10
11
      0.0   0.00   estimated

i
 (34) 

C6H5OCH2C6H5+H=C6H5CH2O+C6H6      8.5x10
12
 0.0    5.81 Estimated

h
  (35) 

C6H5OCH2C6H5+OH=>C6H5+C6H5CHO+H2O 3.5x10
9
    1.0   0.87 estimated

j 
(36) 

C6H5OCH2C6H5+H=>C6H5+C6H5CHO+H2  1.95x10
6
     2.37   5.81   estimated

c 
(37) 

C6H5OCH2C6H5+O=>C6H5+C6H5CHO+OH   4.2x10
11
      0.0    0.00   estimated

j 
(38) 

 

Added submechanism for methylphenylbenzylether (TolOCH2C6H5) 

OC6H4CH3+benzyl=TolOCH2C6H5  1.0x10
11
      0.0   0.00   estimated

i
  (39) 

C6H4CH3+C6H5CH2O=TolOCH2C6H5  1.0x10
11
      0.0   0.00   estimated

i
 (40) 

TolOCH2C6H5+H=toluene+C6H5CH2O  8.5x10
12 

0.0   5.81 Estimated
h
 (41) 

TolOCH2C6H5+OH=>C6H4CH3+C6H5CHO+H2O  8.7x10
11
  1.0   0.87  estimated

j 
(42) 

TolOCH2C6H5+H=>C6H4CH3+C6H5CHO+H2  4.9x10
6
     2.37  5.81  estimated

c 
(44) 

TolOCH2C6H5+O=>C6H4CH3+C6H5CHO+OH  1.0x10
12
 0.0   0.00   estimated

j
 (44) 

 

Added submechanism for ethylphenylphenol (PhenolC2H4bz) 

bibenzyl+OH=PhenolC2H4bz+H   1.7x10
13
      0.0  10.6   estimated

k
  (45) 

C6H4OH+C8H9-1=PhenolC2H4bz   1.0x10
11
     0.0   0.00  estimated

i 
(46) 

HOC6H4CH2+benzyl=PhenolC2H4bz  1.0x10
11
      0.0    0.00   estimated

i 
(47) 

PhenolC2H4bz+OH=>styrene+C6H5O+H2O  8.7x10
9
  1.0  0.87 estimated

j 
(48) 

PhenolC2H4bz+H=>styrene+C6H5O+H2  4.9x10
6
      2.37  5.81   estimated

c 
(49) 

PhenolC2H4bz+O=>styrene+C6H5O+OH  1.0x10
12
    0.0    0.0    estimated

j  
(50) 

 

Added submechanism for 1-butenylbenzene (C6H5C4H7)  

benzyl+C3H5=C6H5C4H7   5.0x10
12
 0.00 0.00 estimated

i
 (51) 

C6H5C4H7+OH=>benzyl+pC3H4+H2O  5.2x10
9
       1.0    0.87 estimated

j
  (52) 

C6H5C4H7+H=>benzyl+pC3H4+H2  2.9x10
6
      2.37   5.81 estimated

c
  (53) 

C6H5C4H7+O=>benzyl+pC3H4+OH       6.3x10
11
      0.0    0.0 estimated

j
  (54) 

C6H5C4H7+OH=>benzyl+pC3H4+H2O  3.0x10
6
      2.0    -1.52 estimated

e
  (55) 

C6H5C4H7+H=>benzyl+pC3H4+H2  5.4x10
4
      2.5   -1.9 estimated

e
  (56) 

C6H5C4H7+O=>benzyl+pC3H4+OH       8.8x10
10
      0.7  3.25 estimated

e
  (57) 

Notes: The rate constants are given at 1 atm (  ) in cm3, mol, s, kcal units. 

a: Rate constant taken equal to that proposed by Baulch et al. [57] for acetaldehyde. 

b: -factor taken equal to that proposed Heyberger et al. [48] and activation energy estimated using the Evans-Polyany correlation 

proposed by Sirjean et al. [31] for -scissions of alkyl radicals.  
c: Rate constant taken equal to that theoretically calculated with CBS-QB3 method with Gausssian03 [17] by Tian et al. [22], with when 

needed A-factor multiplied by a factor taking into account the number abstractable H atoms. 
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d:    Rate constant taken equal to that of the similar reaction of toluene  proposed by Seta et al. [58]. 

e:    Rate constant taken equal to that proposed by Touchard et al. [37] in the case of allylic radicals. 

f:  Rate constant taken equal to that used for the similar  reaction of benzyl radicals [54]. 
g:    Rate constant taken equal to that of the similar reaction for ethylene proposed by Baulch et al. [57]. 

h:  Rate constant taken equal to that proposed by Manion and Louw [59] for the same reaction for phenol.  

i:    Rate constants of unimolecular initiations or combinations calculated using software KINGAS [25]. 
j:    Rate constant taken equal to that of the similar reaction in the case of toluene [8] with A-factor multiplied by a factor taking into account 

the number abstractable H atoms. 

k:    Rate constant taken equal to that of the similar reaction in the case of toluene [8].  
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