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Abstract

In approachability with full monitoring there are two types of conditions that
are known to be equivalent for convex sets: a primal and a dual condition. The
primal one is of the form: a set C is approachable if and only all containing half-
spaces are approachable in the one-shot game; while the dual one is of the form: a
convex set C is approachable if and only if it intersects all payoff sets of a certain
form. We consider approachability in games with partial monitoring. In previous
works (Perchet, 2011a, Mannor et al., 2011) we provided a dual characterization of
approachable convex sets; we also exhibited efficient strategies in the case where C
is a polytope. In this paper we provide primal conditions on a convex set to be
approachable with partial monitoring. They depend on a modified reward function
and lead to approachability strategies, based on modified payoff functions, that
proceed by projections similarly to Blackwell’s (1956) strategy; this is in contrast
with previously studied strategies in this context that relied mostly on the signaling
structure and aimed at estimating well the distributions of the signals received. Our
results generalize classical results by Kohlberg (1975) (see also Mertens et al. 1994)
and apply to games with arbitrary signaling structure as well as to arbitrary convex
sets.

1. Introduction

Approachability theory dates back to the seminal paper of Blackwell (1956). In this paper
Blackwell presented conditions under which a player can guarantee that the long-term
average vector-valued reward is asymptotically inside some target set regardless of the
opponent actions. If this guarantee can be made, we say that the set is approachable. In

∗This work began after an interesting objection of and further discussions with Jean-François Mertens
during the presentation of our earlier results (Mannor et al., 2011) on the dual characterization of
approachability with partial monitoring at the conference Games Toulouse 2011. The material presented
in this article was developed further with Sylvain Sorin back in Paris, whom we thank deeply for his
advice and encouragements. Sadly, Jean-François Mertens, a close collaborator of Sylvain Sorin, passed
away in the mean time. This contribution is in honor of both of these important contributors to the
theory of repeated games.



the full monitoring case studied in Blackwell (1956) there are two equivalent conditions
for a convex set to be approachable. The first one, known as a primal condition (or
later termed the “B" condition in honor for Blackwell), states that every half-space that
contains the target set is also approachable. It turns out the approachability of a half-
space is equivalent to solving the value of a standard (one-dimensional valued) game
above or below zero. The second characterization, known as the dual condition, states
that for every mixed action of the opponent, the player can guarantee that the one-shot
vector-valued reward is inside the target set.

Approachability theory has found many applications in game theory, online learning,
and related fields. Among the key advantages of using it is first, the simplicity of checking
if the dual condition holds (this is usually quite simple for convex sets); and second, the
derivation of a concrete approaching strategy from the primal one simply needs to solve
a simple zero-sum game at every stage of the repeated vector-valued game.

Approachability theory was applied to repeated zero-sum games where there is im-
perfect knowledge about the game or partial monitoring. The work of Kohlberg (1975)
(see also Mertens et al. 1994) uses approachability to derive strategies for games with
incomplete information. The general case of repeated vector-valued games with partial
monitoring was studied only recently. A dual characterization of approachable convex
sets with partial monitoring was presented by Perchet (2011a). However, it is not useful
in deriving concrete approaching strategies since it would essentially require to run a
calibration algorithm, which is known to be computationally hard. In a recent work
(Mannor et al. 2011) we derived efficient strategies for approachability in games with
partial monitoring in some cases, e.g., when the convex set to be approached is a poly-
tope. However, these strategies are based on the dual condition, and not on any primal
one; they thus do not shed light on the structure of the game.

In this paper we provide a primal condition for approachability in games with partial
monitoring. It can be stated, as in Blackwell (1956), as a requirement for every half-space
containing the target set to be one-shot approachable. However, the reward function has
to be modified in some cases for the condition to be sufficient. We also show how it leads
to an efficient approachability strategy, at least in the case of approachable polytopes.

Outline. The paper is organized as follows. In Section 2 we define the partial mon-
itoring model and recall some of the basic results from approachability (both in terms
of primal and dual characterizations of approachability). In Section 3 we explain the
current state-of-the-art, recall the dual condition for approachability with partial moni-
toring, and outline what we set out to do. In Section 4 we provide results for approaching
half-spaces as they have the simplest characterization of approachability ; we show that
the signaling structure has no impact on approachability, only the payoff structure does.
This is not the case anymore when more complicated convex sets are to be approached,
which is the focus of the subsequence sections. In Section 5 we discuss the case of a
target set that is an orthant and some additional properties on the payoff structure are
satisfied; we show that a natural primal condition holds. As an intermezzo, we link our
results to Kohlberg (1975) in Section 6 and show that repeated games with imperfect
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information can be analyzed using our approach for games with imperfect monitoring. In
Section 7 we then analyze the case of a general signaling structure for the approachability
of orthants and provide an efficient approaching strategy based on the exhibited primal
conditions. Finally, we relax the shape of the target set from an orthant to a polyhedron
in Section 8, and then to a general convex set in Section 9. Our generalization shows
that the same primal condition holds in all cases.

2. Model and preliminaries

We now define the model of interest and then recall some basic results from approacha-
bility theory for repeated vector-valued games (with full monitoring).

Model, notation

We consider a vector-valued game between two players, a decision maker (or player) and
Nature, with respective finite action sets I and J , whose cardinalities are referred to
as I and J . We denote by d the dimension of the reward vector and equip Rd with the
ℓ2–norm ‖ · ‖2. The payoff function of the player is given by a mapping r : I ×J → Rd,
which is multi-linearly extended to ∆(I)×∆(J ), the set of product-distributions over
I × J .

At each round, the player and Nature simultaneously choose their actions in ∈ I
and jn ∈ J , at random according to probability distributions denoted by xn ∈ ∆(I)
and yn ∈ ∆(J ). At the end of a round, the player does not observe Nature’s action jn
nor even the payoff rn := r(in, jn) he obtains; he only gets to see some signal. More
precisely, there is a finite set H of possible signals; the signal sn ∈ H that is shown to the
player is drawn at random according to the distribution H(in, jn), where the mapping
H : I × J → ∆(H) is known by both players.

The player is said to have full monitoring if H(i, j) = Full(i, j) := δj , i.e., if the action
of Nature is observed. We speak of a game in the dark when the signaling structure H
is not informative at all, i.e., when H is reduced to a single signal referred to as ∅; when
denote this situation by H = Dark.

Of major interest will be maximal informative mapping H : ∆(J ) → ∆(J )I , which
is defined as follows. The image of each j ∈ J is the vector H(j) =

(
H(i, j)

)
i∈I

; and

this definition is extended linearly onto ∆(J ). An element of the image F = H
(
∆(J )

)

of H is referred as a flag. For every x ∈ ∆(I) and h ∈ F the set of payoffs compatible
with h is

m(x,h) =
{
r(x, y) : y ∈ ∆(J ) such that H(y) = h

}
. (1)

The set m(x,h) represents all the rewards that are statistically compatible with the flag
h; this set is essentially the set of all possible rewards we cannot distinguish from. Note
that with full monitoring, H reduces to ∆(J ) and one has m(x, y) =

{
r(x, y)

}
for all

y ∈ ∆(J ).
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Finally, we denote by M a uniform ℓ2 bound on r, that is,

M = max
i,j

∥∥r(i, j)‖ .

Also, for every n ∈ N and sequence (am)m∈N, the average of the first n elements is
referred to as an = (1/n)

∑n
m=1 am; and dC is the distance to a set C.

A behavioral strategy σ of the player is a mapping from the set of his finite his-
tories ∪n∈N (I ×H)n into ∆(I); similarly, a strategy τ of nature is a mapping from
∪n∈N (I ×H× J )n into ∆(J ). As usual, we denote by Pσ,τ the probability induced by

the pair (σ, τ) onto (I ×H × J )N.

Definition and some properties of approachability

A set C ⊆ Rd is r–approachable for the signaling structure H, or, in short, is (r,H)–
approachable, if, for all ε > 0, there exists a strategy σε of the player and a natural
number N ∈ N such that, for all strategies τ of Nature,

Pσε,τ
{
∃n > N s.t. dC(rn) > ε

}
6 ε .

We refer to the strategy σε as an ε–approachability strategy of C. It is easy to show that
the approachability of C implies the existence of a strategy ensuring that the sequence
of the average vector-valued payoffs converges to the set C almost surely, uniformly
with respect to the strategies of Nature. By analogy such a strategy is called a 0–
approachability strategy of C.

Conversely, a set C is r–excludable for the signaling structure H if, for some δ > 0,
the complement of the δ–neighborhood of C is r–approachable by Nature for the signaling
structure H.

Primal characterization. We now discuss characterizations of approachability in the
case of full monitoring; we will need the stronger notion of one-shot approachability. (The
notion of one-shot excludability is stated only for later purposes.)

Definition 1. A set C is one-shot r–approachable if there exists x ∈ ∆(I) such that for
all y ∈ ∆(J ), one has r(x, y) ∈ C. A set C is one-shot r–excludable if for some δ > 0,
the complement of the δ–neighborhood of C is one-shot r–approachable by Nature.

Blackwell (1956) (see also Mertens et al. 1994) provided the following primal char-
acterization of approachable convex1 set; a set that satisfies it is called a B–set.

Theorem 1. A convex set C is (r,Full)–approachable if and only if any containing half-
space Chs ⊇ C is one-shot r–approachable.

1This primal characterization was actually stated by Blackwell (1956) in a more general way for all,
non-necessarily convex, sets.
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This characterization also leads to an approachability strategy, which we describe
with a slight modification with respect to its most classical statement. We denote by
r′t = r(xt, jt) an auxiliary payoff obtained at round t; this quantity is observed. At stage
n, if r′n 6∈ C, let πC(r

′
n) denote the projection of r′n onto C and consider the containing

half-space Chs, n+1 whose defining hyperplane is tangent to C at πC(r
′
n). The strategy

then consists of choosing the mixed action xn+1 ∈ ∆(I) associated with the one-shot
approachability of Chs, n+1. If r′n ∈ C, any choice xn+1 ∈ ∆(I) is suitable. The above
strategy ensures that for all y ∈ ∆(J ),

〈
r(xn+1, y)− πC(r

′
n), r

′
n − πC(r

′
n)
〉
6 0 ; (2)

which in turn ensures the convergence to C of the mixed payoffs at a rate independent
of d, namely

dC

(
1

n

n∑

t=1

r(xt, jt)

)
6

2M√
n
. (3)

The uniform convergence of rn to C is deduced by martingale convergence theorems (e.g.,
the Hoeffding–Azuma inequality) from the above uniform convergence of r′n to C.

Dual characterization. In the specific case of closed convex sets, using von Neu-
mann’s min-max theorem, the primal characterization stated above can be transformed
into the following dual characterization :

C ⊆ Rd is (r,Full)–approachable ⇐⇒ ∀ y ∈ ∆(Y), ∃x ∈ ∆(I), r(x, y) ∈ C . (4)

This characterization might be simpler to formulate and to check, yet it does not provide
an explicit approachability strategy.

3. Related literature and the objective of this paper

In this section we first recall the existing results on approachability with partial moni-
toring and then explain technically what the paper sets out to do.

Results on approachability with partial monitoring

Concerning the primal characterization. Kohlberg (1975)—see also Mertens et al.
1994—studied specific frameworks (induced by games with incomplete information; see
Section 6) in which approachability depends mildly on the signaling structure. A so-
called product property holds between the payoff function r and the signaling structure
H, based on which it is rather straightforward to show that the primal characterization
for the (r,H)–approachability of orthants stated in Theorem 1 still holds. Section 6
provides more details on this matter.
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Concerning the dual characterization. Perchet (2011a) provided the following dual
characterization of approachable closed convex sets under partial monitoring:

C ⊆ Rd is (r,H)–approachable ⇐⇒ ∀h ∈ F , ∃x ∈ ∆(I), m(x,h) ⊆ C . (5)

It indeed generalizes Blackwell’s dual characterization (4) with full monitoring, as F can
be identified with ∆(J ) in this case.

Based on (5), Perchet constructed the first (r,H)–approachability strategy of any
closed convex set C; it was based on calibrated forecasts of the vectors of F . Because of
this, the per-stage computational complexity of this strategy increases indefinitely and
rates of convergence cannot be inferred. Moreover, the construction of this strategy is
unhelpful to infer a generic primal characterization.

Mannor et al. (2011) tackled the issue of complexity and devised an efficient (r,H)–
approachability strategy for the case when the target set is some polytope. This strategy
has a fixed and bounded per-stage computational complexity. Moreover, its rates of
convergence are independent of d: they are of the order of n−1/5, where n is the number
of stages.

On the other hand, Perchet and Quincampoix (2011) unified the setups of approach-
ability with full or partial monitoring and characterized approachable closed (convex)
sets using some lifting to the Wasserstein space of probability measures on ∆(I)×∆(J ).

Objectives and technical content of the paper

This paper focuses on the primal characterization of approachable closed convex sets
with partial monitoring, which was unclear at the time of the writing of this paper.
First, note that if a closed convex set is (r,H)–approachable, then it is also (r,Full)–
approachable, and therefore, by (4), any containing half-space is necessarily one-shot
r–approachable. The question is when the latter statement is a sufficient condition for
(r,H)–approachability. The difficulty, as noted already by Perchet (2011a) and recalled
at the beginning of Section 5, is that since the notions of approachability with full or
partial monitoring do not coincide, it can be that a closed convex sets is not (r,H)–
approachable while every containing half-space is one-shot r–approachable.

One class of exceptions when the usual dual characterization is indeed sufficient is
formed first, by the cases when half-spaces are to approached (with no condition on
the game), and second, by the cases of games whose structure (r,H) has the product
property and when orthants are to be approached. This first series of results is detailed
in Sections 4 and 5. Some light is then shed in Section 6 on the construction of Kohlberg
(1975) for the case of games with incomplete information.

The rest of the paper (Sections 7, 8, and 9), in the lack of an assumption on the struc-
ture (r,H) of the game, discusses a primal condition based on one-shot approachability
of half-spaces with respect to a modified payoff function r̃H that encompasses the links
between the signaling structure H and the original payoff function r. Depending on the
geometry of the closed convex set to be approached, this primal condition is stated in
the original payoff space (for orthants, Section 7) or in some lifted space (for polytopes
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or general convex sets, see Section 8 and 9). We explain in Example 1 why such a lifting
seems inevitable.

We also illustrate how the exhibited primal condition leads to a new (and efficient)
strategy for (r,H)–approachability in the case of target sets given by polytopes (Section 7
does it for orthants and the result extends to polytopes via Lemma 2). This new strategy
is based on sequences of (modified) payoffs, as in Kohlberg (1975), and is not only based
on sequences of signals, as in Perchet (2011a), Mannor et al. (2011). The construction of
this strategy also entails some non-linear approachability results (both in full and partial
monitoring).

4. Primal approachability of half-spaces

We first focus on half-spaces, not only because they are the simplest convex sets, but
because they are the cornerstones of the primal characterization of Blackwell (1956).
The following proposition ties one-shot r–approachability with (r,H)-approachability of
half-spaces.

Proposition 1. For all half-spaces Chs, for all signaling structures H,

Chs is (r,H)–approachable ⇐⇒ Chs is one-shot r–approachable .

This result is a mere interpolation of two well-known results for the extremal cases
when H = Full and H = Dark. The former case corresponds to Blackwell’s primal
characterization. In the latter case, since Nature could always play the same y at all
rounds, the player, to ensure (r,Dark)–approachability, indeed needs an action x such
that r(x, y) ∈ Chs for all y, which is the action he should play at all stages.

Stated differently, the above proposition indicates that as far as half-spaces are con-
cerned, the approachability is independent of the signaling structure.

Proof. Only the direct implication is to be proven; the converse implication is immediate
by the above discussion about games in the dark. We thus assume that Chs is (r,H)–
approachable. Using the characterization (5) of (r,H)-approachable sets, one then has

∀h ∈ F , ∃x ∈ ∆(I), m(x,h) ⊂ Chs ,
which implies that ∀ y ∈ ∆(J ), ∃x ∈ ∆(I), r(x, y) ∈ Chs .

The implication holds because r(x, y) ∈ m(x,h) when h = H(y). Now, let a ∈ Rd and
b ∈ R such that Chs =

{
ω ∈ Rd : 〈ω, a〉 6 b

}
. The last implication of obtained can be

restated as

∀ y ∈ ∆(J ), ∃x ∈ ∆(I), 〈r(x, y), a〉 6 b ,

or equivalently, max
y∈∆(J )

min
x∈∆(I)

〈r(x, y), a〉 6 b .

By von Neumann’s min-max theorem, we then have that

min
x∈∆(I)

max
y∈∆(J )

〈r(x, y), a〉 6 b , that is, ∃x0 ∈ ∆(I), ∀y ∈ ∆(J ), 〈r(x0, y), a〉 6 b .

This is exactly the one-shot approachability of Chs.
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Since the complement of any δ–neighborhood of a half-space is also a half-space, we
get the following additional equivalence, in view of the respective definitions of exclud-
ability and one-shot excludability.

Corollary 1. For all half-spaces Chs, for all signaling structures H,

Chs is (r,H)–excludable ⇐⇒ Chs is one-shot r–excludable .

5. Primal approachability of orthants

under a product property

This section is devoted to stating a primal characterization of (r,H)–approachable or-
thants, i.e., sets in the form

Corth(a) =
{
a− ω : ω ∈ (R+)

d
}

for some a ∈ Rd. Orthants are the key for extension to polyhedra, because, as we will
discuss later, up to some lifting in higher dimensions, every polyhedral set can be seen
as an orthant.

We start by indicating that the primal characterization stated in the previous section
in terms of the original payoff function r does not extend directly to general convex sets,
not even to orthants—at least under no additional assumption. In this section we however
state such a sufficient assumption for its extension. We study the most general primal
characterization in Section 7; it will involve a modified payoff function for the one-shot
approachability of half-spaces.

Counter-example. This example is extracted from Perchet (2011a). We first show
that the equivalence of Proposition 1 does not hold in general if the convex set C at
hand is not a half-space; we do so by exhibiting a game and a set C which is (r,Full)–
approachable but not (r,Dark)–approachable. The game is a straightforward modifica-
tion of an example studied in Perchet (2011a). We set I = {T,B} and J = {L,R}, and
the payoff function r is given by the matrix

L R

T (0, 0) (1,−1)
B (−1, 1) (0, 0)

We consider the set Corth
(
(0, 0)

)
= (R−)

d. This set is (r,Full)–approachable as indicated
by the dual characterization (4): to each mixed action yα of Nature, indexed by α ∈ [0, 1],
we associate the mixed action xα of the player indexed by the same α,

r
(
αT + (1− α)B, αL+ (1− α)R

)
= (0, 0) ∈ Corth

(
(0, 0)

)
.
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On the other hand, under the signaling structure H = Dark, for which the only flag is
∅, we have, for all actions of the player, that is, for all α ∈ [0, 1],

m
(
αT + (1− α)B, ∅

)
=
{
r
(
αT + (1− α)B, y

)
: y ∈ ∆(J )

}

=
{
(λ,−λ) ; λ ∈ [−α, 1− α]

}
* Corth

(
(0, 0)

)
;

therefore, the characterization of r–approachable closed convex sets (5) does not hold
when playing in the dark.

Product property. We define the upper-right corner function R : ∆(I)×F → Rd of
the compatible payoff function m in a component-wise manner. We write the coordinates
of R as R = (R1, . . . , Rd) and set, for all k ∈ {1, . . . , d},

∀x ∈ ∆(I), ∀h ∈ F , Rk(x,h) = max
{
ωk : ω =

(
ω1, . . . , ωd

)
∈ m(x,h)

}
.

Note that the ℓ2–norm of R is bounded by, e.g., M
√
d.

The name of an upper-right corner stems from the fact that R(x,h) is the (component-
wise) smaller a such that m(x,h) ⊆ Corth

(
R(x,h)

)
. This point R(x,h) is in some sense

the worst-case payoff vector associated with m(x,h); controlling its distance to the or-
thant to approach entails a control of the distance of the whole set m(x,h) to it.

Of course, R(x,h) is in general not a feasible payoff vector, i.e., R(x,h) 6∈ m(x,h).
We are interested in this section in the case when the upper-right corners are indeed
feasible payoffs—an assumption that we call the product property in reference to the
simplest case of sets whose upper-right corners are elements of the set: rectangles (which
are given by Cartesian products of intervals).

Definition 2. The game (r,H) with partial monitoring has the product property if

∀x ∈ ∆(I), ∀h ∈ F , R(x,h) ∈ m(x,h) .

Of course, games with full monitoring have the product property, as for them F can
be identified with ∆(J ) and m can be identified with the function {r} with values in
the set of all singleton subsets of Rd.

Primal characterization under the product property. The following proposition
was implicitly used by Kohlberg (1975).

Proposition 2. For all games (r,H) with partial monitoring that have the product prop-
erty, for all orthants Corth(a), where a ∈ Rd,

Corth(a) is (r,H)–approachable

⇐⇒ every half-space Chs ⊃ Corth(a) is one-shot r–approachable.

Stated differently, using Blackwell’s primal characterization of approachability (Theo-
rem 1), an orthant Corth(a) is (r,H)–approachable in a game (r,H) satisfying the product
property if and only if Corth(a) is r–approachable with full monitoring.
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Proof. The direct implication is by applying Proposition 1 to any half-space Chs ⊃
Corth(a), which in particular is (r,H)–approachable as soon as Corth(a) is. The inter-
esting implication is thus the converse one.

So, we assume that every half-space Chs ⊃ Corth(a) is one-shot r–approachable and,
following Kohlberg’s original proof and inspired by Blackwell’s strategy in the case of
full monitoring, we construct an (r,H)–approachability strategy of Corth(a).

Flags observed, mixed payoffs obtained. For simplicity, assume first that after stage n,
the observation made by the player is not just the random signal sn but the entire vector
of probability distributions over the signals hn = H(yn). (We will recall below why this
is not a restrictive assumption.) We consider the surrogate payoff vector Rn = R(xn,hn),
which is a quantity thus observed by the player. When Rn does not already belong to
Corth(a), since the latter set is convex, the half-space Chs, n defined by

Chs, n =
{
ω ∈ Rd :

〈
ω − πCorth(a)

(
Rn
)
, Rn − πCorth(a)

(
Rn
)〉

6 0
}

contains Corth(a); therefore, by assumption, Chs, n is one-shot r–approachable. That is,
there exists xn+1 ∈ ∆(I) such that

∀ y ∈ ∆(J ),
〈
r(xn+1, y)− πCorth(a)

(
Rn
)
, Rn − πCorth(a)

(
Rn
)〉

6 0 .

By the product property, Rn+1 ∈ m(xn+1,hn+1), which entails that there exists y′n+1 ∈
∆(J ) such that H

(
y′n+1

)
= hn+1 and Rn+1 = r

(
xn+1, y

′
n+1

)
. As a consequence, Rn+1

belongs to Chs, n and the sequence (Rn) satisfies the following condition, usually referred
to as Blackwell’s condition:

〈
Rn+1 − πCorth(a)

(
Rn
)
, Rn − πCorth(a)

(
Rn
)〉

6 0 .

This condition is trivially satisfied when Rn already belongs to Corth(a). Now, just as (2)
leads to (3), this condition implies that dCorth(a)

(
Rn
)
6 2M

√
d/

√
n. (Recall that R is

bounded by M
√
d in ℓ2–norm.) Now, (1/n)

∑n
t=1 r(xt, yt) ∈ (1/n)

∑n
t=1m(xt,ht) and,

by definition of R as the upper-right corner function, (1/n)
∑n

t=1m(xt,ht) ⊆ Corth
(
Rn
)
.

That is, (1/n)
∑n

t=1 r(xt, yt) is component-wise smaller than Rn. Since the distance to
the orthant Corth(a) equals, for all ω ∈ Rd,

dCorth(a)(ω) =

√√√√
d∑

k=1

max{ωk − ak, 0}2 , (6)

we get that

dCorth(a)

(
1

n

n∑

t=1

r(xt, yt)

)
6 dCorth(a)

(
Rn
)
6

2M
√
d√

n
.

Finally, by martingale convergence theorems (e.g., the Hoeffding–Azuma inequality), the
sequence of the distances dCorth(a)

(
rn
)

is also uniformly controlled against all strategies
of Nature.
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Flags not observed, only random signals observed, pure payoffs. It remains to relax
the assumption that the flags hn are observed, while only the signals sn drawn at random
according to H(in, jn) are. A standard trick in the literature of partial monitoring (see
Kohlberg 1975, Mertens et al. 1994, Lugosi et al. 2008) solves the issue, together with
martingale convergence theorems and the fact that the upper-right corner R is a Lipschitz
function for a well-chosen metric over sets (see Lemma 1 below). We briefly describe this
trick without working out the lengthy details. Time is divided into blocks of time with
(large) length L, indexed by n = 1, 2, . . ., in which the same mixed distribution x(n) is
played at all stages by the player; that is, xnL+t = x(n) for all 1 6 t 6 L. Furthermore,
this distribution x(n) puts a positive probability mass of at least some γ > 0 on all
actions. Doing so, arbitrarily precise estimators of the average flags on each block can
be constructed (at arbitrarily small costs); and, informally, each block plays now the
role of a stage in the setting above when flags were observed. Also, similar martingale
convergence arguments show that measuring payoffs in terms of the mixed actions xt
or pure actions it does not matter. As indicated, we omit the technical proof of these
facts (it already appeared in all the given references) but notice, however, that rates of
convergence are affected by this trick.

Remark 1. The construction in the proof above shows that under the product property,
it is necessary and sufficient to control the behavior of the upper-right corners Rn.

This property was used only to show that Rn+1 is equal to some r(xn+1, y
′
n+1) and

thus that the sequence (Rn) satisfies Blackwell’s condition. When the property is not
satisfied anymore, the sequence of the upper-right corners may fail this condition. For
instance, in the counter-example at the beginning of the present section, the upper-right
corners equal

∀α ∈ [0, 1], R
(
αT + (1− α)B, ∅

)
= (α, 1 − α) ,

so that, for all strategies of the player, Rn = (λ, 1 − λ) for some λ ∈ [0, 1]. Thus, the
distance of Rn to Corth

(
(0, 0)

)
is always larger than 1/

√
2.

6. Intermezzo:

Kohlberg’s games with incomplete information

We consider in this section a different, yet related framework, which is the main focus
of Kohlberg (1975). We first describe a setting where d games with partial monitoring are
to be played simultaneously, and then establish the formal connection with Kohlberg’s
results.

Simultaneous games with partial monitoring. We consider d such games, with
common action sets I and J for the player and Nature and common set H of signals,
but with possibly different payoff functions and signaling structures. We index these
games by g. For each game game g ∈ {1, . . . , d}, the player’s payoff function is denoted
by r(g) : I × J → R and the signaling structure is given by H(g) : I × J → ∆(H), with
associated maximal informative mapping H

(g) : ∆(J ) → ∆(H)I .

11



We put some restrictions on the strategies of the player and of Nature. The player
may only choose one action xt ∈ ∆(I) at each stage t, the same for all games g. On the

other hand, Nature can choose different mixed actions y
(g)
t in each game g, but these

need to be non-revealing, that is, they need to induce the same flags; i.e., they need to
be picked in the following set, which we assume is non-empty:

NR =
{(
y(1), . . . , y(d)

)
∈ ∆(J )d : H

(1)
(
y(1)
)
= · · · = H

(d)
(
y(d)
)}
.

The above framework of simultaneous games can be embedded into some equivalent
game that fits the model studied in the previous sections. Indeed, by linearity of each
H

(g), the set NR of non-revealing actions is a polytope, thus it is the convex hull of its
finite set of extremal points, whose cardinality we denote by K and whose elements we
write as

K =
{(
y
(g)
1

)
16g6d

, . . . ,
(
y
(g)
K

)
16g6d

}
.

Each
(
y(g)
)
16g6d

∈ NR can then represented by an element of ∆(K); conversely, each

z = (zk)k6K ∈ ∆(K) induces the following element of NR:

Y (z) =
(
Y (g)(z)

)
16g6d

=
K∑

k=1

zk
(
y
(g)
k

)
16g6d

.

So, with no loss of generality, we can assume that K is the finite set of actions of Nature
and that, given z ∈ ∆(K) and x ∈ ∆(I), the payoff in the game g is r(g)

(
x, Y (g)(z)

)
.

This defines naturally an auxiliary game with linear vector-valued payoff function
r : ∆(I)×∆(K) → Rd and signaling structure H : ∆(K) → ∆(H)I defined by

r(x, z) =
(
r(g)
(
x, Y (g)(z)

))
16g6d

and H(z) = H
(g)
(
Y (g)(z)

)
for all g;

the definition of H is independent of g by construction, as we restricted Nature to
use non-revealing strategies. This maximal informative mapping H corresponds to a
signaling structure which we denote by H : ∆(I)×∆(K) → ∆(H).

The game (r,H) constructed above satisfies the product property. Indeed, for all
h ∈ H

(
∆(K)

)
and all x ∈ ∆(I),

m(x,h) =

{(
r(1)
(
x, Y (1)(z)

)
, . . . , r(d)

(
x, Y (d)(z)

))
: z ∈ ∆(K) s.t. H(z) = h

}

=

{(
r(1)
(
x, y(1)

)
, . . . , r(d)

(
x, y(d)

))
:

(
y(1), . . . , y(d)

)
∈ ∆(J )d s.t. H(1)

(
y(1)
)
= · · · = H

(d)
(
y(d)
)
= h

}
.

Because of the equality constraint to a fixed h, the set
{(
y(1), . . . , y(d)

)
∈ ∆(J )d : H

(1)
(
y(1)
)
= · · · = H

(d)
(
y(d)
)
= h

}
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is a Cartesian product of subsets of ∆(J ) and thus, its image m(x,h) by the mapping

(
y(1), . . . , y(d)

)
∈ ∆(J )d 7−→

(
r(1)
(
x, y(1)

)
, . . . , r(d)

(
x, y(d)

))

is also a Cartesian product of closed intervals of R. In particular, the latter set contains
its upper-right corner, that is, R(x,h) ∈ m(x,h), as claimed.

We assume, with no loss of generality, that in these simultaneous games, Nature max-
imizes the payoffs and the player minimizes them. A question that naturally arises—and
whose answer will be needed below—is to determine for which vectors a = (a1, . . . , ad) ∈
Rd the player can simultaneously guarantee that his average payoff will be smaller than
ag in the limit in each game g ∈ {1, . . . , d}; that is, to determine which orthants Corth(a)
are (r,H)–approachable. By the exhibited product property, Proposition 2 shows that
a necessary and sufficient condition for this is that all containing half-spaces of Corth(a)
be one-shot r–approachable. These half-spaces are parameterized by the convex distri-
butions q ∈ ∆

(
{1, . . . , d}

)
and are denoted by

C(q)
hs =

{
ω ∈ Rd : 〈q, ω〉 6 〈a, q〉

}
. (7)

Stated equivalently, the orthant Corth(a) is (r,H)–approachable if and only if the value
of the zero-sum game with payoff function (x, z) ∈ ∆(I)×∆(K) 7→ 〈q, r(x, z)〉 is smaller
than 〈a, q〉 for all q ∈ ∆({1, . . . , d}).

Kohlberg’s model of games with incomplete information. The setting of games
with incomplete information, introduced by Aumann and Maschler (1955), is the same as
above, except for two modifications. First, Nature is in principle not restricted to use non-
revealing strategies. Second, a probability distribution p ∈ ∆

(
{1, . . . , d}

)
is considered

by Nature; it is known by both the player (who gets informed of it) and Nature. The
elements in {1, . . . , d} are called states. With no loss of generality, we may assume that p
has full support. A state G is chosen at random according to p by Nature, but the player
is not informed of the choice. A repeated game with partial monitoring then takes place
between the player and Nature in the G–th game only. However, payoffs are evaluated
in expectation with respect to the random choice of G; furthermore, for simplicity, we
assume that all mappings H

(g) have the same range2. Because of these two properties,
the considered setting of games with incomplete information is, for the player, the same
described above as far as the signaling structures are concerned, while the payoffs, for a
given choice of p, by formed by the inner products (x, z) ∈ ∆(I)×∆(K) 7→ 〈p, r(x, z)〉
of r with p. We recall that the player is informed of p.

In this game also, Nature maximizes the payoff and the player minimizes it. For
each q ∈ ∆({1, . . . , d}), denote by u(q) the value of the zero-sum game Γ(q) with payoffs

2In full generality, when this is not the case, Nature may resort to strategies that reveal that the
true state G belongs to some strict subset of {1, . . . , d}, and the player must adapt his strategy in
correspondence with this knowledge, see Kohlberg (1975). But our assumption already enables to capture
the basic idea of the use of approachability in this framework and the alluded technical adaptations are
beyond the scope of this paper.
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(x, z) ∈ ∆(I)×∆(K) 7→ 〈q, r(x, z)〉. We now consider the meta-game in which Nature
chooses the distribution p and then the game Γ(p) is played. We show that, as proved
in the mentioned references, the value U of this game, as a function of the choice p,
may be larger than u(p) and is given by cav[u](p), where cav[u] is the smallest concave
function above u. First, the so-called splitting lemma (see Aumann and Maschler 1955,
see also Mertens et al. 1994, Section V.1), which corresponds to a two-stage random draw
of the state G according to any convex decomposition of p in terms of other distributions
over the stages, shows that U is concave. Therefore, we have U > cav[u]. The interesting
and non-trivial inequality is the converse one. (Kohlberg, 1975, Cororollary 2.4) states
that for all p ∈ ∆({1, . . . , d}), there exists some ap ∈ Rd such that

cav[u](p) = 〈ap, p〉 and ∀ q ∈ ∆({1, . . . , d}), cav[u](q) 6 〈ap, q〉 ;

in particular, u(q) 6 〈ap, q〉 for all q ∈ ∆({1, . . . , d}). Now, the equivalence stated
after (7) exactly indicates that thus, Corth(ap) is (r,H)–approachable. This result in the
simultaneous model entails in particular, in the model with incomplete information and
for the choice p as a distribution by Nature, that

{
〈p, ω〉 : ω ∈ Corth(ap)

}
=
(
−∞, 〈p, ap〉

)
=
(
−∞, cav[u](p)

)

is approachable. This shows that U(p) 6 cav[u](p).

In conclusion, Kohlberg (1975) implicitly used the properties detailed above when
constructing an optimal strategy for the uninformed player. A close inspection reveals
that Lemma 5.4 therein does not hold anymore in the more general framework without
the product property (in particular, one might want to read it again with Remark 1 in
mind).

7. Primal approachability of orthants in the general case

We noted that the primal characterization in terms of one-shot r–approachability of
containing half-spaces stated in Proposition 2 did not extend to games (r,H) without the
product property. We show in this section that it holds true in the general case when one-
shot approachability is with respect to the modified payoff function r̃H : ∆(I)×∆(J ) →
Rd defined as follows:

∀x ∈ ∆(I), ∀ y ∈ ∆(J ), r̃H(x, y) = R
(
x,H(y)

)
.

The change of payoff function can be intuitively explained as follows. As noted in
Section 5, since orthants are to be approached (and only because of this), the behavior
of (averages of) sets of compatible payoffs is dictated by their upper-right corners. Now,
the product property indicated that even when measuring payoffs with r, the worst-case
payoffs were given by the upper-right corners and that it was thus necessary and sufficient
to consider the latter. If this property does not hold, then evaluating actions with r̃H
enables and forces the consideration of these corners.

14



Of course, in the case of full monitoring, as follows from the comments after Defini-
tion 2, no modification takes place in the payoff function, that is, r̃Full = r.

The main result of this section is the following primal characterization; subsequent
subsections of this section show how it leads to a new approachability strategy under
partial monitoring, based on surrogate payoffs (upper-right corner payoffs) and not, as
usually done, on signals only (on estimated flags).

Theorem 2. For all games (r,H) with partial monitoring, for all orthants Corth(a),
where a ∈ Rd,

Corth(a) is (r,H)–approachable

⇐⇒ every half-space Chs ⊃ Corth(a) is one-shot r̃H–approachable.

The proof of this theorem is as follows. The dual characterization (5) indicates
that a necessary and sufficient condition of (r,H)–approachability for Corth(a) is that
for all y ∈ ∆(J ), there exists x ∈ ∆(I) such that m

(
x,H(y)

)
⊆ Corth(a). Since, by

construction of R, the smallest orthant (in the sense of inclusion) in which m
(
x,H(y)

)

is contained is precisely Corth
(
r̃H(x, y)

)
, the necessary and sufficient condition can be

restated as the requirement that for all y ∈ ∆(J ), there exists x ∈ ∆(I) such that
r̃H(x, y) ∈ Corth(a). Now, this reformulated dual characterization of approachability in
the context of orthants is seen to be equivalent to the following primal characterization,
which concludes the proof of the theorem.

Proposition 3. For all games (r,H) with partial monitoring, for all orthants Corth(a),
where a ∈ Rd,

∀ y ∈ ∆(J ), ∃x ∈ ∆(I), r̃H(x, y) ∈ Corth(a)
⇐⇒ every half-space Chs ⊃ Corth(a) is one-shot r̃H–approachable.

Before proving this proposition, we need to state some properties of the function r̃H .
Given two points a, a′ ∈ Rd, the notation a 4 a′ means that a is component-wise smaller
than a′—or equivalently, that a belongs to the orthant Corth(a′).
Lemma 1. The function r̃H is Lipschitz continuous; it is also convex in its first argument
and concave in its second argument, in the sense that, for all x, x′ ∈ ∆(I), all y, y′ ∈
∆(J ), and all λ ∈ [0, 1],

r̃H
(
λx+ (1− λ)x′, y

)
4 λ r̃H(x, y) + (1− λ) r̃H(x

′, y)

and λ r̃H(x, y) + (1− λ) r̃H(x, y
′) 4 r̃H

(
x, λy + (1− λ)y′

)
.

Proof. The convexity and the concavity stem from the concavity and the convexity of m
for inclusion; formally, it follows from the very definition (1) of m and from the linearity
of r and H that, for all x, x′ ∈ ∆(I), all h,h′ ∈ F , and λ ∈ [0, 1],

m
(
λx+ (1− λ)x′, h

)
⊆ λm(x,h) + (1− λ)m(x′,h)

and λm(x,h) + (1− λ)m(x,h′) ⊆ m
(
x, λh+ (1− λ)h′

)
.
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The second part of the lemma follows by taking upper-right corners, which is a linear
and non-decreasing operation (for the respective partial orders ⊆ and 4).

As for the Lipschitzness of r̃H , it follows from a rewriting of m
(
x,H(y)

)
as

m
(
x,H(y)

)
=
∑

b∈B

φb
(
H(y)

)
r
(
x, H−1(b)

)
,

where B is a finite subset of F , the φb are Lipschitz functions F → [0, 1], and H
−1 is the

pre-image function of H , which takes values in the set of compact subsets of ∆(J ). This
rewriting was proved in Mannor et al. (2011, Lemma 6.1 and Remark 6.1). We equip the
set of compact subsets of the Euclidian ball with center (0, . . . 0) and radius M , in which
m takes its values, with the Hausdorff distance. For this distance, x 7→ r

(
x, H−1(b)

)
is

M–Lipschitz for each b ∈ B. All in all, given the boundedness of the φb and of r, the
mapping (x, y) 7→ m

(
x,H(y)

)
is also Lipschitz continuous. Since taking the upper-right

corner is a Lipschitz mapping as well (for the Hausdorff distance), we get, by composition,
the desired Lipschitzness of r̃H .

We are now ready to prove Proposition 3. (Note that it indeed needs a proof and
it is not implied by the various results discussed in Section 5; indeed, (r̃H ,H) is an
auxiliary game which, by construction, has the product property, but r̃H is not linear,
while linearity of the payoff function was a crucial feature of the setting studied therein.)

Proof of Proposition 3. We start with the direct implication and consider some contain-
ing half-space Chs; the latter is parameterized by α ∈ Rd and β ∈ R, and equals

Chs =
{
ω ∈ Rd : 〈α, ω〉 6 β

}
;

since Chs contains the orthant Corth(a), there are sequences of ω in it with components
tending to −∞; therefore, we necessarily have that α < 0. The convexity/concavity of
r̃H in the sense of 4 thus entails that the function Gα,β : (x, y) 7−→

〈
α, r̃H(x, y)

〉
− β is

also convex/concave. The continuity of Gα,β stems from the one of r̃H . The Sion–Fan
lemma applies and guarantees that

min
x∈∆(I)

max
y∈∆(J )

Gα,β(x, y) = max
y∈∆(J )

min
x∈∆(I)

Gα,β(x, y) ,

(the suprema and infima are all attained and are denoted by maxima and minima). Now,
by assumption, for all y ∈ ∆(J ), there exists x ∈ ∆(I) such that r̃H(x, y) ∈ Corth(a);
this means that the above maxminGα,β is non-positive. Putting all things together, we
have proved that

min
x∈∆(I)

max
y∈∆(J )

Gα,β(x, y) 6 0 .

That is, there exists x0 ∈ ∆(I), e.g., the element attaining the above maximum, such
that for all y ∈ ∆(J ), one has Gα,β(x0, y) 6 0, or, equivalently, r̃H(x0, y) ∈ Corth(a).
This property is exactly the stated one-shot r̃H–approachability of Corth(a).

Conversely, assume that there exists some y0 ∈ ∆(J ) such that, for all x ∈ ∆(I),
one has r̃H(x, y0) 6∈ C0. By continuity of r̃H and closedness of Corth(a), there exists some
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δ > 0 such that dCorth(a)
(
r̃H(x, y0)

)
> δ for all x ∈ ∆(I). Now, as indicated around (6),

the distance to Corth(a) is non-decreasing for 4, which, in view of the convexity of r̃H in
its first argument, shows that we also have dCorth(a)(z) > δ for all elements z of the convex
hull Cr̃H ,y0 of the set

{
r̃H(x, y0) : x ∈ ∆(I)

}
. That is, the closed convex sets Cr̃H ,y0 ,

which is compact, and Corth(a) are disjoint and thus, by the Hahn–Banach theorem, are
strictly separated by some hyperplane. One of the two half-spaces thus defined, namely,
the one not containing Cr̃H ,y0 , is not one-shot r̃H–approachable.

A new approachability strategy of an orthant under partial monitoring

In the case its characterization is satisfied, Theorem 2 suggests an approachability strat-
egy based on surrogate payoffs and not only the information gained, i.e., based on the
mapping r̃H and not only on the signaling structure H (and the estimated flags). The
first approach was already considered by Kohlberg (1975) while other works, like Perchet
(2011a) and Mannor et al. (2011), resorted to the second one. The considered strategy
is an adaptation of Blackwell’s strategy (which was recalled after the statement of The-
orem 1); such an adaptation is possible as the latter strategy only relies on the one-shot
approachability of half-spaces, which is satisfied here with the surrogate payoffs r̃H .

Description and convergence analysis of the strategy. As in the proof of Propo-
sition 2, we assume in a first time that flags ht = H(yt) are observed at the end of each
round t and that mixed payoffs are to be controlled. The player then knows his mixed
payoffs r̃H,t := r̃H(xt, yt) = R

(
xt,ht

)
and aims at controlling his average payoffs, which

we recall are denoted by r̃H,n. Similarly to what was done in the proof of Proposition 2,
the one-shot r̃H–approachability of the containing half-spaces of Corth(a) entails that for
each round n, there exists xn+1 ∈ ∆(I) such that

∀ y ∈ ∆(J ),
〈
r̃H(xn+1, y)− πCorth(a)

(
r̃H,n

)
, r̃H,n − πCorth(a)

(
r̃H,n

)〉
6 0 .

The sequence
(
r̃H,n

)
thus satisfies Blackwell’s condition and as a result (see again the

proof of Proposition 2), we get

dCorth(a)

(
1

n

n∑

t=1

r̃H(xt, yt)

)
6

2M
√
d√

n
.

Since r(xt, yt) ∈ m
(
xt,H(yt)

)
⊆ Corth

(
r̃H(xt, yt)

)
, we get r(xt, yt) 4 r̃H(xt, yt) and, in

view again of (6),

dCorth(a)

(
1

n

n∑

t=1

r(xt, yt)

)
6 dCorth(a)

(
1

n

n∑

t=1

r̃H(xt, yt)

)
6

2M
√
d√

n
.

The same trick of playing i.i.d. in blocks as in the second part of the proof of Proposi-
tion 2, together with martingale convergence arguments, relaxes the assumptions of flags
being observed and payoffs being evaluated with mixed actions, leading to the desired
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(r,H)–approachability strategy. (This is where we need the Lipschitzness properties
stated in Lemma 1 and its proof.) A more careful study, which we omit here for the sake
of concision, shows that (r,H)–approachability takes place at a n−1/5–rate.

What we proved in passing. We proved in a constructive way that when an orthant
is (r,H)–approachable, it is also

(
r̃H ,Full)–approachable.

Conversely, assume that the equivalent conditions in Theorem 2 are not satisfied,
i.e., that the orthant at hand, Corth(a), is not (r,H)–approachable. Then, (the proof
of) Proposition 3 indicates that there exists some y0 ∈ ∆(J ) such that the set Corth(a)
and the convex hull of

{
r̃H(x, y0), x ∈ ∆(I)

}
are strictly separated. This implies in

particular that Corth(a) is
(
r̃H ,Full

)
–excludable, and thus is not

(
r̃H ,Full

)
–approachable.

Putting all things together, we have proved the following equivalence:

Corth(a) is (r,H)–approachable

⇐⇒ Corth(a) is
(
r̃H ,Full

)
–approachable

⇐⇒ Corth(a) is not
(
r̃H ,Full

)
–excludable.

Note that the
(
r̃H ,Full

)
–approachability is a form of non-linear approachability, by which

we mean that the function r̃H is not linear and yet, approachability is possible. This
result could be generalized (but we omit the description of the extension for the sake of
concision).

On the computational complexity of the above-described strategy. The strat-
egy we have exhibited reduces to solving, at each stage, a program of the form

min
xn+1∈∆(I)

{
max
y∈∆(J )

〈
r̃H(xn+1, y)− β, α

〉}

for some vectors α, β ∈ Rd. At first sight, it cannot be written as a finite linear program
as r̃H is not a linear function of its arguments. However, as proved in Mannor et al. (2011,
Section 7.1), the function r̃H is actually piecewise linear; that is, there exist some finite
liftings of ∆(I) and ∆(J ) with respect to which r̃H is linear. (These liftings only need
to be computed once, before the game starts.) Moreover, the per-step computational
complexity of our strategy is constant (in fact, it is polynomial in the sizes of these
liftings; see Mannor et al. 2011 for more details).

8. Primal approachability of polyhedra

Recall that a convex set Cpolyh is a polyhedron if it is the intersection of a finite number
of half-spaces

{
ω ∈ Rd : 〈ω, aℓ〉 6 bℓ

}
, for aℓ, bℓ ∈ Rd and ℓ ranging in some finite set L.

That is,

Cpolyh =
⋂

ℓ∈L

{
ω ∈ Rd : 〈ω, aℓ〉 6 bℓ

}
=

{
ω ∈ Rd : max

ℓ∈L
〈ω, aℓ〉 − bℓ 6 0

}
. (8)
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The following lemma (which is a mere exercice of rewriting) states that an approachabil-
ity problem of a polyhedron can be transformed into an approachability problem of some
negative orthant; we denote by (0)L = (0, . . . , 0) the null vector of RL. The negative
orthant of RL is then denoted by Corth

(
(0)L

)
.

Lemma 2. The convex polyhedron Cpolyh defined in (8) is (r,H)–approachable if and
only if the negative orthant Corth

(
(0)L

)
is (s,H)–approachable, where the vector-valued

payoff function s : ∆(I)×∆(J ) → RL is defined as

s(x, y) =
[
〈r(x, y), aℓ〉 − bℓ

]
ℓ∈L

. (9)

Proof. The result follows from the equivalence (see, e.g., property 3 in Appendix A.1
of Perchet 2011b) of the distances to Cpolyh given by

dCpolyh and dCorth((0)L)

(
T ( · )

)
,

where T : Rd → RL the linear transformation ω 7→
[
〈ω, aℓ〉 − bℓ

]
ℓ∈L

.

Theorem 2 can then be rewritten, using Lemma 2 above, to provide the desired primal
characterization of polyhedra.

Corollary 2. Consider the convex polyhedron Cpolyh given by (8), together with the payoff
function s defined in (9). Then,

Cpolyh is (r,H)–approachable (10)

⇐⇒ every containing half-space of Corth
(
(0)L

)
is one-shot s̃H–approachable.

When Cpolyh is indeed (r,H)–approachable, the results of the previous section provide
an approachability strategy of Corth

(
(0)L

)
based on the transformed payoffs s̃H . This

strategy also approaches Cpolyh in view of Lemma 2, however it might not be representable
in the original space Rd, as demonstrated in the following (counter-)example.

Example 1. Consider on the one hand the polytope Cpolyh =
{
ω ∈ R : ω ∈ [−1, 1]

}

and the associated linear transformation T defined by T (ω) = (ω − 1, −ω − 1) ∈ R2 for
all ω ∈ R. Consider on the other hand the following game. The sets of pure actions are
I = {T,B} and J = {L,R}, the signaling structure is H = Dark (with single signal
denoted by ∅), and the payoff function r is given by the matrix

L R

T −1 2
B −2 1

We identify ∆(I) and ∆(J ) with [0, 1].
We first discuss the dual condition (5) for (r,Dark)–approachability. For all x ∈ [0, 1],

we have m(x, ∅) = [−2 + x, 1 + x]. Thus, no mixed action x of the player is such that
m(x, ∅) is included in Cpolyh, which is therefore not (r,Dark)–approachable.
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We now turn to the primal condition as stated by Corollary 2. We denote by T =
(T1, T2) the components of the linear transformation T . From the linearity of T , we
deduce from the above-stated expression of m (based on r) that the sets of compatible
payoffs in terms of s = T (r) are of the form T

(
m(x, ∅)

)
. Taking the maxima, we thus

get, for all mixed actions x ∈ [0, 1] (and all y ∈ [0, 1] as the game is played in the dark),

s̃Dark(x, y) =
(
max T1

(
[−2 + x, 1 + x]), maxT2

(
[−2 + x, 1 + x])

)
= (x, 1− x) .

Again, the necessary and sufficient condition for (r,H)–approachability of Cpolyh fails,
as no containing half-space of the negative orthant but two of them is one-shot s̃Dark–
approachable. More precisely, these half-spaces are parameterized by (p, 1 − p) where
p ∈ [0, 1] and correspond to the points

{
(t1, t2) ∈ R2 : p1t1 + p2t2 6 0

}
. Except for the

case when p = 0 or p = 1, these half-spaces are strictly separated from the convex set{
(x, 1− x) : x ∈ [0, 1]

}
.

The question is now whether we could have determined this by satisfying some primal
condition in the original space R. First, consider some containing half-space of Cpolyh,
typically, either (−∞, 1] or [−1,+∞). Their transformations by T into subsets of R2

are included respectively in (−∞, 0] × R or R × (−∞, 0]. These are precisely the only
two half-spaces that were one-shot s̃Dark–approachable (by resorting to one of the pure
actions). Now, and more importantly, consider the containing half-space of the negative
orthant in R2 parameterized by p = 1/2, that is, Chs, 1/2 =

{
(t1, t2) ∈ R2 : t1+t2 6 0

}
; as

indicated above, it is not one-shot s̃Dark–approachable. However, this half-space contains
all the original space, in the sense that T (R) ⊂ Chs, 1/2, as follows from a simple calculus:
(ω − 1) + (−ω − 1) = −2. Therefore, there is no hope to prove, based even on general
subsets of the original game with payoffs in R, that the necessary and sufficient condition
on the half-space Chs, 1/2 in the transformed space R2 fails.

The fundamental reason why the primal characterization in the transformed space
cannot be checked based on considerations in the original space is because, in the absence
of a product property, the range of s̃Dark is outside the range of s; and we can only
access to the latter based on the original space. The moral of example is that we have to
consider some hidden containing half-spaces of the polytope Cpolyh in order to establish
some primal characterization; this is precisely what Condition (10) does.

9. Primal approachability of general convex sets

We consider in this section the primal approachability of general closed convex sets C.
In the case of polytopes, Lemma 2 was essentially indicating that only finitely many
directions in Rd (the ones given by the aℓ) had to be considered. In the case of general
convex sets, all directions are to be studied; we do so by resorting to support functions,
which we define based on the unit Euclidean sphere S =

{
ω ∈ Rd : ‖ω‖ = 1

}
. More

formally, the support function φC : S → R ∪ {+∞} of a set C ⊆ Rd is defined by

∀s ∈ S, φC(s) = sup
{
〈c, s〉 : c ∈ C

}
.

20



We now construct a lifted setting in which one-shot approaching the containing half-
spaces for some payoff function will be equivalent to (r,H)–approaching the original
closed convex set C. This setting is given by some set of integrable functions on S. We
equip the latter with the (induced) Lebesgue measure, for which S has a finite measure
and whose integration against will be denoted by ds. That is, we consider the set L2(S)
of Lebesgue square integrable functions S → R, equipped with the inner product

(f, g) ∈ L2(S)× L2(S) 7−→
∫

S
f(s) g(s) ds .

The orthant in L2(S) corresponding to C ⊆ Rd is

Corth(φC) =
{
f ∈ L2(S) : f 6 φC

}
.

The description of the lifted setting is concluded by stating the considered payoff function
Φ : ∆(I) ×∆(J ) → L2(S); it indicates, as in the previous sections, how to transform
payoffs given the signaling structure H. Formally,

∀x ∈ ∆(I), ∀ y ∈ ∆(J ), Φ(x, y) = φm(x,H(y)) ;

the square integrability of Φ(x, y) follows its boundedness, which stems from the bound-
edness of m

(
x,H(y)

)
; see Lemma 3 in appendix, property 1, for a reminder of this

well-known result (and others) on support functions.
We are now ready to state the primal characterization of approachability with partial

monitoring in the general case.

Theorem 3. For all games (r,H), for all closed convex sets C ⊂ Rd,

C is (r,H)–approachable

⇐⇒ every half-space Chs ⊃ Corth(φC) is one-shot Φ–approachable.

Proof. We first note that we can assume with no loss of generality that C is bounded thus
compact; indeed, C is (r,H)–approachable if and only if its intersection C ∩ r

(
∆(I ×J )

)

with the bounded convex set of feasible payoffs is approachable. This entails that φC ∈
L2(S).

Now, the proof follows the lines of the proof of Theorem 2. In particular, we exploit
the dual characterization (5), that indicates that for all y ∈ ∆(J ), there exists x ∈ ∆(I)
such that m

(
x,H(y)

)
⊆ C. It can be restated equivalently (see Lemma 3 in appendix,

property 3) as stating that for all y ∈ ∆(J ), there exists x ∈ ∆(I) such that Φ(x, y) 6 φC .
We thus only need to show that the stated primal characterization is equivalent to the
latter condition.

We start with the direct implication (from the dual condition to the primal condition).
As recalled in the proof of Lemma 1, the function m is concave/convex, which, together
with properties 3 and 4 of Lemma 3, shows that Φ is also convex/concave. Moreover,
as proved at the end of the proof of Lemma 1, the function (x, y) 7→ m

(
x,H(y)

)
is

a Lipschitz function, with Lipschitz constant denoted by Lm, when the set of compact
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subsets of the Euclidean ball of Rd with center (0, . . . , 0) and radius M is equipped with
the Hausdorff distance. This entails that Φ is also a Lipschitz function, with constant
LmV , where V is the volume of S for the induced Lebesgue measure. This is because
the Hausdorff distance δ between two sets D1 and D2 translates to a V δ–Euclidean
distance between φD1

and φD2
. Indeed, we have, by definition of the Hausdorff distance,

D1 ⊆ D2 + Bδ and D2 ⊆ D1 + Bδ, where Bδ is the Euclidian ball of Rd with center
(0, . . . , 0) and radius δ. Properties 4 and 1 of Lemma 3 respectively yield the inequalities

∣∣φD1
− φD2

∣∣ = max
{
φD1

− φD2
, φD2

− φD1

}
6 φBδ

6 δ ,

with, by integration,
∥∥φD1

− φD2

∥∥ 6 V δ.
The above-stated properties of Φ imply that for all ψ ∈ L2(S) with ψ > 0, the game

(x, y) 7→ 〈ψ, Φ(x, y)〉 has a value v(ψ), and that this value is achieved: there exists some
xψ ∈ ∆(I) such that

max
y∈∆(J )

〈
ψ, Φ(xψ, y)

〉
= v(ψ) = max

y∈∆(J )
min
x∈∆(I)

〈
ψ, Φ(x, y)

〉
.

Now, consider some half-space Chs containing Corth
(
φC
)
; it is of the form

Chs =
{
f ∈ L2(S) : 〈ψ, f〉 6 β

}
,

where necessarily, as can be shown by contradiction, ψ > 0. The dual condition is
satisfied by assumption, that is, for all y ∈ ∆(J ), there exists x ∈ ∆(I) such that
Φ(x, y) ∈ Corth(φC), and therefore, Φ(x, y) ∈ Chs. Thus, v(ψ) 6 β, as can be seen with
its expression as a max/min. The mixed action xψ thus satisfies that

〈
ψ, Φ(xψ, y)

〉
6 β

for all y ∈ ∆(J ), which is exactly saying that Φ(xψ, y) ∈ Chs for all y ∈ ∆(J ). We
therefore proved the desired one-shot Φ–approachability of Chs.

Conversely, we assume that the dual condition is not satisfied, i.e., that there exists
some y0 ∈ ∆(J ) such that for no x ∈ ∆(I) one has Φ(x, y0) ∈ Corth(φC). We consider the
continuous thus compact image Φ

(
∆(I), y0

)
of ∆(I) by Φ( · , y0). Its Euclidean distance

to the closed set Corth(φC) is thus positive, we denote it by δ > 0. Now, the distance of
an element f ∈ L2(S) to Corth(φC) is given by

dCorth(φC)(f) =

∫

S

(
f(s)− φC(s)

)
+
ds .

Since in addition, Φ is convex in its first argument (as shown in the first part of this
proof), we have that dCorth(φC)(f) > δ not only for all f ∈ Φ

(
∆(I), y0

)
but also for all f

in the convex hull of Φ
(
∆(I), y0

)
. The latter set is pointwise bounded (by M , as follows

from property 1 of Lemma 3) and is formed by equicontinuous functions (they all are M–
Lipschitz continuous, as follows from property 2 of the same lemma); the Arzela–Ascoli
theorem thus ensures that the closure of this set is compact for the supremum norm ‖ · ‖∞
over S. As by integration ‖ · ‖∞ > ‖ · ‖/V , the closure of the convex hull of Φ

(
∆(I), y0

)

and the set Corth(φC) are still δ/V –separated in ‖ · ‖∞–norm, thus are disjoint. Since
the former set is a convex and compact set, and the latter is a closed convex set, the
Hahn–Banach theorem entails that they are strictly separated by some hyperplane. In
particular, one of the two thus-defined half-spaces is not one-shot Φ–approachable.
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The above result is a generalization of the polytopial case

In Section 8 we showed that when approaching a polyhedra, there are only finitely many
directions (i.e., finitely many elements of the sphere S) of interest, namely, the directions
corresponding to the defining hyperplanes. On the contrary, with general convex sets,
every direction might be relevant, as a general convex set is defined as the intersection
of infinitely many half-spaces, one per element of S. This is the reason why, for general
convex sets, we introduced a lifting into the space of real-valued mappings on the whole
set S. We also resorted the uniform Lebesgue measure since all directions are equally
important.

On the other hand, as we recalled above, only a few directions matter in the polytopial
framework of Section 8. The results we obtained therein can in fact be obtained as a
corollary of Theorem 3 when the latter is stated (and proved) with a different measure
instead of the Lebesgue measure, given by the sums of the Dirac masses on the directions
of the defining hyperplanes.
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Appendix

A brief survey of some well-known properties of support functions

For the sake of self-completeness only we summarize in the lemma below some simple
and well-known properties of support functions.

Lemma 3. We consider a set C ⊆ Rd.

1. If C is bounded in Euclidian norm by C, then φC is bounded in supremum norm by
C and in Euclidean norm by V C, where V is the volume of S under the (induced)
Lebesgue measure.

2. If C is bounded in Euclidian norm by C, then φC is a Lipschitz function, with
Lipschitz constant C.

3. For all C′ ⊆ Rd, if C ⊆ C′, then φC 6 φC′. The converse implication holds if in
addition C′ is a closed convex set.

4. The function φ is linear, in the sense that for all γ > 0 and all all C′ ⊆ Rd, one
has φγC+C′ = γφC + φC′ .

Proof. Property 1 follows from the Cauchy–Schwarz inequality: for all s ∈ S,

∣∣φC(s)
∣∣ 6 sup

c∈C

∣∣〈c, s〉
∣∣ 6 sup

c∈C
‖c‖ ‖s‖ = sup

c∈C
‖c‖ ,

as the elements s ∈ S have unit norm. The bound in Euclidean norm follows by inte-
gration over S.

For property 2, we note that s ∈ S 7→ 〈c, s〉 is a ‖c‖–Lipschitz function (again, by the
Cauchy–Schwarz inequality). Therefore φC is the supremum of C–Lipschitz functions
and as such is also a C–Lipschitz function.

The first part of property 3 is by definition of a supremum. To prove the converse
implication, we use an argument by contradiction. We consider two sets C and C′, where
C′ is closed and convex. We assume that C is not included in C′ and show that the
existence of a s ∈ S such that φC(s) > φC′(s). The set C \C′ is not empty, let x be one of
its elements. The convex sets {x}, which is compact, and C′, which is closed, are disjoint
sets. The Hahn–Banach theorem ensures the existence of a strictly separating hyperplane
between these convex sets, which we can write in the form

{
ω ∈ Rd : 〈s, ω〉 = β

}
for

some s ∈ S and β ∈ R such that

φ{x}(s) = 〈s, x〉 > β and ∀c′ ∈ C′, 〈s, c′〉 < β .

This entails that φC′(s) 6 β < φ{x}(s) 6 φC(s).
Finally, the last property is because by definition

γC + C′ =
{
γc+ c′ : c ∈ C, c′ ∈ C′

}
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and thus, for all s ∈ S,

sup
c′′∈γC+C′

〈c′′, s〉 = sup
c∈C, c′∈C′

γ〈c, s〉 + 〈c′, s〉 = γ sup
c∈C

〈c, s〉 + sup
c′∈C′

〈c′, s〉 ,

where we used the fact that γ > 0 in the last equality.
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