N

N

The Coagulation - Fragmentation Equation and its
Stochastic Counterpart
Eduardo Cepeda

» To cite this version:

Eduardo Cepeda. The Coagulation - Fragmentation Equation and its Stochastic Counterpart. 2013.
hal-00772026v1

HAL Id: hal-00772026
https://hal.science/hal-00772026v1

Preprint submitted on 9 Jan 2013 (v1), last revised 8 Feb 2015 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00772026v1
https://hal.archives-ouvertes.fr

THE COAGULATION - FRAGMENTATION EQUATION AND ITS STOCHASTIC
COUNTERPART

EDUARDO CEPEDA

ABSTRACT. We consider a coagulation multiple-fragmentation equation, which describes the
concentration c¢(z) of particles of mass z € (0,00) at the instant ¢ > 0 in a model where
fragmentation and coalescence phenomena occur. We study the existence and uniqueness of
measured-valued solutions to this equation for homogeneous-like kernels of homogeneity pa-
rameter A € (0,1] and bounded fragmentation kernels, although a possibly infinite number of
fragments is considered. We also study a stochastic counterpart of this equation where a similar
result is shown. We ask to the initial state to have a finite A\-moment.

This work relies on the use of a Wasserstein-type distance, which has shown to be particularly
well-adapted to coalescence phenomena. It was introduced in previous works on coagulation and
coalescence.

Mathematics Subject Classification (2000): 45K05, 60K35.

Keywords: Coagulation Multi-Fragmentation equation, Coalescence - Fragmentation process,
Interacting stochastic particle systems.

1. INTRODUCTION

The coagulation-fragmentation equation is a deterministic equation that models the evolu-
tion in time of a system of a very big number of particles (mean-field description) undergoing
coalescences and fragmentations. The particles in the system grow and decrease due to suc-
cessive mergers and dislocations, each particle is fully identified by its mass = € (0,00), we
do not consider its position in space, its shape nor other geometrical properties. Examples of
applications of these models arise in polymers, aerosols and astronomy.

The first works (see [1, 8, 6]) were concentrated on the binary fragmentation where the
particles dislocate only into two particles :

Binary Model .- Denoting ¢,(z) the concentration of particles of mass = € (0,00) at time ¢,
the dynamics of ¢ is given by

date) = 5 [ Kna-pabate-piy-a@ [ Keatdy

+/OO F(z,y —x)c(y)dy — %Ct(x) /OIF(y,:v—y)dy,

for (t,z) € (0,00)%. The coagulation kernel K(z,y) = K(y,z) > 0 models the likelihood that
two particles with respective masses = and y merge into a single one with mass = + y. On the
other hand, the fragmentation kernel F' is also a symmetric function and F'(x,y) is the rate
of fragmentation of particles of mass = + y into particles of masses = and y.

The coagulation-only (F' = 0) equation is known as Smoluchowski’s equation and it has
been studied by several authors, Norris in [14] gives the first general well-posedness result
1
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and Fournier and Laurencgot [9] give a result of existence and uniqueness of a measured-
valued solution for a class of homogeneous-like kernels. The fragmentation-only (K = 0)
equation has been studied in [3, 13]. In particular, Bertoin characterized the self-similar
fragmentations using a fragmentation kernel of the type F'(z) = z® for @« € R and where the
particles may undergo multi-fragmentations.

We are interested in the version of the equation which takes into account a mechanism of
dislocation with a possibly infinite number of fragments:

Multifragmentation Model .- Denoting as before c¢,(x) the concentration of particles of
mass z € (0,00) at time ¢, the dynamics of ¢ is given by

Oree(z) = / K(y,z —y)e(y)er(x — y) dy — cx(x / K(x,y)ei(y) dy (1.1)

+/® Z%F (92) ct (of) —F(x)ct(:v)] B(d0).

i=1
This equation describes two phenomena. On the one hand, the coalescence of two particles of
mass = and y giving birth a new one of mass « + y, {z,y} — = + y with a rate proportional
to the coagulation kernel K(z,y). On the other hand, the fragmentation of a particle of mass
x giving birth a new set of smaller particles + — {61,022, --}, where 6,z represents the
fragments of =, with a rate proportional to F'(z)3(0) and where F': (0,00) — (0,00) and 5 is a

positive measure on the set © = {9 = (0;)i>1, with 2121 0; <1¢.

Note that we can obtain the continuous coagulation binary-fragmentation equation, for
example, by considering 3 with support in {6 : 6, +0, = 1} and 3(df) = b(01) df10{p,—1-6,}, and

setting F(z,y) = F(z + y)b ( ) where b(+) is a continuous function on [0, 1] and symmetric
at 1/2.

The study of the coagulation-fragmentation is more recent, for example in [15, 16, 6] the
authors give a result of existence and uniqueness to the binary fragmentation model. In
[12, 11] a well-posedness result is given for a multi fragmentation model, where the existence
holds in the functional set X = {f € L'(0,00) : [;*(1 + 2)|f(2)|dz < cc}. The authors used a
compactness method.

In this paper we extend the method in [9] concerning only coagulation, and we show
existence and uniqueness to (1.1) for a class of homogeneous-like coagulation kernels and
bounded fragmentation kernels, in the class of measures having a finite moment of order the
degree of homogeneity of the coagulation kernel. Unfortunately this method does not extend
to unbounded fragmentation kernels. Our assumptions on F' are not very restrictive for small
masses, since we do not ask to F' to be zero on a neighbourhood of 0. On the other hand, we
control the big masses imposing to the fragmentation kernel to be bounded near infinity.

We also study the existence and uniqueness of a stochastic process of coalescence - frag-
mentation. We follow the same ideas in [10], we construct a stochastic particle system. We
point out that the mass-conservation property allows us to consider in particular self-similar
fragmentation kernels as defined in [3] and, more generally, unbounded fragmentation ker-
nels.
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The paper is organized as follows: the deterministic equation (1.1) is studied in Sections
2 and 3. A stochastic counterpart is studied in Sections 4, 5, 6 and 7 and in Appendix A we
give some technical details which are useful in this case.

2. THE COAGULATION MULTI-FRAGMENTATION EQUATION.- NOTATION AND DEFINITIONS

We first give some notation and definitions. We consider the set of non-negative Radon
measures M* and for A € R and ¢ € M, we set

My(c) := /000 2 e(dz), ML ={ce M*, My(c) <oo}.

Next, for A € (0, 1] we introduce the space H, of test functions,

Hy = {¢ € ([0, 00)) such that ¢(0) = 0 and sup 12 = 2WI oo} .

xH#y |x - y|)\
Note that C1((0,00)) C Hj.

Here and below, we use the notation = A y := min{z,y} and = V y := max{x,y} for (z,y) €
(0,00)%.
Hypothesis 2.1 (Coagulation and Fragmentation Kernels). Consider A € (0,1] and a sym-
metric coagulation kernel K : (0,00) x (0,00) — [0,00) i.e.,, K(x,y) = K(y, ). Assume that K
belongs to W1>°((e,1/¢)?) for every e > 0 and that it satisfies
K(z,y) < rolz+y), (2.1
(@ AP K (2 y)| < maa* Ty, (2.2)

for all (x,y) € (0,00)? and for some positive constants ro and k1. Consider also a fragmenta-
tion kernel F : (0,00) — [0, 00)and assume that F belongs to W>°((¢,1/¢)) for every ¢ > 0 and
that it satisfies

F(x) < ko, (2.3)
[F'(z)] < kg™ (2.4)

3

for x € (0,00) and some positive constants ks and ks.

For example, the coagulation kernels listed below, taken from the mathematical and phys-
ical literature, satisfy Hypothesis 2.1.

K(z,y) = (z%+y*)» with a € (0,00), 8 € (0,00) and X = af € (0,1],
K(z,y) = x%° 4+ 2Py with 0 <a<g<1and A\=a+ g€ (0,1],
K(z,y) = (zp)*?*(x+y) P with « € (0,1], 8 €[0,00) and A=« — S € (0,1],
K(z,y) = (2% +y*)P|aY —y7| with a € (0,00), B € (0,00), v€ (0,1] and X\ =af +~ € (0,1],
K(z,y) = (z+y)e Pt "  with a € (0,0), B € (0,00), and A € (0, 1].
On the other hand, the following fragmentation kernels satisfy Hypothesis 2.1.
F(x)=1,

all non-negative function F € C?(0,00), bounded, convex and non-decreasing,
all non-negative function F € C?(0,00), bounded, concave and non-increasing.

We define the set of ratios by
@:{Gz(ek)k21:1>912922...20}'
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Hypothesis 2.2 (The § measure.-). We consider on © a measure [(-) and assume that it
satisfies

B8 (Zok>1> = 0, (2.5)

k>1

Cé\ = /@ZG,’E B(df) < oo for some A € (0,1]. (2.6)

k>2

Remark 2.3. i) The property (2.5) means that there is no gain of mass due to the dislocation
of a particle. Nevertheless, it does not exclude a loss of mass due to the dislocation of the
particles.

ii) Note that under (2.5) we have ), ., 0, —1 < 0 (-a.e., and since 0, € [0,1) for all k > 1,

0 < 07, we have

A
- <1-0,<(1-0)< (Zkzz 9k) <Y B—ae.,

(2.7
Zk21 92 -1= Zkzz 92 (1= 9?) < Zkzz 912\’
implying the following bounds:
Jo1 = 01)B(d0) < Cj, Jo(1 = 6)B(df) < C,
(2.8)

Jo(1—01)8(d0) < C3, [y (z,@ 0 — 1) B(do) < C.

Definition 2.4 (Weak solution to (1.1)). Let ¢ € M. A family (c;)i>0 C MTisa (¢, K, F, 3, \)-
weak solution to (1.1) if ¢y = ¢,

t— /OO o(x)c(dx) is differentiable on [0, 00)
0

for each ¢ € H,, and for every t € [0, 00),

sup My (cs) < o0, (2.9)
s€0,t]
and for all ¢ € H,
d o0 o0 o0
G o@atan = 5 [ [ K@) 2.10)
0 0 0

. / F(z) /O (B¢)(0, 2)B(d0)c; (dx),

where the functions (A¢) : (0,00) x (0,00) = Rand (B¢) : © x (0,00) — R are defined by

(Ad)(z,y) = oz +y)—o(z)— dy), (2.11)
(Bo)(0,2) = Y d(ix) — d(x), (2.12)
=1

This equation can be split into two parts, the first integral explains the evolution in time
of the system under coagulation and the second integral explains the behaviour of the system
when undergoing fragmentation and it corresponds to a growth in the number of particles of
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masses 01z, 6oz, - - -, and to a decrease in the number of particles of mass x as a consequence
of their fragmentation.

According to (2.1), (2.3), Lemma 3.1. below, (2.9) and (2.6), the integrals in (2.10) are
absolutely convergent and bounded with respect to ¢ € [0, s] for every s > 0.

The main result reads as follows.

Theorem 2.5. Consider A € (0,1] and ¢™ € M. Assume that the coagulation kernel K, the
fragmentation kernel F and the measure (3 satisfy Hypotheses 2.1. and 2.2 with the same \.

Then, there exists a unique (¢, K, F, 3, \)-weak solution to (1.1).

It is important to note that the main interest of this result is that only one moment is
asked to the initial condition ¢'*. The assumptions on the coagulation kernel K and the
measure [ are reasonable. Whereas the main limitation is that we need to assume that the
fragmentation kernel is bounded. It is also worth to point out that we have chosen to study
this version of the equation because of its easy physical intuition.

For other result on well-posedness of the coagulation multi-fragmentation equation we re-
fer to [11, 12]. Roughly, the solution is given in a functional space (the solutions are not
measures) and it is assumed for the initial condition that My(c™) + M;(c™) < co. The coagu-
lation kernel is assumed to satisfy K (z,y) < C(1 + x)*(1 + y)* with p € [0, 1), the number of
fragments on each dislocation is assumed to be bounded by N and the measure  is supposed
to be integrable. However, F' (or its equivalent) is not assumed to be bounded.

3. PrROOFS

We begin giving some properties of the operators (A¢) and (B¢) for ¢ € H, which allow us
to justify the weak formulation (2.10).

Lemma 3.1. Consider X € (0,1], ¢ € Hx. Then there exists Cy depending on ¢, 0 and X such

that
(@ + 9 M(AD)(z,y)| < Colzy),
(Bg)(0,2)] < szei,

for all (z,y) € (0,00)? and for all 6 € ©.

Prof of Lemma 3.1. For (A¢) we recall [9, Lemma 3.1]. Next, consider A\ € (0,1] and ¢ € H,
then, since ¢(0) = 0,

(B)(0,2)] < |p(6rz) — d(x)| + Y _ |6(6ix) — 6(0)]
i>2
< Coa(1—00) M+ Cyat Y 0 < Cya? ) 6]
i>2 i>2
We used (2.7). O

We are going to work with a distance between solutions depending on \. This distance
involves the primitives of the solution of (1.1), thus we recall [9, Lemma 3.2].
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Lemma 3.2. For c € M* and z € (0, ), we put

Fe@)i= [ T el
If c € M for some \ € (0,1], then

/ 2 F(x) dx = My(c)/\, lim 22 F¢(z) = lim 2*F¢(z) = 0,

0 r—0 T—00
and F° € L™ (g, 00) for each ¢ > 0.

We give now a very important inequality on which the existence and uniqueness proof
relies.

Proposition 3.3. Consider \ € (0,1], a coagulation kernel K, a fragmentation kernel F and
a measure (3 on © satisfying Hypotheses 2.1. and 2.2. with the same ). Let ¢ and d'™ €
M and denote by (ct)ef0,00) @ (¢, K, F, 3, \)-weak solution to (2.10) and by (dt)tef0,00) @
(d, K, F, 3, \)-weak solution to (2.10). In addition, we put E(t,z) = F(x) — F%(z), p(z) =
22~ and
R(t,x) :/ p(z)sign(E(t, z))dz for (t,x) € [0,00) x (0, 00).
0
Then, for each t € [0,0), R(t,-) € H, and

d

G [ oo < g [T [T K@l - ool e+ Bl s

1 [ [
+ B /0 ‘/0 0: K (x,y) (AR(t)) (x, y)(Ct 4 dt)(dy)E(t, z) dx

n /O F(z) /@ (BR(1))(0, 2)B(d6)E(t, z)dx

>~ A—1 A
+ /0 F(z)a* | E(t, z)] /O (Z& _1> B(d6)dz. (3.1)

i>1

Before to give the proof of Proposition 3.3., we state two auxiliary results. In Lemma 3.4.
are given some inequalities which are useful to verify that the integrals on the right-hand
side of (3.1) are convergent, and in Lemma 3.5. we study the time differentiability of E.

Lemma 3.4. Under the notation and assumptions of Proposition 3.3., there exists a positive
constant C such that for (t,z,y) € [0,00) x (0,00)?,

K(z,y) lp(z +y) —p(x)] < Cx*'yh,

K(z,y) |[(AR(t)) (z,y)| < Caty,

0. K (z,y) (AR(1)) (z,y)] < Ca* 'y,

/ ((BR(t))(0,z)| B(df) < CCha™. (3.2)
(C]

Proof. The first three inequalities were proved in [9, Lemma 3.4]. In particular, recall that

(AR()) (2. )] < >

“ A
3 (xAy)”, (3.3)
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for (¢,z,y) € [0,00) x (0,00)2. Next, using (2.8) and (2.6) we deduce

| 1roy6.180) = | [ > e ) - ()| )
0;x T
= /O Z;/o BwR(t,Z)dz—/elm Do R(t, z)dz| B(d6)
0;x T
< /(—)(Z/o z)‘*ldz—i-/e z’\ldz) B(d6)
< ; é‘:cA.

O

Lemma 3.5. Consider A € (0,1], a coagulation kernel K, a fragmentation kernel F and a
measure 3 on © satisfying the Hypotheses 2.1. with the same ). Let ¢™ € /\/lj{ and denote by
(ct)ieo,00) @ (¢, K, F, 3, \)-weak solution to (2.10). Then

(z,t) = O, F°t(x) belongs to L°°(0, s; L*(0, 00; 2*~1dx)), for each s € [0,00).

Proof. Following the same ideas as in [9], we consider ¥ € C([0, 00)) with compact support in
(0,00), we put

o(z) = / o) dy,  for x € (0,00),

this function belongs to #,. First, performing an integration by parts and using Lemma 3.2.
we obtain

/Oooﬁ(a:)FCf(a:)da: - /Ooo(b(a:)ct(da:).

Next, on the one hand recall that in [9, eq. (3.7)] was proved that
[ [ e a0ty easya:
— /OOO J(z) /OZ /OZ 1 o) (@ + 1) K (2, y)es (dy) o (dx)dz
- /OOO V() /:o /:O K(x,y)ei(dy) ci(d)dz.

On the other hand, using the Fubini Theorem, we have

/OOO F(z) /(_) (Bo) (0,2)B(df)ct(dx)

/OOO F(:c)/@ [Z /091:1 ﬁ(z)dz—/om ﬁ(z)dz] B(d8) ci(dx)

i>1

_ /O 9(2) /@ [; [ Feea) - / F(x)ct(dx)] B(d6) dz.
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Thus, from (2.10) we infer that

d oo

& [Tr@re@an = 5 [T00) [ e Kt at

00 [T K@ ety ez
IR
/ /[Z/ F(z)ey(dz) /F Ct(dx)] B(d) dz

>17=/0

whence

OF“(z) = %/0 /0 U ooy (7 + 9)K (2, y)ecdy) o) — 3 / ) / K y)aldy) i)

+/@[z

i>1

/OO F(x)ci(dx)B(d) — /OO F(x)ct(d:c):| B(do), (3.4)

Z/ei

for (¢,2) € [0,00) x (0,00). First, in [9, Lemma 3.5] it was shown that,

e 1
[l
0 2

Thus, from (2.3) and the Fubini Theorem follows that, for each ¢ € [0, c0),

/OZ /OZ Uiz 00) (2 + y) K (2, y)er(dy) ci(da) — %/ZOO /ZOO K(x,y)ci(dy) ci(dx)| dz

< 2o
- A

M)\(Ct)z.

/ ATLOF (2)|dz < 2—TMA(ct)2
0

o0
s
0

k (Z [, - [ F<I>Ct<dw>> ‘ (d0)d-

2k b A1 A1
< =My (e)? 4w dz + dz | ei(dx)B(do)
o [ [ (S [ o
2
< %MA( ) + /\MA ct) {/— (;9)‘ 1—9A)B(d9):|
A
< Zonne) + ),

where we have used (2.8). Finally, since the right-hand side of the above inequality is bounded
on [0,¢] for all ¢ > 0 by (2.9), we obtain the expected result. O

Proof of Proposition 3.3. Let t € [0,00).We first note that, since s — My(cs) and s — M) (ds)
are in L>(0,t) by (2.9), it follows from Lemmas 3.2. and 3.4. that the integrals in (3.1) are
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absolutely convergent. Furthermore, for ¢ > 0 and = > y, we have

|R(t,z) — R(t,y)| = /w A Lsign(E(t, 2)) dz

< (@=—y+y)—y")

> =

(2 —y*) =

A

S (‘T_y)u

Sl ==

since A € (0,1]. Thus R(t,-) € H, for each ¢ € [0, 00).
Next, by Lemmas 3.2 and 3.5, E € W1>(0, s; L'(0, co; 2~ !dz)) for every s € (0,T), so that

%/ 7 YNE(@ z)|de = / e Lsign(E(t,x)) 0, E(t, ) dx
0 0

= / 9. R(t,2) (0,F (z) — O F ™ (z)) dx.
0
We use (3.4) to obtain

i oo
dt J,

= 5 [ 0R) [ [ t o K e ) () — diy) () s

2 YE(t, z)|dx

_% /OO 0. R(t, z) /ZOO /:0 K(z,y)(ci(dy) c;(dx) — dy(dy) di(dx)) dz

0
n /O Q.R(t, 2) /@ [; / | Feec— doa) - / F(x)(ct—dt)(dx)} B(d0)B5)

Recalling [9, eq. (3.8)] and using the Fubini Theorem we obtain

% OOOIA1|E(t,:z:)|d;c _ %/Ooojc(t,x) (et — dy) (dx)Jr/OooIf(t,I) (o — dy) (dz), (3.6)
where

) = [ K@AROE A, e 0.0

F(ta) = Fa) [ (BRO)O.0)5(), v e (0,00).

It follows from (3.2) with (2.3) that
|17 (t,z)| < Ca?, x€(0,00), te0,00). 3.7

We would like to be able to perform an integration by parts in the second integral of the
right hand of (3.6). However, I/ is not necessarily differentiable with respect to . We thus
fix e € (0,1) and put

1 (t,2) = F(z) / (BR(H))(6,2)8.(d6), € (0,00),

S}
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where [, is the finite measure 3|g, with ©. = {# € © : §; <1 — ¢} and note that
1 1
Be(©) :/ T{1-0,>2) B(dF) < B / (1—61)B(dh) < B Cf} < 00. (3.8)
e S
Since F belongs to W1 (a,1/a) for a € (0,1) and |R(t,z)| < 2*/X and |0, R(t,z)| < 22! we

deduce that I/ € W1 (a, 1/a) for a € (0,1) with

i>1

f(t,2) = F'(x 2)Be x L R(tx)| Be . (3.
D11 (t,2) = F'( )/@( R(1))(6, 2)8.(d8) + F (= /@ [Zea R(t,0:2) — 0. R(t,2)| B.(d0). (3.9)
We now perform an integration by parts to obtain

| Hen - = [0 - 1) ) @ d) (@) - ) B 0

0 0
f X T XZ. .
+ /0 01! () E(t,z) d (3.10)
First, using (2.7) we have
/000 (If — Isf) (t,z) (cp — dy) (dx)
<o [ [ 1BRO)6.2)] (5 - B(@8) (e + ) o)

<52/ / (Z/M A 1dz+/911 Ale) L11-6,<c3B8(d0)(ct + di)(dz)

- -} €T Ct t €Z
s/o (I = I£) (t,2)| (co + dy) (d)

i>2

2/{2
/ /29 11—, <1 8(d0)(ct + di)(dx)

>2

2K
= 2 My (et + dy) /29 119, <1 8(d0),

A i>2
whence,

o0

lim (17 —11) (t, %) (e, — dy) (dx) = 0. (3.11)

e—=0 Jo

Next, it follows from (3.7) that
[II(t,2)E(t,x)| < Ca* (F*(2) + F¥*(z)), z € (0,00), t € [0,00),
we can thus easily conclude by Lemma 3.2. that
lim Il (t,x)E(t,z) = lim I (t,z)E(t,z) = 0. (3.12)
Finally, (2.4), Lemma 3.2. and (3.2) imply that
(3.13)
iy [ F@) [ (BROG.05@0 = [T F@) [ (BROIE.B)EC

e—0
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while

(3.14)

lim sup /O b F(z) /O > 0:0:R(t,0;x) — 0, R(t,x) | B=(dO)E(t, x)dx

e—0 i>1

= lim sup /0 e /O > 600 Lsign(E(t, 0,w)) — 2> sign(E(t, x)) | B(d0)E(t, x)dx

e—0 i>1

= limsup /000 F(x)a:)‘flsign(E(t,:c))E(t,:c)/O Z 0} sign (E(t,0:2)E(t,x)) — 1 | B-(df)dx

e—0 S i>1

< lim sup /O h F(x)z Y E(t, )| /O > 6} — 1| B(df)dx

e—0 i>1

= - xa:)‘71 T A x.
- / F(a)a Y E(t, )| /O S0 -1 plaoyd

i>1

We have used (2.3). Recall (3.6), the term involving I¢ was treated in [9, Proposition 3.3],
while from (3.10) with (3.11), (3.12), (3.13) and (3.14) we deduce the inequality (3.1), which
completes the proof of Proposition 3.3. O

Note that it is straightforward that under the notation and assumptions of Proposition 3.3.,
as in [9, Corollary 3.6], from (2.3), (2.4), (2.8) and using Lemma 3.4., there exists a positive
constant C; depending on )\, k¢ and x; and a positive constant C> depending on x», k3 and CZ;\
such that for each ¢ € [0, c0),

% a:)‘71|E(t,a:)|dxSC’lMA(ct—i-dt)/ 17)‘71|E(t,a:)|d:c—|—02/ 2 YE(t,z)|de. (3.15)
0 0 0

3.1. Proof of Theorem 2.5.

Uniqueness. Owing to (2.9) and (3.15), the uniqueness assertion of Theorem 2.5. readily
follows from the Gronwall Lemma. O

Existence. The proof of the existence assertion of Theorem 2.5. is split into three steps. The
first step consists in finding an approximation to the coagulation-fragmentation equation by
a version of (2.10) with finite operators: we will show existence in the set of positive measures
with finite total variation, i.e. M(J{ , using the Picard method.

Next, we will show existence of a weak solution to (1.1) with an initial condition ¢” in
M7 N M7, the final step consists in extending this result to the case where ¢’ belongs only

to M.

Bounded Case : existence and uniqueness in M .-
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We consider a bounded coagulation kernel and a fragmentation mechanism which gives
only a finite number of fragments. This is

K(z,y) < K, forsomeK €R"
F(z) < F, forsomeF €R*
5O) < oo, (316
B(O\OL) = 0, for some k € N,
where
@k:{9:(9n)n21 c0O: 9k+1 :9k+2:"'20}-

We will show in this paragraph that under this assumptions there exists a global weak-
solution to (1.1). We will use the notation || - ||« for the sup norm on L*°[0, c0) and || - ||y ¢ for
the total variation norm on measures. The result reads as follows.

Proposition 3.6. Consider '™ € M. Assume that the coagulation and fragmentation ker-
nels K and F and the measure 3 satisfy the assumptions (3.16). Then, there exists a unique
non-negative weak-solution (j:):>o starting at oy = p' to (1.1). Furthermore, it satisfies for
allt >0,
?511? [psllve < Cellp™ (v, (3.17)
.t

where C, is a positive constant depending on t, K, F and S.

To prove this proposition we need to replace the operator A in (2.10) by an equivalent one,
this new operator will be easier to manipulate. We consider, for ¢ a bounded function, the
following operators

(@) = Kl [ 500 +9) - )] (319)
Lo)w) = Fla) [ | Y o) - o) | pao). (3.19)
© \i>1

Thus, (2.10) can be rewritten as

d o0 o0 oo -
& [ owatn = [T [Tdowmai + L] aw. @20
0 0 0
The Proposition will be proved using an implicit scheme for equation (3.20). First, we need
to provide a unique and non-negative solution to this scheme.

Lemma 3.7. Consider '™ € M{ and let (v1);>0 be a family of measures in M{ such that
supp 4 [[Vsllvr < oo for all t > 0. Then, under the assumptions (3.16), there exists a unique
non-negative solution (p;)i>o starting at jo = p™ to

(3.21)
o] 00 t o] oo
[ stwman = [ swptan+ [ 7] G + Lo nianas
for all ¢ € L>=(R™). Furthermore, the solution satisfies for all t > 0,

?111? lusllvr < Co ™ lvr, (3.22)
0,

where C, is a positive constant depending on t, K, F and .

The constant C; does not depend on supyg 4 ||vs|lvr-
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We will prove this lemma in two steps. First, we show that (3.21) is equivalent to another
equation. This new equation is constructed in such a way that the negative terms of equation
(3.21) are eliminated. Next, we prove existence and uniqueness for this new equation. This
solution will be proved to be non-negative and it will imply existence, uniqueness and non-
negativity of a solution to (3.21).

Proof. Step 1.- First, we give now an auxiliary result which allows to differentiate equation
(3.24) when the test function depends on ¢.

Lemma 3.8. Let (t,2) — ¢(z) : RT x RT — R be a bounded measurable function, having a
bounded partial derivative 0¢/0t and consider (ji+):>0 @ weak-solution to (3.21). Then, for all
t >0,

& | eaman = [ Zo@mans [ [T o s+ [ Lo

Proof. First, note that for 0 < ¢; < t, we have,

/OOO bty () pt, (dz) — /OOO o, ()1, (d)

-/ " (G0 (&) — 1y (2)) ey (d) + / " o, @) (s — i) (d)

0

/tl / g P (@tna (de)ds + / @ /0 " o )
N / 2/ 57 %s (@), (dx)ds
/ [/ / (Adn, ) (@, y)us (du)vs(dy) + / (Lfbtl)(ff)ﬂs(dx)} ds.

Thus, fix ¢t > 0 and set for n € N, tk—t—wﬂzhk—Ol -, n, we get

| oammtan = [ ¢0(517)N0(d517)+2[ | on@mtan) = [ (@ (o)

/ bo (@) o (dz) +Z/t / 7? ) i, (dz)ds
. /[ [ o e mnetomtans + [ (o wm(d) ds

k=1

. t
Next, for s € [t—1,tx) we set k = {?J and use the notation s, := ¢, = - {%J and s, == tp_1.

Thus, the equation above can be rewritten as

/@ )pua(de) /¢o Yoo d) // O u(a), (dr)ds
// / (Ags) :vyus(d:vvsdyd8+// (Los, ) () ps(dx)ds

and the lemma follows from letting n — oo since 5,, — s. O
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Next, we introduce a new equation. We put for ¢ > 0,

Yi(@) = exp [ /0 t ( /0 " K (@, y)vs(dy) — F(x)) ds] , (3.23)

and we consider the equation

i o) = /m[ /OOO%K(:c,y)(mt)(xw)ut(dy)

/ S (67)(0i2)8 deh ()i (d}3.24)

i>1
Now, we give a result that relates (3.21) to (3.24).

Lemma 3.9. Consider " € M and recall (3.23). Then, (j;)i>0 with puy = p'* is a weak-
solution to (3.21) if and only if (fit)i>0 with iy = u'™ is a weak-solution to (3.24), where [i; =
Yepu for all t > 0.

Proof. First, assume that (y;):>0 is a weak-solution to (3.21).

oo

We have 82%( ) = v(x) [/ K(x,y)vi(dy) — F(x )} Note that v, v, * and %% are bounded
on [0,¢] for all ¢ > 0, by (3.16) and since supyq 4 [|vs||vr < oo.

Set ji; = v4ut, recall (3.18) and (3.19), by Lemma 3.8., for all bounded measurable functions
¢, we have

) " (e d) = / T s@m() [ / " Ky (dy) F(@] ()

/ / { (dve)(x +y) — (¢”Yt)(fl?)] K (z,y)v(dy) e (dz)

+ / F() /O (Zwm(eix)—(mtxx)) B(d8)s(d)

i>1

/oo /Oo lK(MJ)(W)@ + )i (dy) e (d)
/ /Z ¢y1) (0;2) B(dO) puy (de)

i>1

a [ / LK@ )o@+ yywildy)
0 0

F@) [ S ()0 cw]% (x) i (o),

i>1

and the result follows.
For the reciprocal assertion, we assume that (fi:);>0 is a weak-solution to (3.24), set y; =
7; ‘iz and we show in the same way that (j1;);>0 is a weak-solution to (3.21). O
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We note that, since all the terms between the brackets are non-negative, the right-hand
side of equation (3.24) is non-negative whenever ji; > 0. Thus, -, is an integrating factor that
removes the negative terms of equation (3.21).

Step 2.- We define the following explicit scheme for (3.24): we set i) = ™ for all t > 0 and
forn >0

n B [o ] 001
& [ ewman — [ l /0 S K 9) (670w + y)u(dy)
/ S (6) (0328 d@] (o) i (d)

i>1
/16’“ = un,
(3.25)
Recall (3.16), note that the following operators are bounded:
’ / SECy)(0m)(- +y)re(dy) H < Cifllloo, (3.26)
/ D (67)(0:)Bd0)|| < Celldllec, 3.27)

i>1
[eS)

where C; is a positive constant depending on K, F, § and supyg ,, [|vs]lvr.

Thus, we consider ¢ bounded, integrate in time (3.25), use (3.26) and (3.27) to obtain
| ot (o) - @) < Cuilol / iz - |y ds
0

t
[l =z s

note that the the difference of the initial conditions vanishes since they are the same. We
take the sup over [¢[| <1 and use supyg 4 [|vs|lvr < oo to deduce

t
155+ = il < Co [l = s

where C; is a positive constant depending on K, F, 3, supjo,q [vsllvr and [|¢]~. Hence, by
classical arguments, (fi}');>¢ converges in M uniformly in time to (ji;);>0 solution to (3.24),
and since iy > 0 for all n, we deduce fi; > 0 for all ¢ > 0. The uniqueness for (3.24) follows
from similar computations.

Thus, by Lemma 3.9. we deduce existence and uniqueness of (y);>( solution to (3.21), and
since ji; > 0 we have u;, > 0 for all ¢ > 0.

Finally, it remains to prove (3.22). For this, we apply (3.21) with ¢(x) = 1, remark that
([u) (z,y) < 0 and that (L1)(z) < F(k — 1)3(O). Since y; > 0 for all ¢ > 0, this implies

o0 t
el = / e(dz) < Ilpollyp + F(k — 1)B(dO) / sl ds
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Using the Gronwall Lemma, we conclude

sup || sy < ||,ui"||VT et forall t >0,
0,1]

)

where C is a positive constant depending only on K, F' and 3. We point out that the term
sup(o 4 [[Vs|lvr is not involved since it is relied to the coagulation part of the equation, which
is negative and bounded by 0. This ends the proof of Lemma 3.7. O

Proof of Proposition 3.6. We define the following implicit scheme for (3.20): n? = ™ for all
t > 0and forn > 0,

n+1 o > << T n+1 )" > T n+1 T
/ ()l (dr) = / / (A)(a, ) (d >ut<dy>+/0 (L) () i+ (d)

ot =
(3.28)

First, from Lemma 3.7. for n > 0 we have existence of (1] );>o unique and non-negative
solution to (3.28) whenever (1} ):>o is non-negative and supy,  [|u5 [lvr < oo for all ¢ > 0.

Hence, since ;" € M, by recurrence we deduce existence, uniqueness and non-negativity of
(1150 for all n > 0 solution to (3.28).

Moreover, from (3.22), this solution is bounded uniformly in n on [0,¢] for all ¢ > 0 since
this bound does not depend on 4}, i.e.,

supsup ||y lvr < G|y (3.29)
n>11[0,1]

Next, note that the operators A and L are bounded:
ILllee < F(k+1)B(0)]6llo; (3.30)

|[" o mian| < SRiollutvr (33D

From (3.31) and (3.30),
/ () (ui " (dz) — i’ (de))
- /OOO /OOO(AWWJ (pitH (do)pp (dy) — pi (d) ™ (dy) )
+/°°(L¢>< ) (0 — u) (da)

IN

= / / (™ = ) (do) gt (dy) + pp (de) (g — ™) (dy)]

+ / (L)) (up*t — i) (de)

3— n n n >~ n n—
SRl il | [ b = )+ [ =t

+F(k+1)BO)0lloo |1 = il 1

IN
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implying,
d > n n 3— n il n n
G o) () <) < ol (S Ilyr + T4 050) ) 0+ = iy

3= n n n—
+§K [@lloo Nt llyr ||1d — 1 1HVT :
We integrate on ¢, take the sup over ||¢]| < 1, and use (3.29), to deduce that there exist two

constants C4; and C5,; depending on ¢ but not on n such that

¢ t
||M?+1 _ N?HVT < Cl,t/o ||N?+1 - N?HVT ds + CQJ/() ||“? - “gilHVT ds.

Note that the difference of initial conditions vanishes since they are the same. We obtain
using the Gronwall Lemma.

t
ot = by < ot [z = 2y

Hence, by usual arguments, (u}');>o converges in M uniformly in time to the desired solu-
tion, which is also unique. Moreover, for some finite constant C' depending on ¢, K, F and 3,
this solution satisfies (3.17) by (3.29).

This concludes the proof of Proposition 3.6. O

Existence and uniqueness for ¢ € M{ N M, .-

We are no longer under (3.16), more generally we assume Hypotheses 2.1. and 2.2. This
paragraph is devoted to show existence in the case where the initial condition satisfies:
¢ e Mj\r N M.

First, for n > 1, we consider ¢*"(dz) = 11, (dz), this measure belongs to M{ and
satisfies

sup My (c™™) < My(c™). (3.32)
n>1

We also note that (Fcn") converges towards F°" in L'(0, 00; 22! dz) as n — co. Define
K, by K, (z,y) = K(z,y) An for (z,y) € (0,00)%. Notice that (2.1) and (2.2) warrant that

Kn(z,y) < ko(z+y),
(A AYM| 0 Kn(z,y)| < sz iyt

Furthermore, we consider the set ©(n) defined by ©(n) = {# € ©: 6, <1— 1}, we consider
also the projector

(3.33)

wn3 0 — @n
0 — () = (01, ,0n,0,---), (3.34)

and we put

Bn = TLocomB oy, . (3.35)
The measure (3, can be seen as the restriction of 3 to the projection of ©(n) onto ©,,. Note
that ©(n) C ©(n + 1) and that since we have excluded the degenerated cases ¢; = 1 we have

U, ©(n) = ©.
Then, K,,, F and £, satisfy (3.16) (use (3.8)) and since ¢'*" € M, we have from Proposi-
tion 3.6. that for each n > 1, there exists a (¢""", K,,, F, B,,, \)-weak solution (c}');>o to (2.10).
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Note that since we have fragmentation it is not evident that M, (c;) remains finite in time.
We need to control M, (c;) to verify (2.9). For this, we set ¢(z) = z*, from (2.10) and since
(Ad)(z,y) < 0 we have

& [TPaan = 5 [T [T K e )

_|_/®/OOO (29)‘ — 1) x’ e (dx) By (dh)

i>1

IN

ko C 2‘ M (c}),
where we used that clearly, Cé\n < Cg for all n > 1 (recall (2.6)).
Using the Gronwall Lemma and (3.32) we deduce, for all ¢ > 0

supsup M (c2) < Cy, (3.36)
n>1[0,]

where C} is a positive constant. Next, apply (2.10) with ¢(z) = 2% and since .., 07 — 1 <0
the fragmentation part is negative. In [5, Lemma A.3.(ii)] was shown that there exists a
constant C' depending only on A and k¢ such that K, (z,y)|(4¢)(z,y)| < K(x,y)|(Ad)(x,y)| <
C(2%y> + 2 y?). Thus,

d [* 5, c [ [~ n n
4w < / (22 + 2y?) & (dx) & (dy)
0 0 0

= CMy(c})Ma(c}).

IN

Using the Gronwall Lemma, we obtain
MQ(C?) < Mg(Cin) eC I A{)\(C:)ds’
for ¢ > 0 and for each n > 1. Hence, using (3.36) we get

supsup Ms(cl) < Cy, (3.37)
n>1 0,

where C; is a positive constant.
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We set B, (t,z) = F ' (z) — F () and define R, (t,z) = [ 2> 'sign(E,(t, z))dz. Recall (3.4)
and (3.5),

d

1 (oo} z z
= 3] 0B [ [ @ ) ) @ () 6 ) ) f )

2 E, (t, x)|dx

5 [0t [ [ Kt ) e ) — i ) a

/ 0. Ry (1, 2) / / (Pt — M) (dx) Bpy1(d) dz

—/0 (?an(t,z)/G/ F(:z:)(cf“—c?)(dx)ﬂmrl(d@)dz

41 / Rt ) / ) / ooy (@ 9) (K12, ) — Ko(2,9)) € (dy) e () d2
__/ 0, Ru(t, 2) / / Knii(2,y) = Ku(w,y)) & (dy) ¢ (do) dz

+/ Ban(t,z)/@ 2 Z/GVF(x)c?(dx)(BnH—ﬁn)(dH) dz

/ Oy Rt 2) // ) ¢(dx) (Bns1 — Bn)(d0) dz

Thus after some computations, we obtain

d

pn 2 HE, (¢, 2)|de = TP (t,x) + IRt ) + I3 (t, x) + IR(t, 2), (3.38)
0

where I7'(t,z) and I} (t,z) are respectively the equivalent terms to the coagulation and frag-
mentation parts in (3.6) and

() = / / K1 (2,) — Ko, )) (AR (8)) (2, ) (dy) ¢ (dx)

13 (t,x)

| F@) [0, - 5@t ),
which are the terms resulting of the approximation.

Exactly as in (3.15), since the bounds in (3.33) do not depend on n and that (3, satisfies
(2.6) uniformly in n, we get

It x) + I3 (t, ) < CLMy(c} + cf“)/ 2 YE, (t, x)| dz + Cg/ Y E, (t,z)| dz. (3.39)
0 0
Next, since

K(z,y)*

Kni1(2,y) = Kn(2,9) = Lk @y)>ni1y + (K (@) =n)liner@y<niny < Lg@y>ny £ — 3
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and using (3.3), we have

15t 2)| =

Knt1(2,y) — Kn(2,y)) (AR (1)) (2, y)c} (dy) ¢ (dx)

! / / K; (AR (8)) (@, )| ¢ (dy) e} (d)

22)\+1 2 2)\

St [ @ e napan )

C n n

FMQ)\(Ct YM(c}) (3.40)

1
n?

IN

IN

IN

S Ct7

we have used Moy (¢;) < My(ci) + Ma(c;) together with (3.36) and (3.37).
Finally, since [o(BR,(t))(0,2)8,(d0) = [o(BR,(t))(¥n(0), )1 {gcom)B(df), we have

G

| 7@ [ (R0 @0 0).2) — (BR,0) @ 0).2)] Lo
0 S]

+ (BRA()($n41(9), 2 Lot 1o0m) | B(d0)c] (d)

IN

A F(:Z?)/ |Rn(t, 9n+1$)| ]l@(n+1)m@(n)ﬂ(d9)c?(d:r)

n+1
+/ / ZR (t,0;x) — Ry (t,x)
0
O/ arcj (dx)/@@H]l{@(ml)me(n)}ﬂ(d@)
0

+ C/ o e (dx) /29 Tiom+1nom)B(do)
0

i>2

Lomt+inem)B(dd)c (dx)

IN

IN

ct/ ARG d9)+Ct/ > 0Momnem)Bdd), (3.41)

© i>2
we used (2.8) and (3.36). Gathering (3.39), (3.40) and (3.41) in (3.38), we obtain

d [ . 0o 1
pn xA71|En(t, x)|de < CyMy(c™) / xA71|En(t, x)| dx + — Ct
0 0

+Ct/ »1B(df) “I‘Ot/ 29 Tiom+1)\om)B(do).

i>2
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Thus by the Gronwall Lemma we obtain

o0 n n o0 in,n in,n 1
/ A ‘Fct“(gc) — P4 (:v)‘ de < Ct</ A ‘FC +1(96) - F° (:v)‘ dz + —
0 n

/9n+16 do) + /@Ze Lio(mt1ner n>}ﬁ(d9)>

i>2

for t > 0 and n > 1 and where C, is a positive constant depending on \, kg, <1, k2, K3, Cg, t
and ¢'". Recalling that

t — F belongs to C ([0,00); L (0, 00; 2~ 'dx))

for each n > 1 by Lemma 3.2. and Lemma 3.5, and since the last three terms in the right-hand

side of the inequality above are the terms of convergent series, we conclude that (t — FC?)W>1

is a Cauchy sequence in C ([0, 00); L' (0, 00; 2*~'dz)) and there is
fec ([0,00);L1(0,oo;9c’\_1d:v))
such that

lim sup / A ‘FC:H (z) — f(s,:c)‘ dx =0 foreach ¢ € [0,00). (3.42)

N0 se(0,¢] Jo

As a first consequence of (3.42), we obtain that x — f(¢,z) is a non-deacreasing and non-
negative function for each ¢ € [0, c0). Furthermore,

lim sup /a:)‘_lf(s,x)d:r—i-/ 2V f(s,x)dx| =0 (3.43)
e=04¢e00,4] | Jo 1/e

for each ¢ € (0, 00) since f € C ([0, 00); L*(0, o0; 2*~!dx)).

We will show that this convergence implies tightness of (¢}'),>1 in Mj{, uniformly with
respect to s € [0,t]. We consider ¢ € (0,1/4), and since = — F¢ (z) is non-decreasing and
A € (0,1], it follows from Lemma 3.2.:

/ e (dx) + / e (dx) < / 2 TVRC (2)dx —i—/ 2 TVF (2)d.
0 1/e 0 1/(2¢)
The Lebesgue dominated convergence Theorem, (3.42) and (3.43) give

1> o0
lim sup sup / 2 e (dx) + / 2 (dx)| =0, (3.44)
20 ,>1 5€[0,4] 1/e
for every t € [0,00). Denoting by c¢;(dz) := —0,f(t,x) the derivative with respect to = of

f in the sense of distributions for ¢ € (0,0), we deduce from (3.36), (3.42) and (3.44) that
ci(dx) € M with My (c;) < €523t My (™).

Consider now ¢ € C1((0,0)) and recall that |¢/(z)| < Cx*~! for some positive constant C. On
the one hand, the time continuity of f implies that

t— /000 o(x)e(dz) = /000 &' (x)f(t,z)dx
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is continuous on [0, c0). On the other hand, the convergence (3.42) entails

| ¢@ (F @ - ro@)as
c /0 (F () _FCS(Q:)) dz

lim sup
00 50,

/ o) (" — cs)(dz)| = lim sup

N0 5(0,t]

< lim sup
N0 5(0,t]

. (3.45)
for every ¢t > 0. We then infer from (3. 44) (3.45), Lemma 3.1., (3.2) and a density argument
that for every ¢ € H,, the map ¢ — fo x)e(dx) is contmuous and
i sup | [ o)l - eds)| = o
n—=0 se10,t] |Jo
i sup 5[ [ (A0l ()€l () (dy) = e (daen a)
0 se(0,t]
+ [ F@ [ Bow.osaoe - i) = o
0

We may thus pass to the limit as n — oo in the integrated form of (2.10) for (¢}'):>o and deduce
that for all ¢ > 0 and ¢ € H,, we have

/OO o(x)er(z)de = /OO o(z)c™ (x) dx (3.46)
0 0

1 [>® [
+§/0 /0 [P(x +y) — ¢(x) — (Y)| K (2, y)ci(dz)cr (dy)

) @W g

Classical arguments then allows us to differentiate (3.46) with respect to time and conclude
that (cI');>0 is a (¢, K, F, 3, \)-weak solution to (1.1).

F(x)B(d8)c;(dx).

Existence and uniqueness for ¢ € M .-

We have shown existence for ¢ € MT N M,. Now we are going to extend the previous
result to an initial condition only in /\/l;\r For this, we consider (a,),>1 and (A4, ),>1 two
sequences in RT such that a,, is non-increasing and converging to 0 and A,, non-decreasing
and tending to +oco with 0 < ag < Ag. We set B,, = [an, 4, ] and define

cm’"(dx) = cm|Bn (dx),

note that trivially we have M (c"™") < oo. Next, we call (¢7);>1 the (¢"™", K, F, 3, \)-weak
solution to (1.1) constructed in the previous section.

Owing to Proposition 3.3. and (3.15), we have for t > 0 and n > 1

/ ! ‘FWH x) — F& (:v)‘ dr < ec‘/ At ‘ch’nﬂ(:v) — Fcnn(:v) dz,
0 0
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Next, we have

/ At ’ch’nﬂ(x) — Fcnn(ac)’ dz
0

—+o0
[T
0

+oo +oo )
- /0 ‘T)\_l /0 ]l[z"Jroo) (y) (]l[a"+1va")(y) + ]l[An-,An+1)(y)) Czn(dy)dxv

note that since 3 - [La,.1.a,)(¥) + Lja,.4,,1)(¥)] < L+ (y) the term in the right-hand of
the last inequality is summable. We conclude that (¢~ F)
C ([0, 00); L'(0, 00; 2*~*dzx)) and there is

fec ([O,oo);Ll(O,oo;:cAfld:r)) ,

+oo ) )
/0 Ly to0) ) ("B, — ™ B,..) (dy)|da

>, 1s a Cauchy sequence in

such that
lim sup / A ’Fazﬂ(:c) - f(s,:z:)’ dx =0 foreach ¢ € [0,00).
n=00 s¢l0,t] Jo
and we conclude using the same arguments as in the previous case, setting ¢; := —9,.f (¢, z) in

the sense of distributions, that (c;):>0 is a (¢, K, F, 3, \)-weak solution to (1.1) in the sense
of Definition 2.4.

This completes the proof of Theorem 2.5. O

4. STOCHASTIC COALESCENCE-FRAGMENTATION PROCESSES

Let St the set of non-increasing sequences m = (m,),>1 with values in [0, +00). A state
m in S* represents the sequence of the ordered masses of the particles in a particle system.
Next, for A € (0, 1], consider

0 = {m = (mp)r>1 € SY, |Imllx = Zmﬁ < oo} .
k=1
Consider also the sets of finite particle systems, completed for convenience with infinitely
many 0-s.
log = {m = (mp)r>1 € Si,inf{k >1,m, =0} < oo} )

1
Remark 4.1. Note that for all 0 < \; < o, Loy C £y, C £y,. Note also that, since ||m||; < ||m]}
the total mass of m € (y is always finite.

Hypothesis 4.2. We consider a coagulation kernel K bounded on every compact set in [0, 00)?.
There exists A € (0, 1] such that for all a > 0 there exists a constant k, > 0 such that for all x,
y; :E: g S (07 CL],

K (2,y) = K(@,5)] < ka[l2* =2+ |y = 5], (4.1)

We consider also a fragmentation kernel F : (0,00) — [0, 00), bounded on every compact set in
[0,00). There exists « € [0,00) such that for all a > 0 there exists a constant p, > 0 such that
forall z, & € (0,a],

|F(x) — F(2)| < pg |2% — 2%. (4.2)
Finally, we consider a measure (3 on O satisfying (2.5), (2.6).
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We will use the following conventions
K(z,0)=0 forall x € [0,0),
F(0)=0.
Remark that this convention is also valid, for example, for K = 1. Actually, 0 is a symbol used

to refer to a particle that does not exist. For § € © and = € (0,00) we will write 6 - = to say
that the particle of mass x of the system splits into 6,2, 62, - - -.

Consider m € /¢y, the dynamics of the process is as follows. A pair of particles m; and m
coalesce with rate given by K (m;,m;) and is described by the map ¢;; : £y — ¢, (see below).
A particle m; fragmentates following the dislocation configuration § € © with rate given by
F(m;)B(df) and is described by the map fip : ) — £, with

cij(m) = reorder(may, - ,mi_1,M; + My, Miy1, -, Mj_1,Mjp1,- ), (4.3)
fio(m) = reorder(mi, - ,mi—1,0 - mi,mip1, ),

the reordering being in the decreasing order.

Distances on S

We endow S+ with the pointwise convergence topology, which can be metrized by the dis-
tance

d(m,m) = 27 Fmy — . (4.4)
k>1
Also, for A € (0,1] and m, m € ¢, we set
dx(m,m) = [mp —m} (4.5)
E>1

Infinitesimal generator Lf(y F

Consider some coagulation and fragmentation kernels K and F' and a measure 5. We define
the infinitesimal generator Ef(y  for any @ : £y — R sufficiently regular and for any m € ¢, by

L p®m) =Y K(mi,m)[@ (cij(m)) - &(m)] +ZF(mz‘)/ [@ (fig(m)) — @(m)] B(dO).

1<i<j<oco i>1 ©
(4.6)

5. RESULTS

We define first the finite coalescence - fragmentation process. In order to prove the exis-
tence of this process we need to add two properties to the measure 5. Namely, the measure of
© must be finite and the number of fragments at each fragmentation must be bounded:

EX I (5.1)
BO\O,) = 0 forsomek €N, .
where
Ok ={0=(0)n>1 €0 : Oy1 =00 =---=0}.

Proposition 5.1 (Finite Coalescence - Fragmentation processes). Consider A\ € (0,1] and
m € loi. Assume that the coagulation kernel K, the fragmentation kernel F and a measure 3
satisfy Hypotheses 4.2. Furthermore, suppose that [3 satisfies (5.1).
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Then, there exists a unique (in law) strong Markov process (M (m, t)):>o starting at M (m,0) =
m and with infinitesimal generator E?(_’ I

We wish to extend this process to the case where the initial condition consists of infinitely
many particles and for more general fragmentation measures 3. For this, we will build a
particular sequence of finite coalescence - fragmentation processes, the result will be obtained
by passing to the limit.

Lemma 5.2 (Definition.- The finite process M™(m,t)). Consider A € (0,1], « > 0 and m € {y.
Assume that the coagulation kernel K, the fragmentation kernel F and the measure (3 satisfy
Hypotheses 4.2. Furthermore, recall f3,, as defined by (3.35).

Then, there exists a unique (in law) strong Markov process (M"™(m,t)),>o starting at m and
with infinitesimal generator Efgj P

This lemma is straightforward, it suffices to note that 3, satisfies (5.1) and to use Proposi-
tion 5.1. Indeed, recall (2.8), for n > 1

Our main result concerning stochastic Coalescence-Fragmentation processes is the follow-
ing.

Theorem 5.3. Consider \ € (0,1], « > 0. Assume that the coagulation K and the fragmen-
tation I kernels and that a measure 3 satisfy Hypotheses 4.2. Endow (, with the distance
d.

i) Forany m € (, there exists a (necessarily unique in law) strong Markov process (M (m,t))i>0 €
D ([0, 00), L)) satisfying the following property.

For any sequence m"™ € lo such that lim,,_,., dx(m™, m) = 0, the sequence (M"(m",t))i>0
defined in Lemma 5.2, converges in law, in D ([0, 00), £), to (M (m,t))i>o0.

it) The obtained process is Feller in the sense that for all t > 0, the map m — Law (M (m,t))
is continuous from () into P({)) (endowed with the distance d)).

iii) For all bounded ® : ¢, — R satisfying |®(m) — ®(m)| < ad(m,m) for some a > 0, the
process

fD(M(m,t))—(I)(m)—/O LY p (M(m,s))ds

is a local martingale.

We have chosen an explicit sequence of measure (3,),>1 because it will be easier to manip-
ulate when coupling two coalescence-fragmentation processes. Nevertheless, more generally,
taking any sequence of measures (3, satisfying (5.1) and converging towards /3 in a suitable
sense as n tends to infinity should provide the same result.

This result extends those of Fournier [7] concerning only coalescence and Bertoin [3, 2]
concerning only fragmentation. We point out that in [3] is not assumed Cg < oo but only
C é < oo. However, we believe that in presence of coalescence our hypotheses on 3 are optimal.
We refer to [4] for an extensive study of coagulation and fragmentation systems.
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5.1. A Poisson-driven S.D.E.. We now introduce a representation of the stochastic pro-
cesses of coagulation - fragmentation in terms of Poisson measures, in order to couple two of
these processes with different initial data.

Definition 5.4. Assume that a coagulation kernel K, a fragmentation kernel F and a measure
5 satisfy Hypotheses 4.2.

a) For the coagulation, we consider a Poisson measure N( ,d( ,7),dz) on [0,00) x {(4,]) €
N2 i < j} x [0,00) with intensity measure dt [Y_, _, 6(x.1)(d(i,7))] dz, and denote by (F;)i>o
the associated canonical filtration.

b) For the fragmentation, we consider M (dt,di,df, dz) a Poisson measure on [0,00) x N x © x

[0, 00) with intensity measure dt (Zk21 5k(di)) B(d0) dz, and denote by (G;)¢>o the associ-
ated canonical filtration. M is independent of N.

Finally, we consider m € (. A cadlag (Hi)i>0 = (0(Ft, Gt));>q-adapted process (M(m,1))i>0
is said to be a solution to SDE(K,F,m,N, M) if it belongs a.s. to D ([0,00), () and if for all
t>0,a.s.

t
M(m,t) = m+/ / / [cij (M(m, s—)) — M(m, s=)] 1<k (M (m,s—),M; (m,s—))}
<J

N(dt,d(i, j), dz)
t [e%e)
+/ // / [fzg (M(m, S—)) — M(m, S—)] ]l{ng(]Wi(m,s—))}M(dtv di, d0, dz§52)
0 JiJo Jo

Remark that due to the independence of the Poisson measures only a coagulation or a
fragmentation mechanism occurs at each instant .

Proposition 5.5. Let m € (.. Consider the coagulation kernel K, the fragmentation kernel
F, the measure (3 and the Poisson measures N and M as in Definition 5.4, we furthermore
suppose that (3 satisfies (5.1).

Then there exists a unique process (M (m,t)),>o which solves SDE(K, F,m, N, M). This process
is a finite Coalescence-Fragmentation process in the sense of Proposition 5.1.

This proposition will be proved using an a priori estimate, we will show that in such a
system the number of particles remains finite, we will then use that the total rate of jumps of
the system is bounded by the number of particles to conclude. We begin the proof by checking
that the integrals in (5.2) always make sense.

Lemma 5.6. Let \ € (0,1] and « > 0, consider K, F, 8 and the Poisson measures N and M
as in Definition 5.4. For any (H:),--adapted process (M(t)),, belonging a.s. to D ([0,0),£,),
a.s.

t %)
Il = / / / [Cij (M(S_)) — M(S—)] ]l{ZSK(IWq;(sf),IL[j (57))}N(dt, d(l,]), dz),
i<j J0

/Ot/i/@/ooo [fio (M(s=)) = M (s=)] L go<p(az, (-} M (dt, di, 6, dz),

are well-defined and finite for all t > 0.

I
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5.2. A Gronwall type inequality. We will also check a fundamental inequality, which
shows that the distance between two coagulation-fragmentation processes cannot increase
excessively while their moments of order A remain finite.

Proposition 5.7. Let A € (0,1}, « > 0 and m,m € {,. Consider K, F, /3 and the Poisson
measures N and M as in Definition 5.4. Assume that there exist solutions M (m,t) and M (m,t)
to SDE(K, F,m, N, M) and SDE(K, F, 7, N, M).

i) The map t — || M(m,t)| is a.s. non-increasing. Futhermore, for all t > 0

E

F oA
sup |[|M (m, 8)|A1 < [mfxef i,
s€[0,t]

where Fm = Sup[07Hm”1] F((E)
it) We define, for all x > 0, the stopping time 7(m,x) = inf{t > 0, ||M(m,t)||x > x}. Then for
allt > 0andall x > 0,

E

sup dx (M(m, s), M (i, s))| < dx (m,m)eC@TDE,
s€[0,tAT(m,z)AT(h,x)]

where C is a positive constant depending on K, I, C3, |m||, and |m|;.

6. PROOFS
In this section we give the proves to the results in Section 5.

6.1. Proof of Lemma 5.6. The processes in the integral being cadlag and adapted, it suffices
to check the compensators are a.s. finite. We have to show that a.s., for all £ > 1, all ¢ > 0,

Cr(t) = /dszK(Mz'(S)aMj(S))HCij(M(S))]k—Mk(S)l

0 gy
t
+ [ ds [ 6d) Y FOL) M)k - Mis)] < o0
0 © i>1
Note first that for all s € [0,t], sup; M;(s) < supyg [|M(s)[|1 < supp 4 ||M(5)H;/>‘ =:q; < 00 a.8.
since M belongs a.s. to D ([0, 00), £)). Next, let

Ki= sup K(z,y) and Fy= sup F(x) (6.1)
(w,y)€[0,a4]? z€[0,a¢]

which are a.s. finite since K and F are bounded on every compact in [0, c0)? and [0, co) respec-
tively. Then using (A.15) and (A.17) with (2.7) and (2.8), we write:

Y 2RC(t) = /0dSZK(Mi(S)vMJ(S))d(Cij(M(S)),M(S))

k>1 i<j

+/O ds/@ﬂ(d@);F(Mi(s))d(fiG(M(S))aM(S))

t t
< & [ Y R0, [ a2
0 i<j 0 i>1
3__ = ¢ 3 A= 1/A
< <§Kt+OﬂFt>/0 M (s)|1ds < t(EKtJrOﬂFt) ?;EHM(S)IIX < 0.
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6.2. Proof of Proposition 5.7. Let A € (0,1], « > 0 and m € /¢, and consider (M (m,t)):>o0
the solution to SDE(K, F,m, N, M). We begin studying the behavior of the moments of this
solution.

First, we will see that under our assumptions the total mass || - [|; does a.s. not increase
in time. This property is fundamental in this approach since that we will use the bound
SUP[o, | M (m,0)[1] £ (¢), which is finite whenever |[A(m,0)|x is. This will allows us to bound
lower moments of M (m, t) for ¢ > 0.

Next, we will prove that the A-moment remains finite in time. Finally, we will show that
the distance d, between two solutions to (5.2) are bounded in time while theirs A\-moments
remain finite.

Moments Estimates.- The aim of this paragraph is to prove 7).

The solution to SDE(K, F,m, N, M) will be written M (t) := M (m,t) for simplicity. First, from
(5.2) we have for k > 1,

M) = 0+ [ [ ey =) = Ml Lrano e
i<j
N(dt,d(i, j),dz)
t fe%e]
[ L i (M = M=) o, ooy M i B(0) ),
and summing on k, we deduce
IO = Gl [ [ e 2= = 126 ooy
i<j
N(dt,d(i, ), d2)
0 (M (5=)) [l = 1M (5=)[1] T oc par (e M(dt, di, B(d6), d=)(6.2
[ ] 1080 Q0= I = MG Eepan ooy M i, 5(0). 02)6.2)

Note that, clearly [lcij (m) |1 = [mllx and || fig (m) | = Il +m; (Sys0 0 — 1) < [lm]s for
all m € ¢, since Zkzo 0, <1 B-a.e. Then,

?u;])HM(s)Hl < |ml1, a.s. ¥t > 0.
0.t

This implies for all s € [0,], sup; M;(s) < supjg | M (s)[1 < [[m]1 a.s. We set

K, = sup K(z,y) and F,= sup F(z) (6.3)
(z,y)€[0,][m][1]? z€[0,[lm1]

which are finite since K and F are bounded on every compact in [0,00)? and [0, 00) respec-
tively.

In the same way, from (5.2) for A € (0,1) we have for k& > 1,
UWW-mmmuALJ[mwwmwMWMmgWHWM}
N(dt,d(i, ), dz)
+ /0 / /O /0 [0 (M (s=DIR — (M (5] Lgocriars ooy M(dE, di, B(d8), dz),
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and summing on k, we deduce
MMMZWH/L/WW )l = 1M (=) 3] T eyt o))
’ N(dt,d(i,7),dz)
//f|m )l = IM(5=)lIa] o pan oyyy M(dt, di, 5(d6). d).

We take the expectation, use (A.4) and (A.5) with (2.8) and (6.3), to obtain

ﬂwMMUM swm+%/ S F (M 1@
s€[0,t] i>1
- t
SWW+M%AMW@M%

We conclude using the Gronwall Lemma.

Bound for d).- The aim of this paragraph is to prove ii). For this, we consider for m,m € ¢,
some solutions to SDE(K, F,m, N, M) and SDE(K, F,m, N, M) which will be written M (t) :=
M (m,t) and M(t) := M (in,t) for simplicity. Since M and M solve (5.2) with the same Poisson
measures N and M, we have

dx(M(t), M(t)) = dx(m,m) + A + B + C¢ + Al + B + ¢, (6.4)

where

g - /Ot/Kj/OOO {dA (cZ-j(M(s—)),cl-j(M(s—)))_dA (M(s—),M(s_))}

]l{zSK(]Wi(s—),Mj(s—))/\K(Mi(s—),Mj(s—))} N(

o+

ds, d(i, j), dz),

By /Ot /Kj /OOO {d,\ (Cij(M(S_)),M(S—)) —dy (M(s—),M(s—))}
Tk (3, (5,0 (5—)) <2< K (M (5-), M, () } N(ds, d(i, j),dz),
ci /LJ {an ( %(WW%W%ﬁMH”

]l{K(IWi(sf),IWj(s ) <z<K (M;(s—),M. )}N(ds d(i, 5), dz),

Al = flééw@%mw&%mmeM)wwa%Mwﬂ}

]l{zSF(Mi(sf))/\F(If{i(sf))} M(ds, di, d@, dz),

Bl [ [ ] (s (rutaro.16-)) - (w1661, 316-)) )

ﬂ{F( (s— ))<z<F(M ))} M(dS d’L do dz)
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of = [ [ ] {an (o) i) - as (w1661, 3106-))}

]l{F(Mi(sf))SzSF(Mi(sf))} ]\4(([57 di, d0, dz)

Note also that

=
>
—
(@)
<
=
=
=
»
L
=
=
~
V)
L
N———
|
2
>
/N
=
=
»
-
=
~
V)
L
—
A

dx (c;j(M(s=)), M(s—)) (6.5)

jda (Fio (M (s2)), M1 (5-)) = da (M(s=). 3(s=) )| < da(fuo(M(s=)). M(s=))  (6:6)

We now search for an upper bound to the expression in (6.4). We define, for all z > 0, the
stopping time 7(m, x) := inf{t > 0; || M (m, t)||» > x}. We set 7, = 7(m,x) A 7(m, x).

Furthermore, since for all s € [0,1], sup; M;(s) < supy [[M(s)[l1 < [|m[1 := ama.s, equiva-
lently for M, we put a,; = |1 For a := a,, V a; we set kq and i, the constants for which
the kernels K and F satisfy (4.1) and (4.2). Finally, we set F',,, as in (6.3).

Term A{: using (A.8) we deduce that this term is non-positive, we bound it by 0.

Term B{: we take the expectation, use (6.5), (A.6) and (4.1), to obtain

E Se[ﬁgn] Bl < E [/OMTZ ;2Mj\(s) ‘K (M;(s), Mj(s)) — K (Ml(s),]\;lj(s)) ‘ ds]
< 2K,E /Om > M) (|M25) = 32 (9)| + [ (s) = AT (5))) ds}
< 2K4E _/0 ; ‘MZ)\(S) - MZ)\(S)‘ J;l M;\(s)ds_
4 2k,E [ / o S [a2 ) — 31s)| Ji M (s)ds
0 j>2 i=1 |
< 4kE UOWI IM()llxd (M(s), 1(s)) ds}
< dkga /;E Leﬁuﬁr ]d,\ (M(u),M(u))] ds, (6.7)

we used that for m € £5, Y2777 m) < 3207 m) < ).

Term Cf: it is treated exactly as Bf.
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Term A{': We take the expectation, and use (A.9) together with (2.7) and (2.8), to obtain

tATL ~ ~
Bl s all < QB[S (FOUE)AFOTLG)) M) - 5126)|| ds
SE[0,tAT,] 0 i>1
o tATL
< F.C)E / ‘M{\(s)—MZ’\(s)‘ ds
0 i>1
p— t ~
< Fng/El sup dy (M(u),M(u))] ds. (6.8)
0 u€[0,5AT,]

Term Btf : we take the expectation and use (4.2) (recall a := a,, V a), (6.6), (A.7) together
with (2.7) and (2.8), (A.3) and finally Proposition 5.7. ii), to obtain

AT, 5
E| sup BI| < 2051@/ Z‘F(Mi(s))—F(Mi(s))‘Mi’\(s)] ds
SE0,tATL] 0 i>1
< gue| [ (M) = W1 (5)° | (M (5) + 31(s)) | d
< 2paCp Z i(s) i(s) i(5)+ M(s)) | ds
0 i>1
tAT, - ~
< wcice|f (||M<s>|?+||M<s>|%)Z\Mﬁ<s>—Mﬁ<s>\] ds
i>1
<

0,5ATz]

t
4uaC§C’(Hm||ff‘\/HmH‘f‘)></ El sup dy (M(u),M(u))] ds. (6.9)
0 ue

Term C/: it is treated exactly as Bj .

Conclusion.- we take the expectation on (6.4) and gather (6.7), (6.8) and (6.9) to obtain

E

sup s (M<s>,M<s>)] < dy () + [8a + 810 O3 C (Jmll3 V [7]8) + FC3]
SE[0, AT,
t
x/ E
0

sup  dy (M(s),]\;[(s))] < dy(m,m) x eC (@VIVImIFviim|T) ¢

s€[0,tAT,)

sup  dy (M(u),M(u))] ds. (6.10)

w€[0,5ATy]

We conclude using the Gronwall Lemma:

E

< dy (m,ﬁl) eC(achl)t.
Where C is a positive constant depending on A, a, K, fia, K, F, C3, ||ml|1 and [|m];.
This ends the proof of Proposition 5.7.
6.3. Existence and uniqueness, finite case. The aim of this section is to prove Proposition

5.1 which is a consequence of Proposition 5.5. We will prove existence and uniqueness of the
Finite Coalescence - Fragmentation processes showing an a priori estimate of such a process.
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Lemma 6.1. Let m € {y, consider K, F, 3 and the Poisson measures N and M as in Defini-
tion 5.4. and assume that 3 satisfies (5.1). Assume that there exists (M (m,t));>0 solution to
SDE(K, F,m, N, M).

i) The number of particles in the system remains a.s. bounded,

sup Ny < 0o, a.s. forall t >0,
[0,1]

where Ny = card{M;(m,t) : M;(m,t) >0} = 2121 ¢ ar (m,1)>01-
it) The coalescence and fragmentation jump rates of the process (M (m,t)):>0 are a.s. bounded,

sup pe(s) < oo, a.s. forall t >0,
[0,t]

sup ps(s) < oo, a.s. forall t>0,
[0,t]

where p(t) = Y, K(My(m, 1), M;(m, 1)) and ps(t) := B(©) o) F(M;(m,1)).

Proof. First, recall that the measure 3 satisfies (5.1). We put M (t) = M (m,t) for simplicity
and define ®(m) = >, -, 11, >0}

Recall also (4.6) and use ®(c;;(m)) — ®(m) < 0 and F,, := SUpP[g |jm/|,] F'(%), to obtain

Lo p®(m) = > K(mim))[®(cij(m)) — (m)]

1<i<j<oo

+ Z /@ F(m;) [® (fio(m)) — ®(m)] B(d6)

i>1

< Fm Z/ Z ]l{ﬁnmi>0} - ]l{mi>0} ﬁ(de)
i>179 [n>1
< (k—1)Fy, B(©)®(m),

we used 6;m; =0forall j > k+ 1.

Next, from Proposition 5.7. i), we have for all s € [0,], sup; M;(s) < sup [M(s)[1 <
[m|1 a.s, we deduce

t
E lsup NS} < No+(k—=1)Fy 3(9)/ E [Ng] ds.
[0,¢] 0

We use the Gronwall Lemma to obtain

E
[0,¢]

sup N§‘| S NO e(kfl)ﬁm 5(@)157

and i) follows.

Finally, we set K, = sup(g |j,,,(,2 K (2, 9), then we get

2
sup pe(s) < K, sup (NS)2 < K, | sup N, < oo, a.s. forall ¢>0.
s€[0,t] [0,¢] s€[0,t]
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On the other hand, since 5(0) < co by (5.1), we get
sup pr(t) < F,,B(O) sup Ny < oo, a.s. forall ¢>0.
s€[0,t] s€[0,t]
This ends the proof of Lemma 6.1. O

Let A € (0,1], « > 0 and m € ¢y, and consider K, F, 8 and the Poisson measures N and M
as in Proposition 5.5.

From Lemma 6.1. we deduce that the total rate of jumps of the system is uniformly
bounded. Thus, pathwise existence and uniqueness holds for (M (m, t));>o solution to SDE(K, F, m, N, M).
This proves, furthermore, that the system (M (m,t)):>0 is a strong Markov process in contin-

uous time with infinitesimal generator E%  and Proposition 5.1. follows.

7. EXISTENCE AND UNIQUENESS FOR SDE

We may now prove well-posedness of (SDE). For the existence we will build a sequence
of coupled finite Coalescence-Fragmentation process which will be proved to be a Cauchy
sequence in D ([0, 00), £,).

Theorem 7.1. Let A € (0,1], « > 0 and m € {¢). Consider the coagulation kernel K, the
fragmentation kernel F, the measure 3 and the Poisson measures N and M as in Definition
54.

Then, there exists a unique solution (M(m,t))i>0 to SDE(K, F,m, N, M).
First, we need the following lemma.

Lemma 7.2. For )\ € (0,1] and a > 0 fixed. Consider the coagulation kernel K, the fragmen-
tation kernel F, the measure 3 and the Poisson measures N and M as in Definition 5.4. We
consider also a subset A of {5 such that sup,,c 4 [m|[x < 0o and lim; e SUP,,c.4 D> mp = 0.

Assume that for each m € Athereisa (M(m,t)):>o solution to SDE(K,F,m, N, M) and define
T(m,z) = inf{t > 0:||M(m,t)||x > z}, then for each t > 0 we have lim «a(t,z) = 0, where
xT—r 00

at,x) = sté]iP
m

sup || M (m, s)||x > :C] )
[0,1]

Proof. Tt suffices to remark that from Proposition 5.7. i), we have

1 1 7
sup P [sup [M(m, 5)[x > 2| < = sup E |sup||M(m, s)[x| < = sup [ml|seFnC3.
meA [0,t] T meA [0,t] T meA
We make z tend to infinity and the lemma follows. O

Proof of Theorem 7.1. Uniqueness.- Let m € ¢, and consider (M (m,t));>o and (M (m,t)):>o0
two solutions to SDE(K, F,m, N, M). For x > 0 we set 7, = inf{t > 0 : [[M(m,?)||x > z} and
7,. the object concerning M, thus from Proposition 5.7. ii), we have

E Le[ sup  dx (M(m, s),]\;[(m,s))] =0.

0,tATE ATo]

This implies uniqueness on the interval [0, t AT, A7,]. Since a.s. T, AT, —3 o0, the uniqueness

assertion on [0, ¢] for all ¢ > 0 follows from making 2 tend to infinity.
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Existence.- First, recall ¢,, defined by (3.34) and the measure 3, = Lgco(,)3 o ¥, . Consider
the Poisson measure M (dt, di, df, dz) associated to the fragmentation, as in Definition 5.4.

We set M,, = Lg(,)M o1, '. This means that writing M as M = > k1 O(Thsin 0,2)» We have
M, = Zk21 O(Thin ston (60),2) Loco(n)- Defined in this way, M, is a Poisson measure on [0, c0) x

N x © x [0, 00) with intensity measure dt (2@1 5k(di)) Br(dO) dz.

We define m” € lo+ by m™ = (my,ma, -+ ,my,0,---) and denote M"(t) := M(m™,t) the
unique solution to SDE(K, F,m™, N, M,,) obtained in Proposition 5.5. Note that M"(¢) satis-
fies the following equation

t oo
) = e [ e 007 (5m) = M) e aany o oy NG 5). d2)
1<J

t [e'e]
+/0 //@/0 [fivn(o) (M™(5=)) = M™(s=)] L o< p(ar (s—))3 L{oeo(n)}
M(dt, di, d6, dA7.1)

This setting allows us to couple the processes since they are driven by the same Poisson
measures.

Convergence M;* — M,;.— Consider p,q € Nwith 1 <p < ¢, from (7.1) we obtain

d (MP(t), M(t)) < dx(m?,m?)+AQ(t)+ BL(t) + CPI(t) + AP (¢) + By (t) + C (1) + DA ().

(7.2)
We obtain this equality, exactly as in (6.4), by replacing M by M? and M by M¢. The terms
concerning the coalescence are the same. The terms concerning the fragmentation are, equiv-
alently:

APy = / / /O / {dn (Fonn o) M (52))s Foy o) (M9 (5—))) — d (MP(s—), MT(s—))}

1{969(10)}]l{ng(Mf(s—))AF(Mf(s—))} M (ds, di,df, dz),

B = / / /O / [ (fruy (0 (MP(s)), M9(5—)) — dy (MP(s—), M(s-))}
Locom L {r(as(s—)) s r(mr(s—y)} M(ds, di, df, dz),

t 00
cpit) = [ [ ] G 01750 M7 (5) = o (M7 (5, M7 (=)}
]l{969(20)}]1{F(A{f(sf))gng(Mf(sf))} M (ds, di,df, dz),
Finally, the term D“(¢) is the term that collects the errors.

t e
Dyi(t) = /0/1/0/0 dx (fi, (0)(M(5=)), Fiy () (M(5-))) Lioco(p)y
]l{ng(Mf(s—))}M(ds’di7d9’dz)

+/0 //@ /ooo {dx (Fisy 0 (M (5=)), MP(s=)) = dx (MP(s=), M?(s=)) }
Ly cp(us(amy)) Lioco@no)y M(ds, di, df, dz).
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The first term of D}“(t) results from the triangulation that gives A%?(t) and C}(t). The
second term is 1ssued from fragmentation of /¢ when 6 belongs to 6( )\ O(p). Thls induces
a fictitious jump to M? which does not undergo fragmentation.

We proceed to bound each term. We define, for all x > 0 and n > 1, the stopping time
=inf{t >0:|[|[M"(t)|r > z}.

From Proposition 5.7. we have for all s € [0, ], sup,,>; sup;»; M[*(s) < sup,, > Sup;>q supyg 4 [ M"(s)[l1 <
[mll1 == an a.s. We set r,,, and j,,, the constants for which the kernels K and F’ satisfy (4.1)
and (4.2). Finally, we set I;;, = supg ,,.1 F'(2).

The terms concerning coalescence are upper bounded on [0, A 75 A 7] with ¢ > 0, exactly as
in (6.4).

Term A" (t): we take the sup on [0,¢A77 A77] and then the expectation. We use (A.9) together
with (2.7) and (2.8). We thus obtain exactly the same bound as for A/.

Term B“(t): we take the sup on (0,7 A 77 A 77] and then the expectation. We use (6.6), (A.7)
with (2.7) and (2.8), and (4.2). We thus obtain exactly the same bound as for B; .

Term C%(t): it is treated exactly as BY(t).
Term D' (t): we take the sup on [0,¢ A7) A77] and then the expectation. For the first term we

use (A.10). For the second term we use (6.6) and (A.7) together with (2.7) and (2.8). Finally,
we use Proposition 5.7. 7). to obtain

E sup D?’q(t)]
SE[0IATTATT]
15/\7"5/\7'()m
<s|[ " F0e) / Lpco 3 QM) 5(d8)ds
0 i>1 k p+1
t/\T /\‘r
/ > F(M(s)) [M](s)]Nd / >0 Lipcotanem) A(d0)
i>1 © k>2
< T [ Y 0ds(as) / sup ||MQ<u>||A] ds
®k>p u€e[0,t]
B ¢
+2Fm / > o 1{eee\®<p)}ﬂ(d9)/ E[sup IIM‘](U)IIA] ds
67@22 0 u€[0,t]
< Fout|mlxe™ 5L (A(p) + 2B(p),
where A(p) := [ > 4, 025(d0) and B(p) := [o > 450 Tpcoro(p)}B(df). Note that by (2.6)

and since O \ O(p) tends to the empty set A( ) and B(p) tend to 0 as p tends to infinity.
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Thus, gathering the terms as for the bound (6.10), we get

SE[0,EATEATE]

E[ sup dA(M”(S),M"(S))] < dx(mP,m?) + Dit[A(p) + B(p)] + [8k1x + CCZ|m||¢]

X /tE l sup dy (MP(u), M%(u))| ds, (7.3)

u€[0,sATENATE]

where D; = 2F,, |m||, e’ €3 . The Gronwall Lemma allows us to obtain

E

sup dy (MP(S)qu(S))] < {dx (m?,m%) + D1[A(p) + B(p)]t} x 2", (7.4)

SE[0EATIATY]
where D, is a positive constants depending on \, o, kg, , ta,,, K, F, Cfa\ and ||m|;.
Since lim,,_,~ dx(m™, m) = 0, we deduce from Lemma 7.2. that for all ¢ > 0,

lim a(t,z) =0 where «(t,z) := sup P[r(m",z) < t]. (7.5)
T—r 00 n>1
This means that the stopping times 77 tend to infinity as z — oo, uniformly in n.
Next, from (7.4), (7.5) and since (m"),>1 is a Cauchy sequence for d) and (A(n)),>1 and
(B(n))n,>1 converge to 0, we deduce that for all ¢ > 0, T" > 0 we may find n. > 0 such that for
p,q > n. we have

sup dy (MP(t), M1(t)) > E‘| <e. (7.6)
Indeed, for all = > 0,

P |supdy (MP(t), M1(t)) > 51
[0,7]

1
Plry <T]+ Plry <T]+ -E
[y < T)+ Plry < T)+ -

IN

sup  dy (MP(t), M(t))

[0, TATEATE]

< 2a(T,z) + é[d,\ (mP,m9) + DT (A(p) + B(p))] x eP2=7.

Choosing x large enough so that «(7,z) < ¢/8 and n. large enough to have both A(p) and
B(p) < (¢2/4D, T)e~P2*T and in a such a way that for all p, ¢ > n., dy (m?,m4) < (e2/4)e~ P21,
we conclude that (7.6) holds.

We deduce from (7.6) that the sequence of processes (M;"),, is Cauchy in probability in
D([0,0), £x), endowed with the uniform norm in time on compact intervals. We are thus able

to find a subsequence (not relabelled) and a (7;)-adapted process (M (t));>0 belonging a.s. to
D(]0, 00), £)) such that for all " > 0,

lim sup dy (M"(t),M(t)) = 0. a.s. (7.7

n—oo [OT]

Setting now 7% := inf{t > 0: || M (¢)||x» > «}, due to Lebesgue Theorem,

lim E sup  dx (M™(t),M(t))| =0. (7.8)

n—o0 [0, TATEAT®]
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We have to show now that the limit process (M (t));>o defined by (7.7) solves the equation
SDE(K,F,m,N, M) defined in (5.2).

We want to pass to the limit in (7.1), it suffices to show that lim,,_, . A, (t) = 0, where

tATE AT
- /0 //0 > 27 | leis (Ms=))he = Mi(s=)D) L i), M)
1<J

k>1

= ([eij (M™(s=)]k = M (5=)) Lz< k(v (s, M2 (s )y | N (dE, (G, ), dz)

/MT AT® /// 22 k| (Lo (M — [M(5)]k) Liz<pi(s—))}

k>1
~ (lfigmtoy (M"(5=))]k = M (5)) Lia<rup sy Lioeo(nyy | M (dt, di, dO, dz) | .

Indeed, due to (7.7), for all > 0 and for n large enough, a.s. 7 > 7%/2. Thus M will solve
SDE(K, F,M(0), N, M) on the time interval [0, 7%/2) for all x > 0, and thus on [0, ) since a.s.
lim,_,00 7% = 00, because M € D([0, c0), £y).

Note that
| (leig (M (8))]k = Mi(8)]) Liz< i (0 ()M ()}
= ([eig (MM ()] = M (8)) Liz< e (v ()02 ()} |
< ’ (leij (M(s)]k — Mi(s)]) — ([eig (M™ ()] — My (8)) |Lz<re(0i(s),M;(s))}
+|[eij (M™(8))]k — M (s)] ‘1{ng<Mi<s>,Mj<s>>} - ]1{z§K<M:<s>-,M;<s>>}‘
and
| ([fio (M(s))]k — Mk(8)) Lz<p(as,(s)))
= ([fign 0y M™ ()] = M (s )) Li<rur(s))yLiscom)y
< | ([fio (M ()] — Mi(s)) — ([fio (M"(S))]k — M () |Lia<ra(s))
+| (Ifio (M™ ()] = im0y M™(5)k) |Lz<p (vt (1))
Hfiwatoy M (D] = ME ()| [Lz<r(ari(s))y — Lz rovp o))
| [fivn 0y (M™($)]k = M (s) |1z <p(vr ()} Loeo(n)e)
where O(n)¢ = © \ O(n). We thus obtain the following bound
An(t) < A5 (1) + By (t) + AL () + BA(t) + CJ (1) + Di ().
AY(t) with

R T CRTHE) DER

k>1

First, A5 (t) =5

1<j

Aty = E

[(leig (M ()] = My (s)]) = ([eij (M ()] — M (s))] ds |,
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and using
i<k (Mi(s), M50y — Lz< iz (s),mp s>>}‘

= L{R (i (5),M; () AK (M7 (s), M (s)) <2< K (Mi(s),M;(s)) VK (M} (s),M](s))}>

Bi(t) = E

/0 o > | (Mi(s), M;(s)) = K (M (s), M (5))]

1<j

> 27 [eiy (M7 ()] — My (s))| ds] .

k>1

For the fragmentation terms we have

AT AT®
E / / > F (M,
0

i>1

Y27 ([fio (M(s)]x = M(s)) = ([fio (M"(5))] = Mg (s))] ﬁ(dt?)dS] ;

k>1
/tAT AT® /
©

1>1
> 27 | ([fio (M™ () = [Fi o) (M™( ))]k)!ﬁ(d9)d81a
k>1
using
L pecrmi(s)) — Lie<rup )} = LUR(M(s) AR (M (5)) <2< F (M (5))VF(M? (5))} 5
tATE ATT
cit) = El/o /ﬂ{eeo wy O IF (Mi(s)) = F (M]'(s))]
1>1
> 278 [fig o) (M™(5))]k — My (s)| B(dO)ds
k>1
and finally,

tATE AT
Dl(t) = El/O /ﬂ{ee@n)}ZF (M'(s))

i>1

k>1

D27 [ fignioy (M (s ))]k—Mﬁ(S)!ﬁ(de)dsl,

We will show that each term converges to 0 as n tends to infinity.

Fist, from Proposition Proposition 5.7. i) we have that for all s € [0,t], sup; M;(s) <
suppo, [M(s)ll1 < [[mll1 := a, a.s, equivalently for M", we have a;,» = ||m" |1 < ||m]|;. We set
Ka,, and pu,,, the constants for which the kernels K and F' satisfy (4.1) and (4.2). Finally, we
set K, = supjy ., j2 K(x,y) and F,, = supyg , | F(x).
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We prove that A¢(¢) tends to 0 using the Lebesgue dominated convergence Theorem. It
suffices to show that:

a) for each 1 < i < j, A% (t) tends to 0 as n tends to infinity,
b) limp o0 limsup,, o 32,4 555 A¥ (1) = 0.

Now, for A% (t) using (A.16), (A.14) and Proposition 5.7. i), we have

Aty < Kn,E

/0 T e (M(8)) iy (M™())) +d (M(s), M(s)) ds]

IN

K,E

/ o (2" + 2 4+ 1) d (M(s), M"(s)) ds]
0

IN

CKn(22+2 +1)E

[ MO VA1) d (6, 47 (9) dsl
< CK, (2" +2+1)t|m|; E L sup ]d)\(M(s),M”(S))],
0,EATEAT®

which tends to 0 as n — oo due to (7.8). On the other hand, using (A.15) we have

AJ(t) < KnE

[ e () M6 + sy (M7 (6) A (5) ds]

< ?’KT’”W/O E [M;(s) + M7(s)] ds.

Since ", 27 =1and Y-, [i E[M;(s)lds < [m]1t, b) reduces to

t

klgrgo llr?isolipz‘/() E[M}(s)]ds = 0.
j=k

But for each k& > 1, since M"(s) and M (s) belong to ¢; for all s > 0 a.s by Proposition 5.7. i),

and since the map m — 25;11 m; is continuous for the pointwise convergence topology,

lim sup /OtE |:Z MJ"(S)}

t k—1
/0 ds {n11_>rr;o|M (s)]l1 —nh_)rr;OIE [; M; (s)} }ds

t k—1
/ {||M<s>|1 -E [Z Mj<s>] }ds

- /0 E [;Mj(s)] ds.

We easily conclude using that a.s. || M (s)||1 < ||m]: for all s > 0.
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Using (4.1), (A.15) and Proposition 5.7. i), we obtain

B < mak| [ S M6 A0+ 3170 = 3560 ]
xd (i (M™(5)), M"<s>>]
< B [ / 32 (M6 = Mo+ PG = (o] 201 ds}
<

3ﬁamt|ml|1El sup d,\(M(S)aMn(S))]a

[0,[tATEAT®]
which tends to 0 as n — oo due to (7.8).

We use (A.18) and (A.17) to obtain

[ ) (400 010 i A7) + 4 00), 2075 )

A (d (fio (M(3)) . M(s)) + d (fi0 (M"(5)) ,M”(S)))]ﬂ(dﬁ)dS]

[ o L X [(aream) ) o (2750 00 0t + 212 >>)}ﬁ<de>ds].

i>1

Alt) < FnE

< 2F,E

We split the integral on © and the sum on ¢ into two parts. Consider ©. = {# €0 :6; <1-—¢}
and N € N. Using (A.14) and Proposition 5.7. i), we deduce

L X [(are.0m) ) o (2 (=00 ((s) + 7)) ptan)

i>1

/Zd (5)) B(d0) + /(_)0(1—91)5(619)2( A(5) + MP(s))
/22 (1= 01) (Mi(s) + M'(5)) 5(d0)
i>N

< Cllmll{NA(©:)ar (M1(s). M7 () + 2mly | (1= 00)3(a9)

+2Hm||1/ (1—61)B(do) H_ 27

i>N

Note that 5(0.) = [ 111-9,5c} B(df) < T [o(1—01) B(dF) < 1 C} < oo. Thus, we get

2t —
Alt) < ;C’g‘NFmCHmHAE[ sup  dx (M(s), M"(s))

[0,[tATEAT=]

+ 46F | /@ (1— 6,)3(d6)

+2tF  ||m|1Cy 27N,
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Thus, due to (7.8) we have for alle > 0and N > 1,

limsup AL (t) < 4¢F, |ml]s / (1= 00)B(d0) + 26T ] 1) 2.
@c

n—oo
e

Since O¢ tends to the empty set as ¢ — 0 we conclude using (2.8) with (2.6) and making ¢ — 0
and N — oo.

Next, use (A.19) and Proposition 5.7. i) to obtain
BI(6) < Folmlls 3 6u5(as).
© k>n
which tends to 0 as n — oo due to (2.5).

Using (4.2), (A.17) with (2.7) and (2.8), (A.3), (A.14) and Proposition 5.7. i), we obtain

; tATE AT e n (ol i B " )
CHE) < 2a,E l/ / (n)iZZIHMx o — [MP()]%] 27 (1 — 61) Mi( w(de)d]
< %, CE / TS 0 M) - M ()| ((MP($)]° + [Ma(s)]7) ds]
i>1
< 2uamccgt|m||i-“a1@[ sup dA<M<s>,M”<s>>],

[0, tATEAT®]
which tends to 0 as n — oo due to (7.8).
Finally, we use (A.17) with (2.7) and (2.8) and Proposition 5.7. i), to obtain
DI(6) < 2 Fnlmlls | Liacoq) (1~ 01)5(d8)
e
which tends to 0 as n tends to infinity since [ (1 —6:) 5(df) < Cf} and O(n)¢ tends to the

empty set.
This ends the proof of Theorem 7.1. O

Conclusion.- It remains to conclude the proof of Theorem 5.3.
We start with some boundness of the operator E?(_’ Iy

Lemma 7.3. Let A € (0,1], o > 0, the coagulation kernel K, fragmentation kernel F and the
measure (3 satisfying Hypotheses 4.2. Let ® : {\ — R satisfy, for all m,m € £y, |®(m)| < a and
|®(m) — ®(m)| < ad(m,m). Recall (4.6). Then m LfﬂF(I)(m) is bounded on {m € £y, |m|x <
¢} for each ¢ > 0.

Proof. This Lemma is a straightforward consequence of the hypotheses on the kernels and
Lemma A.3. Let ¢ > 0 be fixed, and set A := c'/*. Notice that if |m/|, < ¢, then for all k£ > 1
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Setting supy 42 K (z,y) = K and supyy 4) F(x) = F. We use (A.15) and (A.17) with (2.7) and
(2.8), and deduce that for all m € ¢, such that ||m|/y <,

2} om) < B Y @@Mm»—wmﬂ+F§;L@umm»—¢mnmw>

1<i<j<oo i>1

< K YD diesm)m)+aF [ 3 d(falm)m)3(d9)
1<i<j<oco © i>1

< gaFHmHl—F%LFCéHmHl < (g?+270§) act/>

Finally, it remains to conclude the proof of Theorem 5.3.

Proof of Theorem 5.3. We consider the Poisson measures N and M as in Definition 5.4., and
we fix m € (. We consider M (t) := M (m,t) the unique solution to SDE(K, F, M(0), N, M)
built in Section 7. M is a strong Markov Process, since it solves a time-homogeneous Poisson-
driven S.D.E. for which pathwise uniqueness holds. We now check the points i) and ii).

Consider any sequence m" € {o4 such that lim,, ... dx(m™,m) = 0 and M"(t) := M(m",t)
the solution to SDFE(K, F,m"™, N, M,,) obtained in Proposition 5.5. Denote by 7* = inf{t >
0, [|[M(m,t)]|x > «} and by 77 the stopping time concerning M". We will prove that for all
T>0ande >0

lim P |supdy (M(t), M"(t)) >¢e| = 0. (7.9)
n—oo [O,T]
For this, consider the sequence m(™ ¢ ¢y, defined by m™ = (my,---,m,,0,...) and

M) (t) := M(m(™,t) the solution to SDE(K, F,m™, N, M,) obtained in Proposition 5.5. and
denote by 7, the stopping time concerning M (n),

First, note that since lim,, o dx(m(™,m) = lim,,_,oc dr(m", m) = 0, we deduce that sup,,~ [|m™|[, <
oo and from Lemma 7.2. that for all ¢ > 0,

lim ai(t,2) = 0 where ai(t,z) := sup Plr(,) <], (7.10)
T—00 n>1
lim as(t,z) = 0 where as(t,z) := sup P[r;, < t]. (7.11)
T—00 n>1

Thus, using Proposition 5.7. i) we get for all x > 0

P

sup dy (M (t), M"(t)) > 51
[0,7]

€ [O,T/\T(In)/\Tl']

< Plsupdy (M(t),M(")(t)) >e| + P |supd, (M(")(t),M"(t)) > a]
[0,7] [0,77
1
< Pl <T|+ai(T,z) + -E sup  dy (M(t),MW(t))]

1
+aq(T,x) + ao(T,x) + gec(””"'l)TdA (m("), m") .
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We first make n tend to infinity and use (7.8), then z to infinity and use (7.10) and (7.11).
We thus conclude that (7.9) holds.

We may prove point ii) using a similar computation that for 7). The proof'is easier since we
do not need to use a triangulation.

Finally, consider (M (m,t));>o solution to SDE(K, F,m, N, M) and the sequence of stopping
times (7%"),,>1 where 7% = inf{¢t > 0, || M (m,t)||x > x,}, with z,, = n. From Lemma 7.2. we
have that (7%"),>; is non-decreasing and 7% — oo and from Lemma 7.3. we deduce that

n—roo

(£%7F¢(M(m, 5)))se[o,r=») is uniformly bounded.
We thus apply It6’s Formula to ®(M(m,t)) on the interval [0,¢ A 7%~) to obtain

M(m,t A7) — ®(m) =

tATE™
/ / / (cij (M(m,s—))) — @ (M(m,s—))] i< (Mi(m,s—),M; (m,s—))}
i<j
N(dt,d(i, j), dz)

tATET
/ / / / B (fio (M(m, 5-))) — & (M(m, 5—))] Lo (a1, sy M (d, di, d6, d2)
tATET
+/O E%_’F (M(m,s))ds,

where N and M are two compensated Poisson measures and point iii) follows.

This ends the proof of Theorem 5.3.

APPENDIX A. ESTIMATES CONCERNING ¢;;, fip, d AND d

Here we put all the auxiliary computations needed in Sections 6 and 7.

Lemma A.1. Fix )\ € (0,1]. Consider any pair of finite permutations o, & of N. Then for all m
and m € £y,

d(m,m) < szﬂma(k)—ﬁl&(k)h (A.1)
k>1

da(m, i) <Y |m) gy — |- (A.2)
k>1

This lemma is a consequence of [7, Lemma 3.1].

We also have the following inequality: for all a, 3 > 0, there exists a positive constant
C = C, s such that for all z,y > 0,

(@ +yM)|2” —yP| < 20a°FF —y* P < O™ +y*)[a” — o7, (A3)

We now give the inequalities concerning the action of ¢;; and f;p on dy and || - ||x.
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Lemma A.2. Let A € (0,1) and 0 € ©. Then for all mand m € £y, all 1 <i < j < oo,

leig(m)llx = lmllx+ (m3 +m3) =mi —m} < |lm], (A4)
Ifiom)lx = [Im|x+m; (Z9k—1) (A.5)
k>1
dx(cij(m),m) < 2m§-, (A.6)
dr(fio(m),m) < m} (1=67) +m} Y 6, (A7)
k>2
dr(cij(m),cij(m)) < dx(m,m), (A.8)
dx(fie(m), fie(m)) < dx(m,m) + |m} —m)| (ZG,’Q—l). (A.9)
k>1

On the other hand, recall (3.34), we have, for u,v € Nwith 1 < u <,

(A.10)
dx(fip, 0y (M), fin, (0)(m)) < Z Opm;

k=u+1

Proof. First (A.4) and (A.5) are evident. Next, (A.6) and (A.8) are proved in [10, Lemma A.2].

To prove (A.7)let 0 = (01,---) € ©,i > 1land p > 2 and set [ := [(m) = min{k > 1 : my <
6, m;}, we consider the largest particle of the original system (before dislocation of m,) that
is smaller than the p-th fragment of m;, this is m,;. Consider now o, the finite permutation of
N that achieves:

(fr)k=1 = ([fw(m)]"(k)) k>1

= (mlu o, MG—1, elmia M1y, Mp—1,My, 92mi7 93mi7 R epmia [fi@ (m)]l+1 7(A],)1)
It suffices to compute the d)-distance of the sequences (f;); and (mg)g:

my e mu—1 Omy mMi41 - My—1 MYy Oom;  Ozm; - 9pm¢ fl+p
my o o M1 mg Miy1 - My—1 My Myy1 Myy2 - Migp—1 Mi4p

(A.12)
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Thus, using (A.2), we have

l I+p—1
dA(fiolm),m) < Y |fe—mp] = | Do+ D+ > |- mi
E>1 k=1 k=Il+1 k>l+p
I+p—1
< (T=00)md + D [Oripamd —mi| + Y |fe - mi
k=i+1 E>l4p
P l+p—1
< o)+ (Satmde 3 m) ¢ 3 (2 4m
k=2 k=1+1 E>l4+p

(L =00)m} +m}> 0 +2) my.
k=2 k>1

For the last equality it suffices to remark that > 1 f 2 contains all the remaining fragments
of m} and all the particles mj with k > [.

Note that if m € ¢y, the last sum consists of a finite number of terms and it suffices to take
p large enough (implying [ large) to cancel this term. On the other hand, if m € ¢, \ ¢y then
the last sum is the tail of a convergent serie and since [ — co whenever p — oo, we conclude
by making p tend to infinity and (A.7) follows.

To prove (A.9) consider 7, | := I(m) V I(7) and the permutations o and ¢ associated to this /,
exactly as in (A.11). Let f and f be the corresponding objects concerning m and m:

my -0 omy—1 Oimy omyypr oo my—1 omy o Oamg Ozmg o - 9pmi f~l+p (A.13)
my - My—1 O1my Mg - y—1 oy Gy Osmy - Oy figp '
Using again (A.2) for (f;)x and (fx), we have
_ l I+p—1 ~
dafiolm), fo(m) < S|IR-R = [+ X + X ||#-R
k>1 k=1 k=l+1 k>l+p
! P
= [k =] = [ =+ Y e md =+ Y (R + )
k=1 k=1 k>l+p
1 P
= Z‘mg—mﬁ — ’mf‘—ﬁ”bﬂ—l-Z@,ﬂm?—mN—i-Z@? (mf‘—i—mf)
k=1 k=1 k>p
+ Z (m? + m?)
k>l
1 P
= ) |mp =]+ mp — ) (Zeg — 1) +(m) +m)) Yo
k=1 k=1 k>p
+ Z (mpy +my)
k>l

Notice that the last two sums are the tails of convergent series, note also that [ — oo whenever
p — oo. We thus conclude making p tend to infinity.
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Finally, to prove (A.10) we consider the permutation o as in (A.11) with p = v and [ := I(m).
Recall (A.13), we have

dx(fipu0)(M), i) (M) = dX(fivs (wu(8)) (M), figs, 07 (M)
< Y i twuto) Moty = i) (Mo |
k>1
< Z Hsz‘—i—ZZmz.
k—ut1 >l

We used that [, (¢¥,(0))]x =0for k =u+1,--- ,v. Since m € ¢, we conclude making [/ tend to
infinity. O

Lemma A.3. Consider m, m € S* and 1 <i < j < co. Recall the definition of d (4.4), dy (4.5),
cij(m) and fig(m) (4.3) and ¢, (0) (3.34). For \ € (0,1] and for all m,m € {, there exists a
positive constant C depending on \ such that

d(m. i) < C(lml 1V [il1) da(m, ). (A.14)
Next,
ey (m),m) < 527my, S0 d(ei(m),m) < 2, (A.15)
1<k<i<oo
d(cij(m), cij(m)) < (2" +27)d(m, m). (A.16)
d(fig(m),m) < 2(1—61)2 "'m;, (A.17)
d(fig(m), fie(m)) < d(m,m), (A.18)
d(fio(m), fip,0)(m)) < 27'm; Y Oy (A.19)
k>n

Proof. The inequality (A.14) comes from (A.3), with & = 1 — A and 8 = \. The inequalities
(A.15) and (A.16) involving d are proved in [7, Corollary 3.2.].

We prove (A.17) exactly as (A.7). Consider p, [ and the permutation o defined by (A.11),
from (A.1) and since i <[+ 1 <[ + p, we obtain

I itp-1
d(fig(m),m) < Z-l— Z + Z 27| fre — my
k=1  kel+l k>itp
I+p—1
< (1-61)27"'m; + Z 277 |0k — 1 1mi — my| + Z 277 fio — my
k=it1 k>itp
l+p—1
< (1=61)2 "'m; + <Z2 Omi+ mk>+ > 27 (fr +ma)
k=i+1 k>ltp

< (1=61)27"m; +27'my Z O +2)  my.
k=2 k>1

Since m € /1, we conclude using (2.5) and making [ tend to infinity.



COAGULATION - FRAGMENTATION EQUATION 47

Next, we prove (A.18) exactly as (A.9). Consider p, [ and the permutations ¢ and & defined
by (A.11). Recall (A.13), from (A.1) and since, i <[+ 1 < [ + p we obtain

I+p—1

d(fis(m), fio(m)) < Z+ )OI DN Ead VA
k=1 k=l+1 k>i+p
l . I+p—1
< Z 277 Imy — k| + (01 — 1)27% |my — 1| + Z 2770141 |mi — 1y
k=1 k=l+1
+ Z 27" (fk +fk)
k>l+p
1
S Z|mk—mk|+2 -—mz| <Z€k—1> mZ—FﬁLZ)Z@k
k=1 k>p
+ Z (my, + my)
k>l
< Zlmk—mk|+ m; + 1m;) 29k+z my + my)
k>p k>1

We used that for £ > [ + p, f;, contains all the remaining fragments of m; and the particles m;
with j > [ and (2.5). Since m,m € ¢, we conclude making p tend to infinity.

For the inequality (A.19),leti > 1,p > 1 and ! := [,,(m) = min{k > 1 : my, < (#,,/p)m;} and
consider o, the finite permutation of N that achieves:

(fe)e>1 = ([fi(-)(m)]o(k))

= (mla' o 7mi*1791m’i7' o 79nmi7mi+1a' Ty My—1, My, [f’ie(m)]l-g-n?" ) (A'20)

k>1

Thus, from (A.1) and since: <[+ 1 <[+ n+ 1, we deduce

I+n—1

d ((fio(m), fip,9y(m)) < Z+ ST+ Y0 | 27 e m)ow) — i) (Mo |

k=1 k=l+1 k>l4n

< Z 27 0pm; + 2 Z 2 iy,

k>n k>1

The last sum being the tail of a convergent series we conclude making | — oc.

This concludes the proof of Lemma A.3. O
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