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We propose an interactive dynamic simulator for humanoid robots using constraint-based

methods for computing interaction forces with friction. This simulator is a part of a general

framework for prototyping called AMELIF and is a successful integration of physical models.We
focus on optimizing the computation of the dynamics to obtain real-time simulations allowing

multimodal interactivity. Our simulator has been validated in two ways: ¯rst by comparing real

sensors' measures and simulated values, then through di®erent scenarios of complex manipu-

lation tasks on the HRP-2 humanoid robot, bringing new insights to interactive robotics.

Keywords: Dynamic simulation; contact with friction; humanoid robot; haptic interaction;

manipulation; framework.

1. Introduction

Many humanoid robots have been presented in the past years, mostly for enter-

tainment or for research purposes. These robots are aimed actually at evolving in all

kinds of environments and at performing tasks in collaboration with humans. This

implies physical interactions with the environment and humans, more speci¯cally

nonsmooth phenomena such as contact with friction, impacts, to be considered.

These goals will be achieved as long as new theoretical models will be developed.

However, achieving such tasks on real robots requires to ¯rst assess these models in

simulation to avoid serious damages, as humanoid robots are generally very

expensive and hardly mass-produced.

A wide range of simulators has been proposed in the literature and have been

mostly designed for animation or motion generation of digital actors.1�4 Interactivity

with force feedback seems to be of minor interest despite the availability on the

market of haptic devices. We can note the SOFA framework, originally designed for

medical purposes, which includes interactivity5 and real-time models for computing

contact with friction based on GPU use,6,7 or the simulator of Altomonte et al.8
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Although they show attractive results in terms of time computation, they propose

only models leading to visually realistic simulations and do not consider necessarily

physical criteria that are of primary concern for the robotics community.

In the robotics community, simulators have been proposed for control or motion

planning such as SAI9,10 which integrates haptic feedback but no friction for con-

tacts, OpenHRP11,12 which is not interactive, GraspIt!13 speci¯cally designed for

grasping, the framework of Son et al.14 which includes interactivity but does not

explain how contact with friction is handled, or those of Hale et al.15 and Nagasaka

et al.16 Most of the simulators we can ¯nd in the literature are however not designed

for general prototyping purposes nor to simulate complex systems such as humanoid

robots, including accurate and fast contact models while sensing force feedback.

Moreover they are not freely available to the research community.

Simulators integrate physical models, especially dynamics models that can be

decomposed into free dynamics and constrained dynamics. Algorithms for free

dynamics, i.e., dynamics without considering any unknown external phenomena,

have been widely explored for the last decades and many authors presented now well

known easily implementable, parallelizable and fast algorithms.17�25 We will not go

into details in this paper as the literature provides enough references.

The most challenging part which still receives great attention is constrained

dynamics, typically nonsmooth mechanics, contact, friction, impact. A complete

overview of this part can be found in Brogliato et al.26 and Acary and Brogliato.27

Despite the abundance of references, many works dealing with contact problems

illustrate examples with very simple scenarios and thus do not prove their validity by

experiments. We think that such implementations hide actual problems of com-

plexity, robustness and stability that may recall into question hypotheses and pro-

posed algorithms. In the ideal case, considering additional aspects of the problem

may be required for actual purpose implementations.

Here we propose a complete interactive realistic dynamic simulator, i.e., that

integrates physically consistent contact with frictionwhile sensing force feedback, that

can be applied to many kinds of multibody systems, including humanoid and android

robots, virtual avatars and systems with deformable skins. The main contribution of

this simulator lies on a successful integration of di®erent theoretical models in a robust

framework to handle complex simulation cases. Especially, compared to OpenHRP,

that was formerly used, we wanted to prove that (i) constraint-based methods were

liable and more adapted to contact simulation than penalty-based methods, (ii) it is

possible to get computation time that allows to interact online with virtual environ-

ments through a haptic interface and that it is completely possible to unify haptic

sensing and dynamic simulation, and (iii) we are able to use our simulator in various

situations, even highly complex and extreme scenarios, and so enhance the level of

development of new applications in humanoid robotics.

We will present in the next section the contact modeling, then the computation of

constrained-based dynamics with an overview of our simulator architecture, we

will show in Part 4 the integration of a haptic interface for sensing force feedback.
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We prove in Part 5 the e®ectiveness of our simulator through several validation

examples, both simple and complex applications, before concluding.

2. Contact Modeling and Nonsmooth Mechanics

The general dynamics equation for a multibody system can be written as:

q
::
¼ M�1f þM�1ð�� b� gÞ; ð1Þ

where q are the generalized coordinates of the multibody joints, M is the mass

matrix of the system, � are the torques applied to the joints, b represents the Coriolis

e®ects, g is the gravity and f are the external forces applied to the system that can be

known, such as perturbations given by a user, or unknown, such as contact forces.

This equation can be written in the operational space as9,28:

a ¼ ¤f þ afree; ð2Þ

where ¤ is the so-called Delassus operator which represents the projection of the

inertia matrix in the contact space, introduced by Khatib28 and equal to JM�1JT

where J is the Jacobian matrix, afree is the free acceleration of the system in the

contact space, that is the acceleration the system would have if there were no contact

forces. a represents the acceleration of the system in the operational space and its

dimension is 3m, wherem is the number of contact points (in the case we consider the

three directions in the space).

2.1. Contact modeling

To model contact forces, two main approaches are generally considered: penalty-

based methods and constraint-based methods. Penalty-based methods are widely

used in simulators,11,29�32 as they are easy and fast to implement. Forces are modeled

as virtual spring-dampers acting when bodies are penetrating each other: they are a

function of the penetration distance and its successive derivatives. As they are

computed locally, they can be integrated easily into the dynamics equation (1)

as known external forces. The main drawbacks of these methods are: (i) parameters

of the spring-damper must be tuned for each simulation scenario, they are generally

determined by experiments as there is no formula available in the literature and

they can lead to high numerical instabilities, especially during numerical integration,

implying to choose very small time steps which is not suitable for interactive

simulations; (ii) their physical meaning is hard to justify as they are based on

penetrations.

In constraint-based methods, nonpenetration constraints are explicitly integrated

into the dynamics equation.1 Generally formulated as a Linear Complementary

Problem (LCP),33 this is an elegant formulation of the contact problem as we can

express the dynamics in a linear form:

a ¼ ¤f þ afree and 0 � a ? f � 0: ð3Þ
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Convergence to a solution is proven to be ensured by several direct resolution

methods such as Lemke's algorithm.34,35 All contact constraints are grouped into the

Delassus operator ¤, with the dependencies between each constraint, allowing a

global resolution of the problem. Compared to penalty-based methods, these

methods are more accurate and stable, and are more and more used, especially in the

video game community.36 However, they are time-consuming, especially due to

the computation of the ¤ matrix, and uniqueness of the solution is not proven in the

general case, for instance when the system is statically indeterminate.

Adding nonsmooth phenomena, such as dry friction, complexi¯es the resolution

of the contact problem. Here we will consider Coulomb's friction, which is the

most known and the most common friction model, but other friction models can

be considered and handled in the same way.37 Coulomb's friction is expressed as

follows:

jjf t jj � �jfnj; ð4Þ

where f t is the tangential force, fn the normal force, � the friction coe±cient. We

can then consider two cases: (i) contact points are sticking (jjf t jj < �jfnj), (ii) con-

tact points are slipping (jjf t jj ¼ ��jfnj
vt

jjvt jj
). The law introduces a nonlinearity in the

dynamics. Moreover, we see in the slipping case that the direction of the tangential

force is determined by the tangential component of the velocity vt . Equation (1) is

expressed at an acceleration level and shows the di±culty of the problem: accel-

eration is given once the forces are known and in this case, to know the direction of

the frictional force, we need to integrate acceleration at least once. It is possible to

express the friction problem at an acceleration level as done by Bara®,1 but there

might be cases where there is no solution for the frictional forces. Bara® applies then

impulses to allow discontinuities of velocity.

Using penalty-based methods to solve friction leads to the same problems

mentioned earlier: the choice of the parameters and the quanti¯cation of the tan-

gential penetration, with numerical instabilities. Using LCP formulation of Eq. (3)

requires the friction law to be discretized because of its nonlinearity.38�43 The

geometrical interpretation is to discretize the friction cone into facets. This implies

additional constraints for each contact point (as many as facets) which increase

drastically the size of the system but also produce a loss of accuracy, especially if the

cones are not enough discretized. Other problems such as robustness or compu-

tation time needed for the computation of the Delassus operator make this method

unsuitable for interactive simulations. Moreover, the Delassus operator is not

symmetric anymore and can lead to conditioning illness that can be a problem for

LCP solvers such as Lemke's solver.44 Nonclassical methods of LCP resolution, such

as optimization techniques, can be used, but require more complex implemen-

tation.45,46 To keep a nondiscretized friction law, iterative methods have been

introduced.47,48 They guarantee convergence to a solution with the ability to get a

compromise between accuracy and computation time, which is of interest for

interactive simulations.
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A comparison between di®erent resolution methods of contact using constraint-

based methods can be found in Renouf et al.44 The results can be veri¯ed using the

SICONOS framework, which integrates a high number of numerical solvers.49

More recently, new contact resolution methods based on volumic contact force

models have been proposed.7 These methods compute the penetration volume

between bodies, then apply volume constraints on the bodies to get a single con-

straint in the dynamics equation and compute a volumic contact force. The dynamics

equations get much simpler than those using the methods presented above as there is

just one contact force to compute, leading to the computation of a 3� 3 Delassus

operator (to be compared with a m �m matrix, where m is the number of contact

points). Contact volume is computed using GPUs. Dedicated to the computer

graphics community, these methods are well suited to real-time visualization for

entertainment, without any experimental validation. However, for the robotics

community where physics is of primary concern, these methods may lead to

nonphysical results.

2.2. Whole dynamics integration

The accuracy of the dynamics model of a nonsmooth mechanical system is not only

linked to contact modeling but also lies on the numerical integration of the whole

dynamics. This can also be a source of errors as simulation is performed in discrete

time, meaning that nonsmooth phenomena, such as impacts, occurring between two

simulation steps, cannot be precisely taken into account and solved. Two main

integration schemes are widely used: the so-called event-driven and time-stepping

schemes.

The event-driven scheme50 proposes to decompose the dynamics into smooth

modes, e.g., free dynamics, and nonsmooth ones, e.g., when impacts occur. Each

contact instant is detected, dynamics is updated at these instants considering

contact forces. Thus this scheme ensures high accuracy but is not adapted to complex

environments involving a high number of contact points and so to real-time simu-

lation we aim at in this work.

The time-stepping scheme, initiated for mechanical systems by Moreau,47 pro-

poses to integrate the whole dynamics over a time step, chosen as small as possible,

then to discretize the result. The main feature of this scheme is not to determine

nonsmooth events, as proposed by the event-driven scheme, and thus is to allow

small penetrations. This method may therefore not be accurate unless small time

steps or high integration orders are chosen, which is not suited to real-time needs.

It is however robust and easy to implement. Since the whole dynamics is integrated,

the formulation of nonsmooth constraints is modi¯ed: they can be written either in

position or velocity, which may imply errors for contact simulation. Indeed,

ill-conditioning of the matrices, nonlinearity of the constraints, drifts during con-

tinuous contacts can appear. However, considering velocity-based constraints can be

of interest to unify into a single formulation all the constraints, both geometrical and
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kinematical, and to take into account both elastic and inelastic impacts (generally

written in velocity). Many work using this scheme were presented,38,39,41,43 but

considering only very simple study cases, such as a ball falling on a °oor. A complete

overview of the time-stepping scheme can be found in Studer's work.51

3. Constrained Based Dynamic Computation

In the previous part, we introduced the di®erent models needed to build our dynamic

simulator for multibody systems. We integrated them in a framework devoted to

general virtual prototyping and called AMELIF.52 To compute the free dynamics, we

used Featherstone's algorithm,17 and for constrained dynamics we extended and

improved Ruspini and Khatib's framework that uses constraint-based methods,9 to

include friction.

3.1. Architecture of our simulator

We present the basic architecture of AMELIF, more details can be found in Evrard

et al.52 The goal of AMELIF is to perpetuate the developments of basic tools for the

simulation and the control of multibody systems and more speci¯cally humanoid

robots. This implies the framework to be: (i) modular, so that a user can implement

an algorithm e±ciently and easily, which guarantees robustness and portability,

(ii) able to simulate any kind of multibody systems, (iii) able to load any virtual scene

or simulation context quickly, (iv) available to the community.

The global architecture is represented in Fig. 1. It consists of:

. a kernel, managing the data of the objects loaded in the virtual scene (geometrical

and physical data), and running the simulation loop;

. di®erent modules using the kernel, that can communicate between each other, and

built as independent libraries. We speci¯cally developed the following ones:

— dynamics (free and constrained dynamics, detailed in the following subsec-

tions);

— collision detection, to manage all collisions in the virtual scene. We use the

PQP librarya;

— control, to compute command laws (joint torques);

— interaction, to interface the simulation environment with external events

(human-machine interfaces), presented in Part 4.

. a main program, to initialize the virtual scene and the simulation loop.

3.2. Computation of the Delassus operator

Several methods have been presented in the literature to compute the operational

space matrix. The simplest way to compute this matrix is to make a direct

ahttp://www.cs.unc.edu/˜geom/SSV/.
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computation, meaning computeM then its inverse, J and its transpose, then multiply

them each other to obtain JM�1JT . This is obviously the most time consuming

method and thus cannot be used to achieve interactive simulations. In Chardonnet

et al.,53 we proposed an easy implementation for computing � using Featherstone's

algorithm, by considering no joint torques, no joint velocities, no gravity, and

applying a unit force at each contact point. The main drawback of this method is that

each body of the system, even those that are not contacting, must be visited during the

computation, thus giving an overall complexity in O ðnm þm 2Þ, where n is the

number of bodies andm the number of contact points. Chang and Khatib proposed to

introduce an intermediate matrix� that links the acceleration of a body i to the forces

applied on a body j, then to project this matrix � onto the contact space.54 This

method is much faster than the one presented in Chardonnet et al. as the algorithm

visits only the branches containing contacting bodies. However, implementation is

more complex as intermediate variables must be speci¯cally computed.

Here we propose a method that combines these two methods: We introduce an

intermediate matrix  which, here, will represent the inertia matrix projected in the

contacting bodies space, and will be computed using a modi¯ed Featherstone's

algorithm. Finally, we project this matrix in the contact space. The idea here is to

adapt Chardonnet et al.'s method in order to reduce the dependency toward the

number of contact points. The implementation of our method is also easier than

Chang and Khatib's one.

We want to avoid the computation of intermediate variables. To compute , we

use as for Chardonnet et al.'s method a modi¯ed Featherstone's algorithm, this time

for each contacting body, without any joint torques (¡ ¼ 0), any joint velocities

( _q ¼ 0) and without any gravity (g ¼ 0). This algorithm is composed of two loops:

the ¯rst starting from the contacting bodies to the main body, and the second

from the main body to the contacting bodies (an example is represented in Fig. 2).

Hence, the free acceleration afree becomes null and:

q
::
¼ M�1JT f : ð5Þ

Fig. 1. General architecture of AMELIF.
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Let us consider we apply six times (corresponding to the six components of force and

momentum) a unit force f i ¼ ðFi; ¿ iÞ
T at the origin of a colliding body i's frame,

de¯ned by:

Fi ¼

ð1; 0; 0ÞT

ð0; 1; 0ÞT

ð0; 0; 1ÞT

ð0; 0; 0ÞT

ð0; 0; 0ÞT

ð0; 0; 0ÞT

¿ i ¼

ð0; 0; 0ÞT first time

ð0; 0; 0ÞT second time

ð0; 0; 0ÞT third time

ð1; 0; 0ÞT fourth time

ð0; 1; 0ÞT fifth time

ð0; 0; 1ÞT sixth time

ð6Þ

or, in a condensed form uf i ½y� ¼ 1 if u ¼ y; 0 otherwise and y ¼ f1; 2; 3; 4; 5; 6g. Then

we get:

q
::
Ci

¼ M�1JT
Ci
; ð7Þ

where JCi
is the Jacobian of colliding body i. Transforming into Cartesian space

leads to:

ai ¼ JCi
M�1JT

Ci
¼ �i;i: ð8Þ

Recall that the free acceleration is null. Considering the de¯nition of �i;j (aj ¼ �i;jf i)

and f i ¼ 1, we have:

aj ¼ ð1aj ; . . . ;6ajÞ ¼ �i;j ; ð9Þ

Fig. 2. Loops for the computation of �. When there are two contacting bodies, on the left, loops for the

¯rst contacting body, on the right, loops for the second contacting body. The loops go from the contacting
body to the main body (in this example the robot's waist) then go back to the contacting body.
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where uaj is the acceleration of body j associated to the unit force uf i applied on body i.

We project then this equation onto the contact space to obtain ¤, the projection is

basically a transformation from the colliding body frame to the contact points frames.

In the algorithm, only the upper part of ¤ is computed, as it is symmetric.

The global complexity of our method is the same as the one of Chang and Khatib.

In the worst case, the computation of ¤ is in Oðn 2Þ, otherwise it is in OðC 2Þ with C

the number of contacting bodies. As for Chang and Khatib's method, our algorithm

visits only the branches that contain colliding bodies. As for the method of

Chardonnet et al., we use a modi¯ed Featherstone's algorithm, but we apply it 6C

times, whereas in Chardonnet et al.'s method, the algorithm is applied 3m times.

We made a comparison in terms of performance between the three methods

(Chardonnet et al.'s method, Chang and Khatib's method and the proposed

method). We used a desktop PC with a bi-AMD 64 2.5GHz CPU running under

Windows XP. The results are depicted in Fig. 3.

Our method is clearly much faster than Chardonnet et al.'s method (about 6.5

times faster). The di®erence with Chang and Khatib's method is less visible. In most

cases, our method will be faster than Chang and Khatib's method but there are some

cases, especially when two contacting bodies belong to the same branch, for which

Chang and Khatib's method will be faster. Indeed, our method requires to visit the

main body by construction of Featherstone's algorithm, whereas Chang and

Fig. 3. Comparison between the three methods in terms of computation time over 20 simulations. Light
gray bars represent the total time for the computation of � (computation of � and projection into the

contact space for Chang and Khatib's method and the proposed method; in Chardonnet et al.'s method,

there is no intermediate variables, thus there is no dark gray bar).
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Khatib's algorithm visits only the branches linking contacting bodies. The advantage

however of our method on Chang and Khatib's one is an easier implementation.

3.3. Collision groups

The size of � depends on the number of contact points. When including friction

without any discretization, the size is 3m � 3m. This matrix can be block diagonal if

the objects are not colliding each other, each block representing the inertia matrix for

each object. To obtain a full rank matrix, we de¯ne collision groups. A collision group

is a sequence of un¯xed objects in the environment that are contacting each other

(see Fig. 4). Each group has then its own reduced � matrix, which allows faster

computations. This preliminary sorting of contacting bodies at each time step allows

a more e±cient management of contact forces.

3.4. Contact forces computation

Once we compute the Delassus operator, recall the system to be solved:

a ¼ �f þ afree ð10Þ

To avoid problems mentioned in Part 2, we worked at a velocity level: we integrated

the previous equation once using for example an explicit Euler integration scheme:

v tþ�t ¼ ð�t�Þf þ ð�tafree þ v tÞ ð11Þ

that will be written:

v ¼ Wf þ vfree: ð12Þ

We used an iterative method to solve the problem, more speci¯cally a Gauss-Seidel

like algorithm originally applied to robotics by Liu and Wang,48 in nonsmooth

mechanics by Moreau,47 and used for deformable objects by Duriez et al.55 The forces

can be found for each contact point by:

f
kþ1
i ¼ �

�1
ii v

free
i �

X

i�1

j¼1

�ijf
kþ1
j �

X

m

j¼iþ1

�ijf
k
j

!

ð13Þ

Fig. 4. Examples of collision groups. On the left, the three cubes make one collision group as they are

contacting each other. On the right, the three cubes make three collision groups as they are independant

from each other, each cube has its own reduced � matrix.
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and looping iteratively until convergence, which is proven for dominant matrices.56

We coupled this process with a Newton method to solve precisely contact forces at

each contact point.55,57,58 The interest of using a Newton method is to converge very

quickly if the initial value is close to the solution, thus reducing computation time

which is of high interest in our case. We get a small overall computation time and

improved accuracy, as we work with matrices of size equal to the number of contact

points. Convergence can be improved by choosing an initial value of the forces close

to the solution (for instance taking the solution of the previous step). Moreover,

compared to LCP solvers, we do not need to wait the end of the calculation to get a

solution. Indeed, an estimate of the solution can be enough and thus we can interrupt

the resolution process anytime, which is an nice feature for interactive simulations.

The global algorithm is presented in Fig. 5.

4. Haptic Feedback and Interactive Simulation

Interactivity is of major concern as we want to achieve for example collaborative

tasks with virtual avatars. But interactivity is also important in the case we want to

study the behavior of a virtual avatar against an external perturbation, for example

if we want to test the robustness of a command law against unexpected events during

the simulation of a task using this law. In OpenHRP, we need to add these pertur-

bations manually for each simulation which is generally di±cult and bothersome due

to parameters tuning. Thus, we integrated in our simulator a haptic device with force

feedback. We chose the Phantom°c OmniTM sold by Sensableb which includes six

bhttp://www.sensable.com.

Fig. 5. Global algorithm of the dynamics simulation.
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degrees of freedom of movement and three of feedback. In our simulator, it is possible

to integrate other haptic devices and other interaction devices as its architecture is

highly modular.

We will consider two ways of interaction: (i) the haptic probe can penetrate the

objects, can be attached to them, thus it can be considered as the application point of

bilateral contact forces, this point can be either inside or on the surface of the object

(we will call it the attach case), and (ii) the haptic probe cannot penetrate the

objects, it is considered as a unilateral interaction point, in this case, the haptic probe

allows just tactile exploration (we will call it the touch sensing case). In both cases,

the contact point can be determined using the collision detection library included

with the haptic device.

For the touch sensing case, the force to be applied to the object is directly given by

the haptic device. This force is then multiplied by a user-chosen coe±cient.

For the attach case, generally used to manipulate objects for typical pick-and-

place tasks, the force is computed using a 6D spring-damper model linking the haptic

probe to the point on the object. This force can be written as:

f ¼ kpðxobject � xprobeÞ þ kvð _xobject � _xprobeÞ; ð14Þ

where xobject and xprobe are the positions of the object (the attach point) and of the

haptic probe respectively, kp and kv are the spring-damper parameters with

kv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mobjectkp
p

. This method is very fast but needs ¯ne parameter tuning to obtain

a realistic feedback. Other methods like constraint-based methods can also be used,59

however, there are generally time consuming and complex to implement.

In both touch sensing and attach cases, the force is added to the free dynamics

equation as a known external force f e:

q
::
¼ M�1ðqÞð¡ðqÞ � bðq; _qÞ � gðqÞÞ þM�1ðqÞJT

e ðqÞf e: ð15Þ

We performed several interactive simulations using the HRP-2 robot. We propose

to realize collaborative tasks with HRP-2, e.g., manipulating an object. To achieve

such tasks, the robot must be compliant. One way to do it is to control all joints in

position and de¯ne desired joint positions qd by the following equation:

Md q
::
d þBd _qd ¼ JT

e f e; ð16Þ

where Md and Bd are positive diagonal matrices corresponding to a virtual inertia

and a virtual damping, respectively. The Jacobian Je links the joint velocities to the

Cartesian velocities of the bodies that are between the main body and the one on

which an external force f e is applied. We ¯rst approach the robot's arm to the object

using the device and then close its gripper so that it grasps the object. Then we move

the object in the space using the haptic device. We show simulation snapshots for

two scenarios in Figs. 6 and 7.

To increase interactivity and the perception of collaboration with a virtual ava-

tar, a visuo-haptic perception module was also added. This module allows a virtual
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avatar to react against a perturbation driven by the user through a haptic interface,

for example, touching the robot will notify it that the user wants to perform a task

with it. The robot will hence move according to the users' intentions, by looking for

instance at the haptic probe. Considering again the scenario of Fig. 7, the simulation

results are depicted in Fig. 8.52

Fig. 6. HRP-2 sitting in a sofa and taking a can. This simulation shows a realistic scenario in a complex

environment with robust multi-contact resolution.

Fig. 7. Collaborative task with the HRP-2 robot. Using the haptic device, we are able to manipulate an

object with the HRP-2 robot while sensing force feedback.

Fig. 8. Collaborative task with the HRP-2 robot with the visuo-haptic perception module. HRP-2 always

looks at the haptic probe, which increases the level of interactivity with the virtual avatar.
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5. Assessment Through Real Experiments on HRP-2

As far as we know, there is no general methodology to assess a robotic simulator.

In many research works, simulators try to provide results that are as much as

possible close to real sensors' measures, physical interactions and actuators'

models. We could say that the quality of a simulator lies on precise comparisons

between the results of a simulated robot and those of a real robot, based on

sensors' outputs. However, identifying real parameters such as friction coe±cients,

impact's coe±cients of restitution, joints mechanism parameters,. . ., is nearly

impossible to make for each scenario, even for simple scenarios. Research works on

simulation trying to show as much as possible close-to-real results generally deal

with very basic examples, such as a ball on a °oor. Considering more complex

scenarios, for instance including object manipulation, as far as we know, most of

the current literature do not present any other comparison between simulation and

reality else than a visual one, i.e., comparing simulation and experiment snapshots.

Thus, these frameworks do not prove their actual performance. What is important

in physical-based simulation, for example a humanoid robot walking on a °oor, is

not to know the real friction coe±cient between the foot and the °oor, but to

model and to simulate this friction properly, so that the behavior of the robot

would be roughly the same if there was such friction in reality, in other words,

the time evolution of the measures in simulation and in reality should have the

same global characteristics. Moreover, sensors are generally noisy and the most

important thing is not to simulate this noise exactly, then compare simulated and

real measures, but to get a noise in simulation that has the same global properties.

In fact, command laws developed in robotics are robust to these variations, and the

goal is to ensure the robustness of these laws by confronting them with di®erent

scenarios, so that experiments have more and more chance to be successful with

di®erent parameters.

Here, we will present two ways of assessment of our simulator: The ¯rst one is

based on a precise comparison between simulation and reality on a simple scenario,

i.e., identifying real parameters and comparing the outputs, and the second one by

showing an example of successful applications that used our simulator.

5.1. Precise comparison between simulation and reality

Here we will make our comparison on contact with friction by observing force

sensors' outputs: The ones computed in simulation and the ones directly read on the

sensors mounted on the robot. We propose here a very simple scenario in a static case

implying the HRP-2 robot, made by Kawada Industries, and a ¯xed object in the

environment. We ask the robot to bend its arm and to push with its hand on a pillar

just in front of it. The most interesting part is of course when the robot contacts the

pillar, especially the contact forces applied on the hand.

To obtain close-to-real results, several parameters must be taken into account:

The friction coe±cient between all objects, the model of the force sensors, the
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parameters of HRP-2's actuators and ¯nally the °exibilities existing in the knee

joints of the robot.

The friction coe±cients to be identi¯ed are between the feet and the °oor, and

between the hand and the pillar. To obtain the coe±cient between the feet and the

°oor, we managed to get only one foot of HRP-2, on which we put a mass (enough

heavy to get reliable measures), and with a dynamometer, we measured the force f

that was necessary to make the foot slip on the °oor (see Fig. 9). We can easily

deduce the friction coe±cient by the following equation:

f ¼ �fn ¼ �mg ) � ¼
f

mg
: ð17Þ

We realized 50 measures and we took the mean value of these measures to get

� � 0:983. We proceeded in the same way to get the friction coe±cient between the

hand and the pillar (� � 0:1).

The next step is to model the force sensors. As the measures read from the real

sensors are given in the sensor's frame, we need to know the position and the

orientation of the sensor in the frame of the body that contains the sensor. Especially,

for the hand, we found that the center of the sensor is nearly the same as the one of

the hand and its orientation is 90 degrees. Then, to obtain the real applied forces, the

read values should be multiplied by a full rank squared matrix G which is equal to

the identity matrix when the sensor is perfect.G can be assimilated to an adjustment

parameter. In our case, the force sensors that are in HRP-2's hands are old, meaning

that G is not equal to the identity matrix; its parameters were identi¯ed from o®line

measures taken considering di®erent orientations of the hand. Finally the dynamics

equation for the sensor is:

m x
::
¼ Pþ f e þ f r ; ð18Þ

where m, x
::
and P are respectively the mass, the acceleration and the weight of the

body in which the sensor is located, f e and f r are respectively the external forces

(a) Experimental setup for

measuring the friction coe±cient

between the foot and the °oor.

(b) Measured values of the friction

coe±cient between the

foot and the °oor.

Fig. 9. Measurement of the friction coe±cient.
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exerted on the sensor and the forces exerted by other bodies of the robot on the sensor

(internal forces). This equation is written in the sensor's frame. Here we work in the

static case as we want to measure the forces in a static case, thus x
::
¼ 0. The force

given by the sensor f c is actually equal to �f r and can be written:

f c ¼ Gf l ; ð19Þ

where f l is the force read directly on the sensor. Finally, we add an o®set fd corre-

sponding to a calibration o®set (when the robot's joints are set to zero, the forces

read on the sensors are set to zero). Equation (18) becomes then:

f e ¼ �PþGðf l þ fdÞ: ð20Þ

We will compare the forces f e with the computed ones in simulation. Here we will

suppose that the normal to the pillar is along the z-axis of the sensor, and the gravity

direction is along the y-axis of the sensor.

We have next to set a command law to actuate joints. We choose a PD-type law:

¡ ¼ Kpðqd � qÞ þKvð _qd � _qÞ ð21Þ

but to be as close as possible to reality, we must take into account di®erent par-

ameters such as dry and viscous frictions in the joints and the coe±cients of

reduction of the actuators. Considering these parameters, the command law can be

written:

¡ ¼ RðKpðqd � qÞ þKvð _qd � _qÞÞ þ �v _qþ �dsignð _qÞ; ð22Þ

where R are the coe±cients of reduction, �v and �d are respectively the viscous and

dry frictions. These parameters were identi¯ed by experiments.

The HRP-2 robot has °exibilities in the ankle joints to protect the robot's

structure while moving. They create oscillations during walking or standing motions.

These oscillations can be reduced using a stabilization control. In our case, we will

consider the °exibilities, that are part of the robot's structure, but we will ignore the

stabilization control as its expression and the way it acts on the joint references

remain unknown. Its integration in our simulator then would be clearly a disturbance

for our purpose. This implies the simulation data to account for the oscillations from

the °exibilities in the ankle joints during our experiment. We used the model pre-

sented in Nakaoka et al.,12 which is a simpli¯ed model consisting of virtual joints

acting like spring-dampers in each direction. The values of the parameters are tuned

according to Nakaoka et al.12

Once we identi¯ed the di®erent parameters needed for our comparison, we

obtained the results depicted in Figs. 10 and 11 for the simulation and the exper-

iment, respectively. In Figs. 12 and 13, we show the values of the contact forces

computed at the hand's sensor in simulation (in gray) and the ones measured at the

real hand's force sensor (in black), along the z and y-axes of the sensor, respectively.

Note that the motion of the robot's arm is made in the yz plane of the sensor, thus we

always get a null force or a nearly null force in the x-axis of the sensor. We can
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Fig. 10. Simulation screenshots. From left to right: the robot is standing up with all joints set to 0, then it
bends the legs and the arms a little bit and ¯nally touches the pillar.

Fig. 11. Experiment screenshots. The motion is the same as in Fig. 10.

Fig. 12. Evolution of the force read on the force sensor along z axis with respect to time. In black: the

computed force. In gray: the measured force.
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observe that the values obtained from simulation match very well those of exper-

imental measures. There are slight di®erences, due to setup errors (e.g., the initial

position and orientation of the robot are not exactly the same in simulation and in

the experiment). These di®erences are however negligible against the overall beha-

vior, as we managed to always minimize the setup errors to avoid any kind of drifts

between simulation and experimental results, otherwise it altered our simulation

results (for instance, di®erences in position of a few millimeters, e.g., 2mm, changed

completely the overall behavior of the robot). We repeated the experiment several

times to guarantee the quality of our simulator and we found similar results as in

Figs. 10 and 11.

5.2. Example of applications

Our simulator was used in several applications, such as hard manipulation tasks that

could be performed by future humanoid robots in collaborative environments.

Especially, we asked the HRP-2 robot to lift heavy objects over its head. We used an

optimized trajectory generation software based on dynamics calculation taking into

account actuators' parameters and energetic considerations.60 Design of the trajec-

tory was inspired by weight lifting (see Fig. 14). This task is particularly complex and

extreme. Indeed, considering the physical properties of the HRP-2 robot, no com-

mand law exists to perform such task specifying just initial and ¯nal conditions, thus

justifying the use of optimized trajectory generation. Our simulator allowed us to

Fig. 13. Evolution of the force read on the force sensor along y axis with respect to time. In black: the

computed force. In gray: the measured force.
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verify in both cases in simulation that the generated trajectory was indeed feasible on

the real robot. Because this kind of applications are extreme and complex, they are

typically examples where physical models implemented in simulation must be

accurate and robust to avoid severe damages on the real robot. Success of the

experiments shows that our simulator is hence valid. Further details on this example

and other successful applications using our simulator can be found in the work of

Arisumi et al.61�63 Note that in the application depicted in Fig. 14, we also succeeded

in making the robot lift a 23.4 kg object,61 which is, considering the speci¯cations of

the HRP-2 robot and the proposed method, a high performance. Indeed, comparing

to other existing methods for lifting an object, for example methods using whole-

body contact where the robot places the object to be lifted on its arms,64 we tried to

make the robot manipulate an object just using its grippers. Our approach (i) is one

of the most di±cult way to lift an object, as the robot's motion passes through highly

unstable con¯gurations, and (ii) allows a complex manipulation of the object, which

is nearly impossible for example with the method proposed by Ohmura and

Kuniyoshi.64

Note that we tried to perform the same simulations in OpenHRP but we could not

get relevant results because of high numerical instabilities caused by the tuning of the

spring-dampers parameters used in the penalty-based contact model. Typically we

observed divergence in most cases for the reasons we described in Sec. 2.1.

6. Conclusion

We presented an interactive dynamic simulator for multibody systems, including

humanoid robots. Our simulator is a successful integration of theoretical models

taking into account nonsmooth phenomena such as contact with friction, into a

general framework designed for prototyping. Users can interact with the virtual

Fig. 14. HRP-2 robot lifting a 8.4 kg object using an optimized trajectory generation software (up:
simulation. Down: experiment). From left to right: (a) initial state, (b) accelerating the object upward,

(c) switching motion, (d) sliding into under the object, (e) crouching, (f) ¯nal state (sitting). The robot also

succeeded in lifting a 23.4 kg object.
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scene through interfaces, while sensing force feedback. We showed several ways of

assessment of our simulator: First by measuring and comparing real measures with

simulated ones through the identi¯cation of several parameters such as friction

coe±cients, actuators' models, then by presenting an example of applications of our

simulator to complex and extreme manipulation tasks. Using our simulator in con-

crete applications clearly shows its interest and its e®ectiveness. Our simulator was

also used as the development base for OpenHRP3.12

The basics of a high quality simulator are now well de¯ned. We can still improve

interactivity. Indeed, real-time interaction works well for scenarios not involving

many contact points (less than 100 points). However, dynamics computation gets

slower when the number of contact points dramatically increases. This is because we

always worked with contact points, rather than contact lines or surfaces or volumes.

Working with surfacic or volumic forces would drastically reduce time computation.

However, rather than focusing on accelerating computation processes (which can be

solved as long as new generations of computers get much faster), we are planning to

consider and develop models of other physical phenomena, such as rotational fric-

tion, viscous friction, to get even more realistic simulations.
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