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RESTORATION OF HYPERSPECTRAL ASTRONOMICAL
DATA WITH SPECTRALLY VARYING BLUR

F. Soulez!, E. Thiébaut' and L. Denis?

Abstract. In this paper we present a method for hyper-spectral image
restoration for integral field spectrographs (IFS) data. We specifically
address two topics: (i) the design of a fast approximation of spec-
trally varying operators and (ii) the comparison between two kind of
regularization functions: quadratic and spatial sparsity functions. We
illustrate this method with simulations coming from the Multi Unit
Spectroscopic Explorer (MUSE) instrument. It shows the clear in-
crease of the spatial resolution provided by our method as well as its
denoising capability.

1 Introduction

In the last decade, integral field spectrographs (IFS) have become popular tools for
astronomical observations. Such instruments are now installed on all the main op-
tical telescope facilities around the world. They provide spatially resolved spectra
of a whole region of the sky, yielding (6, \) data cubes — with 8 the 2D angular
position and A the wavelength — with several hundreds of wavelength bins. With
IFS, astronomical data enters the hyper-spectral era. New dedicated image re-
construction techniques are needed to take full advantage of the data gathered by
these instruments. Because the light is split on multiple channels instead of being
integrated on a single image, the information contents is increased at the cost of
a lower signal to noise for the same exposure time. Furthermore, atmospheric
turbulence and instrumental response spatially blur the observations, degrading
the spatial resolution.
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First attempts to restore multi-channel images consisted in applying classi-
cal 2D restoration techniques like Wiener filter or Richardson-Lucy algorithm on
each individual channel. The caveat of these approaches is to ignore the natural
spectral correlations present in the data. The first restoration technique specif-
ically dedicated to multichannel data (Hunt and Kubler, 1984) was a Minimum
Mean Square Error (MMSE) restoration filter based on the assumption that signal
auto-correlation is spatially and spectrally separable. This assumption was later
relaxed (Galatsanos and Chin, 1989) and many other multichannel linear restora-
tion filters have been proposed since (Tekalp and Pavlovic, 1990; Galatsanos et al.,
1991; Katsaggelos et al., 1993; Gaucel et al., 2006). More recently, Fourier/wavelet
restoration techniques (Neelamani et al., 2004) have been adapted to multispec-
tral data (Benazza-Benyahia and Pesquet, 2006; Duijster et al., 2009). In remote
sensing, some authors (Akgun et al., 2005; Bobin et al., 2009) combine demixing
and restoration to achieve enhanced spatial resolution given the strong assump-
tion that the observed scene is composed of only a few materials with unknown
spectrum.

Most of these developments on restoration of multi-spectral images are dedi-
cated to remote sensing and color (RGB) images. Those methods can’t easily be
directly applied to astronomical data with its specific features like large dynamic
range and strong sharp features (e.g. narrow emission lines or peaked sources).
Few restoration techniques for multi-spectral astronomical images have been pro-
posed for (z,\) data (slit spectrography) (Courbin et al., 2000; Lucy and Walsh,
2003) or (z,y,A) data composed of slit spectrography scans (Rodet et al., 2008).
However astronomical hyperspectral processing is gaining more and more atten-
tion as it is becoming mandatory to fully exploit the capabilities of new integral
field spectrographs (e.g. second generation VLT instruments MUSE and KMOS)
and restoration algorithms dedicated to IFS begin to appear (Soulez et al., 2008;
Bongard et al., 2009; Bongard et al., 2011; Bourguignon et al., 2011a; Bourguignon
et al., 2011b).

Following the work we have done in Soulez et al.(2011) and Bongard et al.(2011),
we present in this paper a deconvolution method based on a so called inverse prob-
lem approach. It is very generic and exploits intrinsic regularities of hyper-spectral
data. We suppose that a good estimation of the point spread function (PSF) is
provided by other means (e.g. by calibration on the telescope guiding stars or
on information from the adaptive optics system) and defer the blind restoration
problem to a later time.

Our approach will be illustrated on data provided by the MUSE IF'S simulator.
Still in integration, the MUSE IFS (Henault et al., 2003) will be installed on the
ESO Very Large Telescope (VLT) in 2013. It is a “slicer” based IFS that covers
in its wide field mode a 60" x 60" spectroscopic field-of-view subdivided into a
grid of about 300 x 300 spatial elements (spaxels). To each spaxel corresponds a
spectrum, obtained by dispersing the light on 3463 equally spaced spectral bins
from 480 nm to 930 nm.
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2 Problem Formulation

2.1 Model description

The direct model describes how the observed data y is related to the 3D intensity
distribution of the object of interest I1(6,\) with 8 = (61,02) the 2-D position
angle. This data cube y is composed of N monochromatic images of N pixels.
It writes:

Yr,e = 9(Oks Ae) + €kt (2.1)

where ¢(0, \) is the distribution sampled by the detector, (6, A¢) are the spatio-
spectral coordinates of the pixel at the 2D spatial index k and spectral index £,
and eg ¢ accounts for the errors (noise and model approximations). The sampled
distribution g(0, \) writes:

9(0,\) = /// WO — 6/, A — N:0', ) I(0, \) %6’ AN’ (2.2)

where h(A@, AX; 0, )) is the recentred PSF at position 6 and at wavelength A. In
words, the PSF is the linear response of the total observing system (atmosphere
+ optics + detector) for a monochromatic point-like source at (6, A).

At best, we can only recover an approximation of the true object brightness
distribution, we choose to represent the sought distribution by:

I(0.0) = > ks bre(6,)) (2.3)
k.0

where @ are the unknown parameters and by, ¢(6, \) are basis functions. Using in-
terpolation functions for the basis functions and the same spatio-spectral sampling
for the model and the data yields:

xk,é ~ I(@k,/\g) (24)
The direct model then writes:
Ykt = Z Hy oo o Trr o0 + Clop (2.5)
K0

with H the linear operator corresponding to the system response. Using compact
matrix notation:
y=H -z+e. (2.6)

Under the same assumption as those leading to Eq. (2.4):
Hyop o =~ h(0 — 6 X —N;0 N)OTILN, (2.7)

with 1162 and I\ the pixel size and the effective spectral bandwidth respectively.
The linear operator H models the linear response of the observation system.
It can be described by a PSF which varies both spatially and spectrally. As the
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telescope and the atmosphere don’t have any effect along the spectral dimension,
blur along spectral dimension is only due to the IFS. Conversely, without adaptive
optics system, the atmosphere is responsible for most of the blur along spatial
dimensions. As the field of view (FOV) is limited, we can assume that this PSF
is spatially shift invariant:

ha((AB, AX) = h(AB, AX; \) (2.8)

However wavelength-wise PSF’s h) may be centered at a location 8, which de-
pends on the wavelength so as to account for imperfect instrumental alignment
and atmospheric differential refractive index (ADR). Furthermore PSF is not nec-
essarily normalized in order to account for the variable throughput (atmospheric
and instrumental transmission). Finally, the operator H can be described as a
spectrally varying convolution.

2.2 Spectrally varying PSF approximation

If the observing system is spatially and spectrally shift-invariant, H is a block
Toeplitz matrix with Toeplitz block that can be diagonalized by means of dis-
crete Fourier transforms (under a circulant approximation or providing a proper
processing of the egdes as explained later). Such transforms being efficiently com-
puted thanks to the FFT (Fast Fourier Transform) algorithm. In the considered
case, the PSF is spatially shift-invariant but depends on the wavelength of the
source. In order to implement a fast version of such an operator H storing the full
H (> 10'2 elements) is not possible and, even so, applying it in this form would
take to much CPU time, we propose to follow the prescription of Denis et al.(2011)
and write:

A(AB, AN) Z@, 2(A0, AN (2.9)

where:

def

hy (A0, AN) % R(AG, AN \,) (2.10)

are samples at differents wavelengts {)\p}p 1 of the recentered spectrally-varying

PSF and {¢,(\) : R — R}}_, are spectral interpolation functions. With this
modeling of the PSF, the operator H becomes:

P
H=) H, K, (2.11)

p=1

with H,, the discrete 3D convolution by h,(A@, AX) and K, an operator which
extracts a subset of the spectral range (around A,) and weights the selected spaxels
by the interpolation function ¢,(A). Operators H, are implemented using 3D
FFT’s while K,’s are very sparse as their only non-zero coefficients are along
their diagonal. Thus, as long as the spectral support of h,(A@, A)) is sufficiently
small compared to the patch selected by K,, applying H (or its adjoint H* =
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2o K, -H?) is very fast. The computations are dominated by the calculus of the
FFT.

First order (linear) interpolation with a subset of PSF built by sampling on
a uniform grid {A1,...,Ap} leads to interpolation weights supported on a patch
twice the grid step along. Each patch extracted by K, are convolved only with
the coresponding PSF h, (A6, A)). As a consequence, the computational cost for
applying our spectrally varying operator is only roughly twice the cost the applying
a non-varying operator: (4 versus 2 FFTs). As stated in Denis et al.(2011), such
approximation of the shift varying PSF preserves some good properties of the PSF,
namely normalization, positivity and symmetry.

3 Maximum a posteriori approach

Restoration is a typical ill-posed problem (Bertero and Boccacci, 1998). We choose
to solve it by adding priors in a classical Maximum A Posteriori (MAP) framework.
This is achieved by estimating the object 1 that minimizes a cost function f(x):

T = argmin f(x), (3.1)

xT

f(.’]?) = fdata(m) + fprior(w) . (32)

This cost function f(x) is the sum of a likelihood penalty fyaa(x) ensuring the
agreement between the model and the data y, and a regularization penalty forior(2)
introducing subjective a priori knowledge about the object.

3.1 Likelihood and Noise Statistics

Assuming Gaussian noise, the likelihood penalty reads:
fdata(T) = [?J_H'w}T'Werr' ly—H- =z, (3.3)

where the weighting matrix We,, = C_! is the inverse of the angular-spectral
covariance of the errors (noise + approximations). Assuming uncorrelated noise,

We,, is diagonal and Eq. (3.3) simplifies to:

Jaata(®) = Z Wi [y —H- w]iz
k¢

where 1/wg ¢ is the noise variance of the measurements at pixel k and channel
£. This model can cope with non-stationary noise and can be used to express
confidence on each measurements. Since unmeasured data can be considered as
having infinite variance, we readily deal with missing or bad pixels as follows:

_1 . .
def { Var (yi,e) if yg ¢ is measured, (3.4)

Wk p = .
k.t 0 otherwise.

This treatment of missing data is rigorous because (i) it consistently accounts
for unmeasured data and bad pixels, and (ii) it allows to properly expand the
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synthesized FOV to avoid field aliasing and border artifacts caused by convolution
using Fourier transform. This formulation provides a rigorous scheme to take into
account photons emitted by sources outside the FOV that are measured because of
the blurring. As a consequence, restored object has to be estimated even outside
of the field of view, by extending the size of the FOV by at least the PSF size.
As we showed in Soulez et al.(2008) and Bongard et al.(2011), this may lead to
a small extension of the FOV of the instrument that can be relatively significant
when this FOV is small like in the SNIFS instrument considered by Bongard et
al.(2011).

Except for very low detector noise (< few e~ per pixel), the total noise (Gaus-
sian detector noise plus Poisson noise) is approximated by a non stationary un-
correlated Gaussian noise (Mugnier et al., 2004):

-1
2 . .
Wi e def (7 max(yg,e,0) + O’k7€) if yg ¢ is measured, (3.5)
otherwise,

where v accounts for the quantization factor of the detector (i.e.number of photon
per quantization level) and 0,26, , is the variance on the pixel (k,¢) of other sources
of noise than the signal, like for example read-out noise for instance.

3.2 Priors

In our MAP framework, priors on the object are enforced by the regularization
penalty forior(x) term of the total cost function f(a). It introduces in the solution
generic knowledge about the observed objects. In addition, we enforce strict priors
to ensure the non negativity of the parameters .

As in hyper-spectral imaging the spatial and the spectral dimension have dif-
ferent physical meaning we split the regularization function as the sum of a spatial
regularization fspatial(€) and a spectral regularization fspectral (Z):

fprior(w) = afspatial<w) + ﬁfspectral(w) . (36)

where a and 8 are hyper-parameters that have to be tuned to set the importance
of the priors.

In this work we propose two kind of regularization functions: (i) a quadratic
regularisation and (ii) a spatial sparsity regularisation.

3.2.1 Quadratic Regularization

Quadratic regularization (so called Tikhonov) is the most simple prior that can be
introduced in our MAP scheme. In that case and with the least square likelihood
function defined in 3.3, the minimization of Eq. (3.1) shows good convergence
property since the total cost function f(x) is strictly convex and quadratic.

As stated in (Bongard et al., 2011), it is customary to minimize the quadratic
norm of finite differences to account for continuities along the three dimensions of
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the brightness distribution. The regularization functions are thus:

fspatial(w) = Z(Vk1$)2+(Vk2w)27 (37)
k.l

fspectral(w) = Z(v£$)27 (38)
k.l

where V;x is the finite differential operator along the dimension indexed by the
letter 7.

3.2.2  Spatial only sparsity regularization

In wide field observations, astronomical data is mainly composed of bright objects
(stars, galaxy) over a flat background. Most of the quite large MUSE field of
view will thus contain only background. As a consequence, the observed scene is
intrinsically spatially sparse. This spatial sparsity prior can be enforced by means
of structured norms (Fornasier and Rauhut, 2008; Kowalski and Torrésani, 2009):

fsparsity(w) = Z IZ mi,[ +e2—¢ (39)
k 4

where € is a small real number (¢ ~ 107%) that ensures the derivability in 0
(hyperbolic approximation of the ¢; norm). This regularization enforces spatial
sparsity and spectral correlation since it favors solutions where bright features in
each spectral channel are at the same spatial location.

The regularization defined in Eq. (3.9) does not ensure the spectral continuity
of the solution whereas in practice the spectral energy distribution (SED) of a pixel
should be relatively smooth excepted near emission and absorption lines. For that
reason we introduce an additional regularization function:

fspectral(w) = Z |: (V[Il?k)Q + <2 - C:| . (310)

k.l

This regularization tends to smooth the spectra xp but preserve discontinuities
where |Vya| > ¢. This situation is for example encountered at absorption or
emission lines, which shall not be smoothed.

3.2.3 Renormalization

Owing to the large variations of the dynamical range between spectral channel of
astronomical images, these regularizations lead to over-regularize bright features
or under-regularize faint ones. For that reason, as Bongard et al.(2011) we rather
suggest to apply these regularizations to spectrally whitened object '

Ty = Thot/Se (3.11)
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with s, = (x,e)k the spatially averaged object spectrum — ( ), denotes averaging
over pixel index k. To avoid introducing more non-linearity in regularizations, we
estimate the mean object spectrum directly from the data:

50 = (Yr,0)k/ e (3.12)

with 7y = n(\¢) the effective throughput in ¢-th spectral channel:
ne = /// he(AB, AN) d2AQ dAN. (3.13)

3.3 Algorithm description

As discussed in section 3.1, due to the convolution process, flux from the object
just outside of the field of view may have an impact on the data. To take this fact
correctly into account, the estimated object has to be spatially larger than the
observed field of view. At least half of the PSF support must be added on each
side of the observed field of view to form the restored field of view.

The level of priors introduced in the restoration is balanced by hyper-parameters
o and 3 that are estimated by trial and error. The restored data cube ™ is the
solution of Eq. (3.1). It requires the minimization of the cost function f(x) that
involves a large number of parameters (> 10°) with positivity constraints. To that
end, we use the VMLM-B algorithm (Thiébaut, 2002) which is a limited memory
variant of the variable metric method with BFGS updates (Nocedal and Wright,
1999). This algorithm has proved its effectiveness for image reconstruction and
only requires the computation of the penalty function being minimized together
with its gradient. The memory requirement is a few times the size of the problem.

4 Results

The quality of the presented algorithm was assessed on data from the MUSE IF'S
simulator. This data is a part of 51 x 36 spaxels (pixels size: 0”72 x0”2) of the whole
MUSE data cube. It contains 3463 spectral channels comprised between 480 nm
and 930 nm. The PSF was computed for a seeing of 1.1’”/. This PSF shown on
Fig. 1 is supposed to be separable and composed of a spatial field spread function
(FSF) and a spectral line spread function (LSF). As shown in Fig. 1, both of them
vary spectrally. FSF is Gaussian with a full width at half maximum that varies
from 0'/75 (3.75 pixels) at the red end to 0’92 (4.6 pixels) at the blue end. In
addition, the MUSE IFS simulator provided a cube of the variance for each pixel
as it will be estimated by the data reduction software of the instrument.

To perform the restoration, we first have to build the fast approximation of the
operator H as defined Eq. (2.11). For these experiments, the PSF was sampled on
a grid of P = 350 evenly spaced wavelengths to give the h, and linear interpolation
along the spectral dimension that was used for the weights ¢,. As linear interpo-
lation is used, the PSF h; centered on spectral channel £ with A\, < Ay < A\pyyq is
interpoled only using h, and hj,41. The Euclidean norm of the differences between
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Fig. 1. Left: Profile of the PSF along a spatial dimension. Right: profile of the PSF
along the spectral dimension. Grey and black profile correspond to the blue and the red
ends of the IFS respectively.

the true PSF hy and our approximation is less than 8 x 107° (0.08% relatively to
the euclidean norm of the PSF). That gives a quantitative estimate of the good
quality of our approximation.

As stated in section 3.1, the restored field of view must be larger than the data
FOV. In the presented experiments, the size of the restored FOV is extended to
64 x 48 spaxels and 3481 wavelengths.

The data were processed with both quadratic and spatial sparsity regulariza-
tions. The effectiveness is qualitatively evaluated by visual inspection and quan-
titatively by the root mean square error (RMSE):

1
k.0

with o the truth. In both cases, the hyper-parameters o and 8 were set to minimize
the RMSE. For the quadratic case, with the hyper-parameters « = 1 and 8 = 1, the
algorithm converged in about 5 hours to the solution a:;ruad with RMSE(a:;'uad) =
0.418. For the spatial sparsity case, the algorithm converged in about 8 hours to the
solution :cgpar with RMSE(mgrpar) = 0.344 with the hyper-parameters o = 15000,
B8 =0.05and ( =1.

The results are shown on figures 2 and 3. Fig. 2 shows the data, the results
and the true object integrated over the whole spectral range of the instrument. It
clearly illustrates the gain in term of spatial resolution provided by our method.
Both the shapes of the central galaxy and of the one near the upper left corner
are recovered. Compared to the solution with spatial sparsity regularization :c;rpar,
the solution with quadratic regularization :c:uad shows more artifacts (e.g. on the
bottom left part of the central galaxy) and bright spots are a bit over-smoothed.

We display in Fig. 3 spectral cuts through the heart of the central galaxy mate-
rialized by the dashed line in 2. These figures show (6, A) images zoomed between
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Fig. 2. Images spectrally integrated. Top left: raw data. Top right: restored object x

regularization. Bottom right: true object o.

567 nm and 574 nm for the data, both restorations and the true object. These plots
show the resolution gain provided by our algorithm: the two brightest objects are
well separated, with the spectrum at 43rd column visible in the restoration that
was not visible in the data. Once again, the solution with quadratic regularization
w;ad shows much more artifacts (e.g. on the bright emission line at A = 573 nm
and 6 = 22). Furthermore, the noise has been drastically reduced by our method
as this can clearly be seen by looking at the background.

Figure 4 displays the spectra of the brighter spaxel of the galaxy (6 = (33,27))

of the data, the quadratic restoration acqtad and the spatial sparsity restoration

$s+par and the ground truth. Even though regularizations introduce some expected
bias, the restored spectra are closer to the ground truth and far less noisy than
the measured spectrum. In the spatial sparsity restoration acg'par (red), most of the
spectral features are preserved. These features are over-smoothed in the quadratic
restoration wqﬁjad (green). The bias between restoration and is quite strong as it
is the spectrum of the spaxel with the higher dynamical range and it tends to
be flattened by the regularization. The hyper-parameters were tuned to provide
the minimal RMSE for the whole field of view. As a consequence, the hyper-
parameters setting for a sufficient regularization of the faint sources is strong for
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Fig. 3. (6,)\) images of the cut materialized by the yellow line in Fig. 2 magnified

+
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with quadratic regularization. Bottom left: restored object mgpar with spatial sparsity

between 567 nm and 574 nm. Top left: raw data. Top right: restored object x

regularization. Top right: true object o.

bright sources and tends to smooth them. However, this bias disappears if we
integrate spatially on few spaxels as we show in Fig. 5 on the spectra of the
central 3 x 3 region of the central galaxy. This means that the bias is mainly
imputable to the remaining blur.

5 Conclusion

In this paper, we present a method for restoring hyperspectral data. We especially
focused on two points: (i) the design of an efficient operator modelling spectrally
varying blur and (ii) a comparison between quadratic and spatial sparsity regu-
larization functions.

We have shown that using PSF interpolation it is possible to design an effec-
tive operator approximating spectrally varying blur. Our formulation preserves
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L - Quadratic restoration

Fig. 4. Spectra of the brighter spaxel of the central galaxy of the data (thin grey line),

the quadratic restoration m;"uad (dark grey dash dotted line) and the spatial sparsity

restoration wg'par (thin dashed black line) compared to the true spectrum (thick grey
line).
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Fig. 5. Details (550 to 700 nm) of spectra integrated on a 3 x 3 region centered on the
brighter spaxel of the central galaxy of the data (thin grey line), the quadratic restoration
mqtad (dark grey dash dotted line) and the spatial sparsity restoration m;par (thin dashed
black line) compared to the true spectrum (thick grey line).

the positivity, the normalization and the symmetry of the PSF. The computa-
tional cost of such approximation, that is twice as much as spectrally invariant
convolution, remains tractable and it is possible to consider the processing of whole
MUSE data cubes (size: 300 x 300 x 3463) with nowadays CPU power. Further-
more, this type of operator can be easily extended to blurs that vary both spatially
and spectrally as in wide field observations with adaptive optics.

By exploiting jointly spatial and spectral correlations present in the data, our
method provides a strong spatial resolution enhancement and an effective denoising
along the spectral dimension. Its deblurring performance is assessed on simula-
tions showing the clear improvement in terms of both resolution and denoising.
The comparison of a quadratic and a spatial sparsity regularization, shows that
spatial sparsity regularization are less prone to artifacts and preserves most of the
spatial and spectral features. However, the non linearity introduced by such regu-
larization slows down the convergence of the optimization algorithm. In that case,
optimization algorithms as Alternating Direction Method of Multiplier (ADMM)
seem to provides faster convergence than our VMLMB algorithm as we shown in
Thiébaut & Soulez (2012).

This study as well as the one of Bourguignon et al.(2011a) show clearly the
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improvement given by a rigorous processing of hyperspectral astronomical data
cube. However, two main problems remains in this field (i) the settings of the
hyper-parameters, (ii) the estimation of the PSF. Our experience on SNIFS real
data cube (Bongard et al., 2011) indicates that the hyper-parameters remains
approximately identical for similar observations conditions. For the problems of
the PSF estimation, we are currently studying blind deconvolution method where
PSFs is estimated conjointly with the restoration only using the observations.
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