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THE STOCHASTIC WEISS CONJECTURE FOR BOUNDED

ANALYTIC SEMIGROUPS

JAMIL ABREU, BERNHARD HAAK, AND JAN VAN NEERVEN

Abstract. Suppose −A admits a bounded H∞-calculus of angle less than
π/2 on a Banach space E which has Pisier’s property (α), let B be a bounded
linear operator from a Hilbert space H into the extrapolation space E−1 of

E with respect to A, and let WH denote an H-cylindrical Brownian motion.
Let γ(H,E) denote the space of all γ-radonifying operators from H to E. We

prove that the following assertions are equivalent:
(a) the stochastic Cauchy problem dU(t) = AU(t) dt + B dWH(t) admits

an invariant measure on E;

(b) (−A)−
1/2B ∈ γ(H,E);

(c) the Gaussian sum
∑

n∈Z
γn2

n/2R(2n, A)B converges in γ(H,E) in prob-

ability.
This solves the stochastic Weiss conjecture of [8].

1. Introduction

Let A be the generator of a strongly continuous bounded analytic semigroup
S = (S(t))t>0 on a Banach space E, let F be another Banach space, and let
C : D(A) → F be a bounded operator. If there exists a constant M > 0 such that

ˆ ∞

0

‖CS(t)x‖2F dt 6M2‖x‖2E , ∀x ∈ D(A),

an easy Laplace transform argument shows that

sup
λ>0

λ
1/2‖CR(λ,A)‖L (E,F ) 6M/

√
2.

Here, as usual, R(λ,A) = (λ−A)−1 denotes the resolvent of A at λ.
The celebrated Weiss conjecture in linear systems theory is the assertion that

the converse also holds. It was solved affirmatively for normal operators A acting
on a Hilbert space by Weiss [29], for generators of analytic Hilbert space contrac-
tion semigroups with F = C by Jacob and Partington [10], and subsequently for
operators admitting a bounded H∞-calculus of angle < π/2 acting on an Lp-space,
1 < p <∞, by Le Merdy [18, 19]. Counterexamples to the general statement were
found by Jacob, Partington and Pott [11], Zwart, Jacob, and Staffans [30], and
Jacob and Zwart [12].

Whereas the Weiss conjecture is concerned with observation operators, in the
context of stochastic evolution equations it is natural to consider a ‘dual’ version
of the conjecture in terms of control operators. To be more precise, we consider the
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following situation. Let WH = (WH(t))t∈[0,T ] be a cylindrical Brownian motion in
a Hilbert space H and let B ∈ L (H,E−1) be a bounded linear operator. Here, E−1

denotes the extrapolation space of E with respect to A (see Subsection 2.5). The
stochastic Weiss conjecture, proposed recently in [8], is the assertion that, under
suitable assumptions on the linear operator A, the existence of an invariant measure
for the linear stochastic Cauchy problem

(SCP)(A,B)

{
dU(t) = AU(t) dt+B dWH(t), t ∈ [0, T ],

U(0) = 0,

is equivalent to an appropriate condition on the operator-valued function λ 7→
λ

1/2R(λ,A)B. This conjecture is justified by the observation (cf. Proposition 2.5
below) that an invariant measure exists if and only if t 7→ S(t)B defines an element
of the space γ(L2(R+;H), E) (see Subsection 2.3 for the definition of this space).

In the paper just cited, an affirmative solution was given in the case where A
and B are simultaneously diagonalisable. The aim of this article is to prove the
stochastic Weiss conjecture for the class of operators admitting a bounded H∞-
calculus of angle < π/2. Denoting by S(E) the class of all sectorial operators −A on
E of angle < π/2 that are injective and have dense range, our main result reads as
follows.

Theorem 1.1. Let E have property (α) and assume that −A ∈ S(E) admits a
bounded H∞–calculus of angle < π/2 on E. Let B : H → E−1 be a bounded operator.
Then the following assertions are equivalent:

(a) (SCP)(A,B) admits an invariant measure on E;

(b) (−A)−1/2B ∈ γ(H,E);

(c) λ 7→ λ
1/2R(λ,A)B defines an element in γ(L2(R+,

dλ
λ ;H), E);

(d) for all λ > 0 we have R(λ,A)B ∈ γ(H,E) and the Gaussian sum
∑

n∈Z

γn2
n/2R(2n, A)B

converges in γ(H,E) in probability (equivalently, in Lp(Ω; γ(H,E)) for some
(all) 1 6 p <∞).

Since B maps into the extrapolation space E−1, some care has to be taken in
giving a rigorous interpretations of these assertions. The details will be explained
below.

In the special case when E is a Hilbert space and H is a separable Hilbert space
with orthonormal basis (hk)k>1, condition (a) is equivalent to

∞∑

k=1

ˆ ∞

0

‖S(t)Bhk‖2 dt <∞, (1.1)

and condition (d) reduces to

∞∑

k=1

∑

n∈Z

2n‖R(2n, A)Bhk‖2 <∞. (1.2)

Compared to the Weiss conjecture, we see that a uniform boundedness condition

on λ
1/2R(λ,A)B gets replaced by a (dyadic) square summability condition along

(hk)k>1 in (1.2); this is consistent with the square summability condition along
(hk)k>1 in (1.1).

All spaces are real. When we use spectral arguments, we turn to the complexi-
fications without further notice.
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2. Preliminaries

In this section we collect some notations and results that will be used in the
proof of Theorem 1.1.

2.1. Property (α). A Rademacher sequence is a sequence of independent random
variables taking the values ±1 with probability 1/2. Let (r′j)

∞
j=1 and (r′′k)

∞
k=1 be

Rademacher sequences on probability spaces (Ω′,P′) and (Ω′′,P′′), and let (rjk)
∞
j,k=1

be a doubly indexed Rademacher sequence on a probability space (Ω,F ,P). It is
important to observe that the sequence (r′jr

′′
k)

∞
j,k=1 is not a Rademacher sequence.

By standard randomisation techniques one proves (see, e.g., [26]):

Proposition 2.1. For a Banach space E the following assertions are equivalent:

(1) there exists a constant C > 0 such that for all finite sequences (ajk)
n
j,k=1 in

R and (xjk)
n
j,k=1 in E we have

E
′
E
′′
∥∥∥

n∑

j,k=1

ajkr
′
jr

′′
kxjk

∥∥∥
2

6 C2
(

max
16j,k6n

|ajk|
)2
E
′
E
′′
∥∥∥

n∑

j,k=1

r′jr
′′
kxjk

∥∥∥
2

;

(2) there exists a constant C > 0 such that for all finite sequences (xjk)
n
j,k=1 in

E we have

1

C2
E

∥∥∥
n∑

j,k=1

rjkxjk

∥∥∥
2

6 E
′
E
′′
∥∥∥

n∑

j,k=1

r′jr
′′
kxjk

∥∥∥
2

6 C2
E

∥∥∥
n∑

j,k=1

rjkxjk

∥∥∥
2

.

A Banach space E is said to have property (α) if it satisfies the above equivalent
conditions. Examples of spaces having this property are Hilbert spaces and the
spaces Lp(µ) with 1 6 p < ∞. Property (α) was introduced by Pisier [27], who
proved that a Banach lattice has property (α) if and only if it has finite cotype. In
particular, the space c0 fails property (α).

2.2. γ-Boundedness. A family T ⊆ L (E,F ) is called γ-bounded if there exists
a constant C > 0 such that for all finite sequences (Tn)

N
n=1 in T and (xn)

N
n=1 in E

we have

E

∥∥∥
N∑

n=1

γnTnxn

∥∥∥
2

6 C2
E

∥∥∥
N∑

n=1

γnxn

∥∥∥
2

.

Here, and in the rest of the paper, (γn)n>1 denotes a sequence of independent stan-
dard Gaussian random variables on a probability space (Ω,P). The least admissible
constant C in the above inequality is called the γ-bound of T .

By letting N=1 it is seen that γ-bounded families are uniformly bounded. For
Hilbert spaces E and F , the notions of uniform boundedness and γ-boundedness
are equivalent. For detailed expositions on γ-boundedness and the closely related
notion of R-boundedness, as well as for references to the extensive literature we
refer the reader to [2, 5, 17, 28].

2.3. γ-Radonifying operators. Let H be a Hilbert space and E a Banach space.
For a finite rank operator T : H → E of the form

T =

N∑

n=1

hn ⊗ xn,

where (hn)
N
n=1 is an orthonormal sequence in H and (xn)

N
n=1 is a sequence in E,

we define

‖T‖γ(H ,E) :=
∥∥∥

N∑

n=1

γnxn

∥∥∥
L2(Ω;E)

. (2.1)
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The Banach space γ(H , E) is defined as the completion of the linear space of finite
rank operators with respect to this norm. The identity mapping on the finite rank
operators extends to a contractive embedding of γ(H , E) into L (H , E). This
allows us to view elements of γ(H , E) as operators from H to E. It may be
shown (see [22, Theorem 3.20, (3.1)]) that any T ∈ γ(H , E) induces an orthogonal
decomposition H = H0 ⊕ H1 such that H0 is separable and T |H1

≡ 0; in this
situation, for any orthonormal basis (hn)n>1 of H0 the Gaussian sum

∑
n>1 γnThn

converges in L2(Ω;E) and

‖T‖2γ(H ,E) = E

∥∥∥
∑

n>1

γnThn

∥∥∥
2

.

The distribution of the random variable
∑

n>1 γnThn is a centred Gaussian Radon
measure µ on E whose covariance is given by

ˆ

E

〈x, x∗〉〈x, y∗〉 dµ(x) = [T ∗x∗, T ∗y∗]H . (2.2)

The following γ-Fatou lemma holds (see [15] and [22, Proposition 3.18]). Suppose
(Tn)

∞
n=1 is a bounded sequence in γ(H , E) and T ∈ L (H , E) is an operator such

that

lim
n→∞

〈Tnh, x∗〉 = 〈Th, x∗〉, ∀h ∈ H , x∗ ∈ E∗.

Then, if E does not contain a closed subspace isomorphic to c0, we have T ∈
γ(H , E) and

‖T‖γ(H ,E) 6 lim inf
n→∞

‖Tn‖γ(H ,E). (2.3)

The Kalton–Weis extension theorem [15, Proposition 4.4] (see also [22, Corollary
6.3]) asserts that if T : H1 → H2 is a bounded linear operator, then the tensor
extension T : H1 ⊗ E → H2 ⊗ E,

T (h⊗ x) := Th⊗ x

extends to a bounded operator (with the same norm) from γ(H1, E) to γ(H2, E).
The Kalton–Weis multiplier theorem [15, Proposition 4.11] (see [22, Theorems

4.3 and 5.2] for the formulation given here) asserts that if (X,µ) is a σ-finite mea-
sure space, E and F are Banach spaces with F not containing a closed subspace
isomorphic to c0, and if M : X → L (E,F ) is strongly measurable with respect to
the strong operator topology and has γ-bounded range, then the mapping

(1B ⊗ h)⊗ x 7→ (1B ⊗ h)⊗Mx

has a unique extension to a bounded linear operator from γ(L2(X,µ;H), E) into
γ(L2(X,µ;H), F ) (with norm less than or equal to the γ-bound of the range ofM).

Below we shall use (see [26]) that a Banach space E has property (α) if and only
if, whenever H0 and H1 are nonzero Hilbert spaces, the mapping (h0 ⊗ h1)⊗ x 7→
h0 ⊗ (h1 ⊗ x) extends to an isomorphism of Banach spaces

γ(H0⊗̂H1, E) ≃ γ(H0, γ(H1, E)).

Here, H0⊗̂H1 denotes the Hilbert space completion of the algebraic tensor product
H0⊗H1. We will be particularly interested in the case H0 = L2(R+,

dt
t ), in which

case the above isomorphism then takes the form

γ(L2(R+,
dt
t ;H), E) ≃ γ(L2(R+,

dt
t ), γ(H,E)).
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2.4. Stochastic integration. Let H be a Hilbert space and let (Ω,P) be a proba-
bility space. A cylindrical Brownian motion in H is a mapping WH : L2(R+;H) →
L2(Ω) such that WHf is a centred Gaussian random variable for all f ∈ L2(R+;H)
and

E(WHf ·WHg) = [f, g]L2(R+;H)

for all f, g ∈ L2(R+;H). Such a mapping is linear and bounded.
A function Φ : R+ → L (H,E) is said to be stochastically integrable with respect

to WH if it is scalarly square integrable, i.e., for all x∗ ∈ E∗ the function Φ∗x∗ :
t 7→ Φ∗(t)x∗ belongs to L2(R+;H), and for all Borel sets B ⊆ R+ there exists a
random variable XB ∈ L2(Ω;E) such that

ˆ

B

Φ∗x∗ dWH :=WH(1BΦ
∗x∗) = 〈XB , x

∗〉, ∀x∗ ∈ E∗.

In that case we define
ˆ

B

Φ dWH := XB .

The following result was proved in [24].

Proposition 2.2. A scalarly square integrable function Φ : R+ → L (H,E) is
stochastically integrable with respect to WH if and only if there exists an operator
R ∈ γ(L2(R+;H), E) such that R∗x∗ = Φ∗x∗ in L2(R+;H) for all x∗ ∈ E∗. In
this situation one has

E

∥∥∥
ˆ

R+

Φ dWH

∥∥∥
2

= ‖R‖2γ(L2(R+;H),E).

Suppose WH is a given cylindrical Brownian motion in H. To any B ∈ γ(H,E)
it is possible to associate an E-valued Brownian motion (WB

H (t))t>0 by defining

WB
H (t) =

ˆ

R+

1(0,t) ⊗B dWH , t > 0.

Here we identify 1(0,t)⊗B with an element in γ(L2(R+;H), E) of norm
√
t‖B‖γ(H,E)

in the natural way, i.e., by the action

f 7→
ˆ

R+

1(0,t)(s)Bf(s) ds, f ∈ L2(R+;H).

We may then define the stochastic integral of a simple function Ψ : R+ → L (E)
with respect to WB

H by
ˆ

R+

Ψ dWB
H :=

ˆ

R+

Ψ ◦B dWH . (2.4)

With these notations we have the following result [26, Theorem 1.1].

Proposition 2.3. Let H be a Hilbert space and E a Banach space with property
(α). Let B ∈ γ(H,E) be a given operator and let µ denote the centred Gaussian
Radon measure on E associated with B as in (2.2). Let w be a real-valued Brow-
nian motion. For an operator-valued function Ψ : (0, T ) → L (E) the following
assertions are equivalent:

(a) Ψ is stochastically integrable with respect to WB
H ;

(b) Ψx is stochastically integrable with respect to w for µ-almost all x ∈ E.

In this situation we have

E

∥∥∥
ˆ T

0

Ψ dWB
H

∥∥∥
2

h

ˆ

E

E

∥∥∥
ˆ T

0

Ψx dw
∥∥∥
2

dµ(x) (2.5)

with proportionality constants depending on E only.
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For later use we point out that, by using Proposition 2.2 and (2.4), the equiva-
lence (2.5) may be reformulated as

‖Ψ ◦B‖2γ(L2(R+;H),E) h

ˆ

E

‖Ψx‖2γ(L2(R+;E) dµ(x).

2.5. Existence, uniqueness and invariant measures. Let A be the generator
of a strongly continuous semigroup S = (S(t))t>0 on a Banach space E. We define
E−1 := (E×E)/G (A), where G (A) = {(x,Ax) : x ∈ D(A)} is the graph of A. The
mapping

i−1 : x 7→ (0, x) + G (A)

defines a dense embedding i−1 from E into E−1. We shall always identify E with
its image i−1(E) in E−1.

The operator A extends to a bounded operator A−1 from E into E−1 by defining

A−1x := (−x, 0) + G (A).

To see that this indeed gives an extension of A, note that for x ∈ D(A) we have

i−1Ax = (0, Ax) + G (A) = (−x, 0) + G (A) = A−1x.

It is easy to see that the operator A−1, which is densely defined and closed as a
linear operator in E−1 with domain D(A−1) = E, generates a strongly continuous
semigroup S−1 = (S−1(t))t>0 on E−1 which satisfies S−1(t)i−1x = i−1S(t)x for all
x ∈ E and t > 0.

For a bounded operator B : H → E−1 we are interested in E-valued solutions to
the stochastic evolution equation (SCP)(A,B). To formulate this problem rigorously,

we first consider the problem (SCP)(A−1,B) in E−1:

(SCP)(A−1,B)

{
dU−1(t) = A−1U−1(t) dt+B dWH(t), t ∈ [0, T ],

U−1(0) = 0.

Here, as always, WH is a cylindrical Brownian motion in H, and we adopt the
standard notation WH(t)h :=WH(1(0,t) ⊗ h).

An E-valued process U = (U(t))t∈[0,T ] is called a weak solution of (SCP)(A,B) if

the E−1-valued process i−1U = (i−1U(t))t∈[0,T ] is a weak solution of (SCP)(A−1,B),

i.e., for all x∗−1 ∈ D(A∗
−1) the function t 7→ 〈i−1U(t), A∗

−1x
∗
−1〉 is integrable almost

surely and if for each t ∈ [0, T ] we have, almost surely,

〈i−1U(t), x∗−1〉 =
ˆ t

0

〈i−1U(s), A∗
−1x

∗
−1〉 ds+WH(t)B∗x∗−1.

An E-valued process U is called a mild solution of (SCP)(A,B) if the E−1-valued

process i−1U is a mild solution of (SCP)(A−1,B), i.e., if the function t 7→ S−1(t)B

is stochastically integrable in E−1 with respect to WH and if for each t ∈ [0, T ] we
have, almost surely,

i−1U(t) =

ˆ t

0

S−1(t− s)B dWH(s). (2.6)

The following proposition is an extension of the main result of [24] (where the
case B ∈ L (H,E) was considered).

Proposition 2.4. Under the above assumptions, for an E-valued process U the
following assertions are equivalent:

(a) U is weak solution of (SCP)(A,B);

(b) U is mild solution of (SCP)(A,B);
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(c) there exists an operator RT ∈ γ(L2(0, T ;H), E) such that for all x∗−1 ∈ E∗
−1

R∗
T (i

∗
−1x

∗
−1) = B∗S∗

−1(·)x∗−1 in L2(0, T ;H). (2.7)

Proof. Let us prove the equivalence (b)⇔(c), because this is what we need in the
sequel. The proof of (a)⇔(b) is left to the reader.

(b)⇒(c): By assumption there is a strongly measurable random variable U(T ) :
Ω → E such that in E−1 we have

i−1U(T ) =

ˆ T

0

S−1(T − s)B dWH(s).

For all x∗−1 ∈ E∗
−1, the random variable 〈U(T ), i∗−1x

∗
−1〉 is Gaussian. Since F :=

{i∗−1x
∗
−1 : x∗−1 ∈ E∗

−1} is weak∗-dense in E∗ and the range of U(T ) is separable up
to a null set, from [1, Corollary 1.3] it follows that 〈U(T ), x∗〉 is Gaussian for all
x∗ ∈ E∗, i.e., U(T ) is Gaussian distributed.

By the results of [24] the operator R−1,T : L2(0, T ;H) → E−1, defined by

R−1,T f =

ˆ T

0

S−1(T − s)Bf(s) ds,

belongs to γ(L2(0, T ;H), E−1). Define the linear operator R∗
T : F → L2(0, T ;H)

by

R∗
T i

∗
−1x

∗
−1 := R∗

−1,Tx
∗
−1.

Then,

‖R∗
T i

∗
−1x

∗
−1‖2L2(0,T ;H) = ‖R∗

−1,Tx
∗
−1‖2L2(0,T ;H)

=

ˆ T

0

‖B∗S∗
−1(T − s)x∗−1‖2H ds

= E

∣∣∣
ˆ T

0

B∗S∗
−1(T − s)x∗−1 dWH(s)

∣∣∣
2

= E|〈U(T ), i∗−1x
∗
−1〉|2 = ‖i∗T i∗−1x

∗
−1‖2HT

,

(2.8)

where iT is the canonical inclusion mapping of the reproducing kernel Hilbert space
HT , associated with the Gaussian random variable U(T ), into E. This shows that
R∗

T is well-defined and bounded on F .
At this point we would like to use a density argument to infer that R∗

T extends
to a bounded operator from E∗ into L2(0, T ;H) which satisfies

‖R∗
Tx

∗‖2L2(0,T ;H) = ‖i∗Tx∗‖2HT
, ∀x∗ ∈ E∗. (2.9)

However, this will not work, since F is only weak∗-dense in E∗. The correct way
to proceed is as follows. The injectivity of i−1 ◦ iT implies that i∗T ◦ i∗−1 has weak∗-
dense range in HT . As HT is reflexive, this range is weakly dense and therefore,
by the Hahn-Banach theorem, it is dense. Fixing an arbitrary x∗ ∈ E∗, we may
choose a sequence (x∗−1,n)n>1 in E∗

−1 such that i∗T i
∗
−1x

∗
−1,n → i∗Tx

∗ in HT . By

(2.8) the sequence (R∗
T i

∗
−1x

∗
−1,n)n>1 is Cauchy in L2(0, T ;H) and converges to

some fx∗ ∈ L2(0, T ;H). It is routine to check that fx∗ is independent of the
approximating sequence. Thus we may extend the R∗

T to E∗ by putting

R∗
Tx

∗ := fx∗ .

Clearly, for this extended operator the identity (2.9) is obtained.
We claim that its adjoint R∗∗

T : L2(0, T ;H) → E∗∗ actually takes values in E,
and that this operator is the one we are looking for.

First, for f = 1(a,b) ⊗ h and x∗ ∈ E∗ of the form x∗ = i∗−1x
∗
−1 we have

〈x∗, R∗∗
T f〉 = [R∗

T i
∗
−1x

∗
−1, f ]L2(0,T ;H)
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=

ˆ b

a

〈S−1(T − s)Bh, x∗−1〉 ds = 〈i−1y, x
∗
−1〉 = 〈y, x∗〉,

where y =
´ b

a
S−1(T − s)Bhds belongs to D(A−1) = E. It follows that R∗∗

T maps
the dense subspace of all H-valued step functions into E, and therefore it maps all
of L2(0, T ;H) into E.

Viewing RT := R∗∗
T as an operator from L2(0, T ;H) to E, we finally note that

the identity (2.9) exhibits RT ◦ R∗
T = iT ◦ i∗T as the covariance operator of the

E-valued Gaussian random variable U(T ). This means that RT is γ-radonifying as
an operator from L2(0, T ;H) to E (see, e.g., [22, Theorem 7.4]).

(c)⇒(b): We follow the ideas of [24]. We have L2(0, T ;H) = N(RT ) ⊕ R(R∗
T ).

By the general theory of γ-radonifying operators, G := R(R∗
T ) is separable (see

[22, Equation (3.1)]). By a Gram-Schmidt argument we may select a sequence
(x∗−1,n)n>1 in E∗

−1 such that (gn)n>1 := (R∗
T i

∗
−1x

∗
−1,n)n>1 is an orthonormal basis

for G. Then the Gaussian random variables

γn :=

ˆ T

0

B∗S∗
−1(T − s)x∗−1,n dWH(s)

are independent and normalised. Since RT is γ-radonifying, the E-valued random
variable

U(T ) :=
∑

n>1

γnRT gn

is well-defined, and it is easy to check that it satisfies (2.6) with t replaced by T .
By well-known routine arguments, this is enough to assure that (SCP)(A,B) has a

mild solution U in E. �

Suppose now that the problem (SCP)(A−1,B) admits a mild solution U−1 in

E−1 and let µ−1,t denote the distribution of the random variable U−1(t). The
weak limit µ−1,∞ of these measures, if it exists, is called the (minimal) invariant
measure associated with (SCP)(A−1,B). Thus, by definition, the invariant measure,

if it exists, is the unique Radon probability measure on E−1 which satisfies
ˆ

E−1

f dµ−1,∞ = lim
t→∞

ˆ

E−1

f dµ−1,t, ∀f ∈ Cb(E−1).

For an explanation of this terminology and a more systematic approach we refer the
reader to [4]. This reference deals with Hilbert spaces E; extensions of the linear
theory to the Banach space setting were presented in [7, 25].

A Radon probability measure µ on E is an invariant measure for (SCP)(A,B)

if the image measure i−1(µ) on E−1 is an invariant measure for (SCP)(A−1,B).

Extending a result from [25] (where the case B ∈ L (H,E) was considered) we
have the following result. A proof is obtained along the same line of reasoning as
in the previous proposition and is left as an exercise to the reader.

Proposition 2.5. Under the above assumptions, for a Radon probability measure
µ on E the following assertions are equivalent:

(a) (SCP)(A,B) admits an invariant measure;

(b) there exists an operator R∞ ∈ γ(L2(R+;H), E) such that for all x∗−1 ∈ E∗
−1

R∗
∞(i∗−1x

∗
−1) = B∗S∗

−1(·)x∗−1 in L2(R+;H). (2.10)

Formally, (2.7) and (2.10) express that the operators RT and R∞ are integral
operators with kernels S(·)B. Strictly speaking this makes no sense, since B maps
into E−1 rather than into E. It will be convenient, however, to refer to RT and R∞

as the operators ‘associated with S(·)B’ and we shall do so in the sequel without
further warning.



THE STOCHASTIC WEISS CONJECTURE 9

2.6. Sectorial operators and H∞-calculus. For θ ∈ (0, π) let

Σθ := {z ∈ C \ {0} : | arg(z)| < θ}
denote the open sector of angle θ. A densely defined closed linear operator −A in
a Banach space E is called sectorial (of angle θ ∈ (0, π)) if the spectrum of −A is
contained in Σθ and

sup
z 6∈Σθ

‖z (z +A)−1‖ <∞.

The infimum of all θ ∈ (0, π) such that −A is sectorial of angle θ is called the angle
of sectoriality of −A.

It is well known (see [6, Theorem II.4.6]) that −A is sectorial of angle less than
π/2 if and only if A generates a strongly continuous bounded analytic semigroup on
E.

Following [16] we denote by S(E) the set of all densely defined, closed, injective
operators in E that are sectorial of angle less than π/2 and have dense range. The
injectivity and dense range conditions are not very restrictive: if A is a sectorial
operator on a reflexive Banach space E, then we have the direct sum decomposition

E = N(A)⊕ R(A)

in terms of the null space and closure of the range of A. In that case, the part
of A in R(A) is sectorial and satisfies the additional injectivity and dense range
conditions.

Let −A ∈ S(E) be sectorial of angle θ ∈ (0, π/2) and fix η ∈ (θ, π/2). We denote
by H∞

0 (Ση) the linear space of all bounded analytic functions f : Ση → C with
some power type decay at zero and infinity, i.e., for which there exists an ε > 0
such that

|f(z)| 6 C|z|ε/(1 + |z|)2ε, ∀z ∈ Ση.

For such functions we may define a bounded operator

f(−A) = 1

2πi

ˆ

∂Ση′

f(z)(z +A)−1 dz,

with η′ ∈ (θ, η). The operator −A is said to have a bounded H∞-calculus if there
exists a constant C, independent of f , such that

‖f(−A)‖ 6 C‖f‖∞, ∀f ∈ H∞
0 (Ση).

The infimum of all admissible η is called the angle of the H∞-calculus of −A.
Examples of operators A for which −A has a bounded H∞-calculus of angle less

than π/2 are generators of strongly continuous analytic contraction semigroups on
Hilbert spaces and second order elliptic operators on Lp-spaces whose coefficients
satisfy mild regularity assumptions. We refer to [5, 9, 17] for more details and
examples.

If −A ∈ S(E) has a bounded H∞-calculus, the mapping f 7→ f(−A) extends
(uniquely, in some natural sense discussed in [17]) to a bounded algebra homomor-
phism from H∞(Ση) into L (E) of norm at most C. A proof the following result
can be found in [13, Theorem 5.3].

Proposition 2.6. Suppose that −A ∈ S(E) admits a bounded H∞-calculus of angle
η < π/2 and let η < η′ < π/2. If E has property (α), then the family

{f(−A) : f ∈ H∞(Ση′), ‖f‖∞ 6 1}
is γ-bounded. In particular, −A is γ-sectorial of any angle η < η′ < π/2, i.e., the
family

{z (z +A)−1 : z 6∈ Ση′}
is γ-bounded.
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Remark 2.7. For the γ-sectoriality of −A it suffices that E should have the so-called
property (∆) (see [13, Section 3]). Examples of spaces with this property include
all UMD Banach spaces and all Banach spaces with property (α). As we will not
have any application for this, we refer the interested reader to [13, 17] for fuller
discussions.

We will also need the following result.

Proposition 2.8. Suppose that −A ∈ S(E) has a bounded H∞-calculus of angle
ω < π/2 on a Banach space E with property (α) and let θ ∈ (ω, π).

(a) For all φ ∈ H∞
0 (Σθ), the function t 7→ φ(−tA)x belongs to γ(L2(R+,

dt
t ), E)

for all x ∈ X and

‖t 7→ φ(−tA)x‖γ(L2(R+, dtt ),E).‖x‖
with implied constant independent of x ∈ X.

(b) Given any two φ, ψ ∈ H∞
0 (Σθ), for all x ∈ X we have

‖t 7→ φ(−tA)x‖γ(L2(R+, dtt ),E) h ‖t 7→ ψ(−tA)x‖γ(L2(R+, dtt ),E)

with implied constants independent of x ∈ X.

This is a Banach space version of the classical square function characterisation
of the H∞-calculus due to McIntosh [21] (see also [3, 9, 17]) and was first obtained
in [15, Section 7]. As yet the manuscript [15] remains unpublished, but a proof can
obtained by following the lines of [17, Theorem 11.9]. An explicit proof of (a) is
contained in [20, Theorem 6.3]; another proof will be contained in a forthcoming
paper by Haak and Haase. The special case of (b) for spaces E = Lp is older and
can be found in [19, Corollary 2.3]; again the argument can be extended to yield
the general case.

2.7. Rademacher interpolation. If −A is a sectorial operator on E, then for
θ ∈ R we may define the Banach space Ėθ as the completion of D((−A)θ) with
respect to the norm

‖x‖Ėθ
:= ‖(−A)θx‖.

Note that (−A)θ extends uniquely to an isomorphism from Ėθ onto E; with some

abuse of notation this extension will also be denoted by (−A)θ. In particular, Ė−1

is the completion of the range R(A) with respect to the norm

‖Ax‖Ė−1
:= ‖x‖.

The identity maps on E and R(A) extend uniquely to continuous inclusions

E →֒ E−1 and Ė−1 →֒ E−1, and under these identifications we actually have

E + Ė−1 = E−1 (2.11)

with equivalent norms. For the reader’s convenience we include the short proof.
We trivially have E →֒ E−1, and the embedding Ė−1 →֒ E−1 is a consequence of
the fact that for all x ∈ R(A), say x = Ay, we have

‖x‖E−1
6 C‖(I −A)−1x‖ = C‖A(I −A)−1‖‖y‖ = C‖A(I −A)−1‖‖x‖Ė−1

.

It follows that E+ Ė−1 →֒ E−1 with continuous inclusion. Since I−A is surjective
from E onto E−1, every x ∈ E−1 is of the form x = y − Ay for some y ∈ E,

which implies that x ∈ E + Ė−1. It follows that the inclusion E + Ė−1 →֒ E−1 is
surjective, and the claim now follows from the open mapping theorem.

Let (X0, X1) be an interpolation couple of Banach spaces. Let (rn)n∈Z be a
Rademacher sequence on a probability space (Ω,P). For 0 < θ < 1 the Rademacher
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interpolation space 〈X0, X1〉θ consists of all x ∈ X0 +X1 which can be represented
as a sum

x =
∑

n∈Z

xn, xn ∈ X0 ∩X1, (2.12)

convergent in X0 +X1, such that

C0((xn)n∈Z) := sup
N>0

E

(∥∥∥
N∑

n=−N

rn2
−nθxn

∥∥∥
2

X0

)1/2
<∞,

C1((xn)n∈Z) := sup
N>0

E

(∥∥∥
N∑

n=−N

rn2
n(1−θ)xn

∥∥∥
2

X1

)1/2
<∞.

The norm of an element x ∈ 〈X0, X1〉θ is defined as

‖x‖〈X0,X1〉θ := inf
(
max

{
C0((xn)n∈Z), C1((xn)n∈Z)

})
,

where the infimum extends over all representations (2.12). This interpolation
method was introduced by Kalton, Kunstmann and Weis, who proved that if −A
admits a bounded H∞–calculus (of any angle < π), then for all 0 < θ < 1 and real
numbers α < β one has

〈Ėα, Ėβ〉θ = Ė(1−θ)α+θβ

with equivalent norms [14, Theorem 7.4]. Applying this to the induced operator
I ⊗A on L2(Ω;E), defined by (I ⊗A)(f ⊗ x) := f ⊗Ax for f ∈ L2(Ω) and vectors
x ∈ D(A), we obtain the following vector-valued extension of this result:

Proposition 2.9. If −A ∈ S(E) admits a bounded H∞–calculus, then

〈L2(Ω; Ėα), L
2(Ω; Ėβ)〉θ = L2(Ω; Ė(1−θ)α+θβ).

3. Proof of Theorem 1.1

We begin with a useful observation.

Lemma 3.1. Let A generate a strongly continuous semigroup on E and suppose
that the equivalent conditions of Proposition 2.5 be satisfied. Then for all λ ∈ ̺(A)

there exists an operator Ŝ(λ)B ∈ γ(H,E) such that

i−1 ◦ Ŝ(λ)B = R(λ,A−1) ◦B.
Proof. It suffices to prove this for one λ ∈ ̺(A); then, by the resolvent identity,
this holds for all λ ∈ ̺(A).

Fix an arbitrary λ > ω0(S−1), the exponential growth bound of (S−1(t))t>0.
By assumption there exists an operator R∞ ∈ γ(L2(R+;H), E) such that for all
x∗−1 ∈ E∗

−1 we have R∗
∞(i∗−1x

∗
−1) = B∗S∗

−1(·)x∗−1 in L2(R+;H). The operator

Ŝ(λ)B : H → E given by

Ŝ(λ)Bh := R∞(e−λ· ⊗ h)

is γ-radonifying and satisfies, for all x∗−1 ∈ E∗
−1,

〈i−1Ŝ(λ)Bh, x
∗
−1〉 =

ˆ ∞

0

e−λt〈S−1(t)Bh, x
∗
−1〉 dt = 〈R(λ,A−1)Bh, x

∗
−1〉.

Hence by the Hahn-Banach theorem, Ŝ(λ)B satisfies the desired identity. �

The resolvent R(λ,A−1) maps E−1 into D(A−1) = E and therefore we may
interpret R(λ,A−1)B as an operator from H to E. By the injectivity of i−1 this

operator equals Ŝ(λ)B. From now on we simply write

R(λ,A)B := Ŝ(λ)B
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to denote this operator.

Proposition 3.2. Suppose that −A ∈ S(E) has a bounded H∞-calculus of angle
ω < π/2 on a Banach space E with property (α). Then for all B ∈ L (H,E−1) and
θ ∈ (ω, π) the following assertions are equivalent:

(a) B ∈ γ(H, Ė−1/2);

(b) t 7→ φ(−tA)B belongs to γ(L2(R+,
dt
t ;H), Ė−1/2) for all φ ∈ H∞

0 (Σθ);

(c) t 7→ ψ(−tA)B belongs to γ(L2(R+,
dt
t ;H), Ė−1/2), with ψ(z) = z

1/2/(1+z)
3/2 .

In this situation, for any two φ, φ̃ ∈ H∞
0 (Σθ) satisfying

ˆ ∞

0

φ(t)
dt

t
=

ˆ ∞

0

φ̃(t)
dt

t
= 1

we have an equivalence of norms

‖t 7→ φ(−tA)B‖γ(L2(R+, dtt ;H),Ė
−

1/2
) h ‖t 7→ φ̃(−tA)B‖γ(L2(R+, dtt ;H),Ė

−
1/2

) (3.1)

with implied constants independent of φ and φ̃.

Proof. We shall prove the implications (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b): Using property (α) we have a natural identification

γ(L2(R+,
dt
t ;H), Ė−1/2) = γ(L2(R+,

dt
t ), γ(H, Ė−1/2))

with equivalent norms. Hence the implication follows from Proposition 2.8 (1)

applied to (the extension of A to) the Banach space γ(H, Ė−1/2).
(b) ⇒ (c): This is trivial, as ψ belongs to H∞

0 (Σθ) for all θ < π;
(c) ⇒ (a): Let (rj)j>1 be a Rademacher sequence on a probability space (Ω,P)

and let (hj)
k
j=1 be an orthonormal system in H. Using that ψ ∈ H∞

0 (Σθ), from [9,
Theorem 5.2.6] we obtain

k∑

j=1

rjBhj=

k∑

j=1

rj

ˆ ∞

0

(−tA)3/2(1− tA)−3Bhj
dt

t

=

k∑

j=1

∑

n∈Z

rj

ˆ 2n+1

2n
(−tA)3/2(1− tA)−3Bhj

dt

t

with convergence in L2(Ω;E−1) = L2(Ω; Ė−1)+L
2(Ω;E) (cf. (2.11)). Defining the

vectors xn ∈ L2(Ω;E) ∩ L2(Ω; Ė−1) by

xn :=

k∑

j=1

rj

ˆ 2n+1

2n
(−tA)3/2(1− tA)−3Bhj

dt

t

and setting mN (t) = (2−nt)
1/2 for t ∈ [2n, 2n+1), n = −N, . . . , N , and mN (t) = 0

for t 6∈ [2−N , 2N+1), we obtain (relative to the spaces X0 = L2(Ω; Ė−1) and X1 =
L2(Ω;E))

C0((xn)n∈Z)
2

= sup
N>1

Ẽ

∥∥∥
k∑

j=1

N∑

n=−N

rj r̃n2
−n/2

ˆ 2n+1

2n
(−tA)3/2(1− tA)−3Bhj

dt

t

∥∥∥
2

L2(Ω;Ė−1)

= sup
N>1

Ẽ

∥∥∥
k∑

j=1

N∑

n=−N

rj r̃n

ˆ 2n+1

2n
(2−nt)

1/2(−tA)(1− tA)−3Bhj
dt

t

∥∥∥
2

L2(Ω;Ė
−

1/2
)

= sup
N>1

Ẽ

∥∥∥
k∑

j=1

N∑

n=−N

rj r̃n

ˆ ∞

0

mN (t)(−tA)(1− tA)−31(2n,2n+1)(t)Bhj
dt

t

∥∥∥
2

L2(Ω;Ė
−

1/2
)
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h sup
N>1

E
′
∥∥∥

k∑

j=1

N∑

n=−N

r′jn

ˆ ∞

0

mN (t)(−tA)(1− tA)−31(2n,2n+1)(t)Bhj
dt

t

∥∥∥
2

Ė
−

1/2

.

In the last step, property (α) was used to pass from double Rademacher sums (on

(Ω,P) × (Ω̃, P̃)) to doubly indexed Rademacher sums (on some other probability
space (Ω′,P′)). Now, estimating Rademacher sums in terms of Gaussian sums we
have

C0((xn)n∈Z)
2

h sup
N>1

E
′
∥∥∥

k∑

j=1

N∑

n=−N

γ′jn

ˆ ∞

0

mN (t)(−tA)(1− tA)−31(2n,2n+1)(t)Bhj
dt

t

∥∥∥
2

Ė
−

1/2

Since the functions 1(2n,2n+1) ⊗ hj in L2(R+,
dt
t ;H) are orthonormal (up to the

numerical constant (ln 2)
1/2), one may estimate the above right-hand side by

. sup
N>1

‖t 7→ mN (t)φ(−tA)B‖2
γ(L2(R+, dtt ;H),Ė

−
1/2

)

where φ ∈ H∞
0 (Σθ) is given by φ(z) = z/(1 + z)3. Finally, using the Kalton–Weis

γ-multiplier theorem and the γ-boundedness of the operators (−tA)1/2(1− tA)−
3/2 ,

t > 0, (which follows from Proposition 2.6) we conclude that

C0((xn)n∈Z)
2.‖t 7→ φ(−tA)B‖2

γ(L2(R+, dtt ;H),Ė
−

1/2
)

.‖t 7→ ψ(−tA)B‖2
γ(L2(R+, dtt ;H),Ė

−
1/2

)

with ψ(z) = z
1/2/(1 + z)

3/2 .
Similarly,

C1((xn)n∈Z)
2

= sup
N>1

Ẽ

∥∥∥
k∑

j=1

N∑

n=−N

rj r̃n2
n/2

ˆ 2n+1

2n
(−tA)3/2(1− tA)−3Bhj

dt

t

∥∥∥
2

L2(Ω;E)

= sup
N>1

Ẽ

∥∥∥
k∑

j=1

N∑

n=−N

rj r̃n

×
ˆ ∞

0

(2−nt)−
1/2(−tA)2(1− tA)−31(2n,2n+1)(t)Bhj

dt

t

∥∥∥
2

L2(Ω;Ė
−

1/2
)

.E ‖t 7→ φ̃(−tA)B‖2
γ(L2(R+, dtt ;H),Ė

−
1/2

)

.E ‖t 7→ ψ(−tA)B‖2
γ(L2(R+, dtt ;H),Ė

−
1/2

)

with φ̃(z) = z2/(1 + z)3 and ψ(z) = z
1/2/(1 + z)

3/2 as before.
By Proposition 2.9 and estimating Gaussian sums by Rademacher sums, this

proves that

∥∥∥
k∑

j=1

γjBhj

∥∥∥
L2(Ω;Ė

−
1/2

)
hE

∥∥∥
k∑

j=1

rjBhj

∥∥∥
L2(Ω;Ė

−
1/2

)

.E ‖t 7→ ψ(−tA)B‖γ(L2(R+, dtt ;H),Ė
−

1/2
).

Taking the supremum over all finite orthonormal systems in H and using that E
has property (α) and therefore does not contain an isomorphic copy of c0, we obtain
(using a theorem of Hoffmann-Jørgensen and Kwapień, see [22, Theorem 4.3]) that
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B is γ-radonifying as an operator from H into Ė−1/2 and

‖B‖γ(H,Ė
−

1/2
) . ‖t 7→ ψ(−tA)B‖γ(L2(R+, dtt ;H),Ė

−
1/2

).

We have now proved the equivalences (a) ⇔ (b) ⇔ (c). It remains to check
that these equivalent conditions imply the norm equivalence (3.1). Let µ be the

centred Gaussian measure on Ė−1/2 associated with the γ-radonifying operator B ∈
γ(H, Ė−1/2). Suppose φ, φ̃ ∈ H∞

0 (Σθ) are nonzero functions. By Proposition 2.3,
assertion (a) implies

‖t 7→ φ(−tA)B‖γ(L2(R+, dtt ;H),Ė
−

1/2
) h

ˆ

Ė
−

1/2

‖t 7→ φ(−tA)x‖γ(L2(R+, dtt ),Ė
−

1/2
) dµ(x)

(1)
h

ˆ

Ė
−

1/2

‖t 7→ φ̃(−tA)x‖γ(L2(R+, dtt ),Ė
−

1/2
) dµ(x)

h ‖t 7→ φ̃(−tA)B‖γ(L2(R+, dtt ;H),Ė
−

1/2
).

Here, step (1) follows from Proposition 2.8 (2). The implied constants are indepen-

dent of φ and φ̃ under the normalisation as stated in the proposition. �

Remark 3.3. The only step in the proof where we made use of the boundedness
of the functional calculus is the Rademacher interpolation argument. For all other
parts, γ-sectoriality of angle less than π/2 is sufficient. However, one actually needs
only the continuous embedding

〈L2(Ω;E), L2(Ω; Ė−1)〉1/2 →֒ L2(Ω; Ė−1/2)

instead of an equality. As in Proposition 2.9 this boils down to having the em-
bedding for the underlying Banach spaces 〈E, Ė−1〉1/2 →֒ Ė−1/2 . An inspection of
the proof of [14, Theorems 4.1 and 7.4] shows that the latter embedding does not
require the full power of the boundedness of the functional calculus but merely a
(discrete dyadic) square function estimate of the form

sup
ǫk=±1

∥∥∥
∑

k

ǫkϕ(2
kA♯)x

∥∥∥ . ‖x‖

for some ϕ ∈ H∞
0 (Σθ) for θ ∈ (0, π), where A♯ denotes the part of A∗ in E♯ =

D(A∗) ∩ R(A∗) (the closures are taken in the strong topology of E∗). These ‘dual’
square function estimates match the hypothesis in Le Merdy’s theorem on the Weiss
conjecture [18, Theorem 4.1] in the sense that Le Merdy treats observation oper-
ators and requires upper square function estimates for A whereas we treat control
operators and therefore need ‘dual’ square function estimates. The construction of
A♯ instead of A∗ is needed when non-reflexive Banach spaces are considered. On
reflexive spaces one has A♯=A∗, and the explained duality with Le Merdy’s result
is more apparent.

In the next lemma, f̂ denotes the Laplace transform of a function f .

Lemma 3.4 (Laplace transforms). For all f ∈ L2(R+,
dt
t ;H), the function Lf(t) :=

tf̂(t) belongs to L2(R+,
dt
t ;H) and

‖Lf‖L2(R+, dtt ;H) 6 ‖f‖L2(R+, dtt ;H).

Proof. By the Cauchy-Schwarz inequality,
ˆ ∞

0

t2‖f̂(t)‖2H
dt

t
=

ˆ ∞

0

∥∥∥
ˆ ∞

0

f(s) te−st ds
∥∥∥
2

H

dt

t

6

ˆ ∞

0

ˆ ∞

0

‖f(s)‖2H te−st ds
dt

t
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=

ˆ ∞

0

ˆ ∞

0

‖f(s)‖2H e−st dt ds =

ˆ ∞

0

‖f(s)‖2H
ds

s
. �

As a consequence, the mapping L : f 7→ Lf is a contraction on L2(R+,
dt
t ;H).

By the Kalton–Weis extension theorem, L extends to a linear contraction on the
space γ(L2(R+,

dt
t ;H), E), for any Banach space E.

Proof of the equivalences (a) ⇔ (b) ⇔ (c) of Theorem 1.1. (a) ⇒ (b): By assump-
tion, t 7→ S(t)B belongs to γ(L2(R+;H), E). It follows that t 7→ η(−tA)B belongs

to γ(L2(R+,
dt
t ;H), Ė−1/2), with η(z) = z

1/2 exp(−z). The Laplace transform of

t 7→ (tz)
1/2 exp(−tz) equals λ 7→ 1/2

√
πz

1/2(λ+ z)−
3/2 . Hence, by [17, Lemma 9.12] or

by using the Phillips calculus (see [9]),

1/2
√
π(−A)1/2(λ−A)−

3/2B =

ˆ ∞

0

e−λt(−tA)1/2S(t)B dt,

or, equivalently,

1/2
√
π(−A/λ)1/2(1−A/λ)−

3/2B = λ

ˆ ∞

0

e−λtη(−tA)B dt.

By Lemma 3.4 and the remark following it, we obtain that λ 7→ (−A/λ)1/2(1 −
A/λ)−

3/2B belongs to γ(L2(R+,
dλ
λ ;H), Ė−1/2). Upon substituting 1/λ = µ we find

that µ 7→ ψ(−µA)B belongs to γ(L2(R+,
dµ
µ ;H), Ė−1/2) with ψ(z) = z

1/2/(1 + z)
3/2 .

Now (b) follows as an application of Proposition 3.2.

(b) ⇒ (c): From Proposition 3.2 we get that t 7→ (−tA)1/2(1 − tA)−1B belongs

to γ(L2(R+,
dt
t ;H), Ė−1/2), or equivalently, that t 7→ t

1/2(1 − tA)−1B belongs to

γ(L2(R+,
dt
t ;H), E). Substituting t = 1/s we obtain that s 7→ s

1/2(s − A)−1B

belongs to γ(L2(R+,
dt
t ;H), E).

(c) ⇒ (b): By substituting t = 1/s the assumption implies that s 7→ s
1/2(1 −

sA)−1B belongs to γ(L2(R+,
dt
t ;H), E), or equivalently, that s 7→ (−sA)1/2(1 −

sA)−1B belongs to γ(L2(R+,
dt
t ;H), Ė−1/2). Then by the γ-multiplier lemma (using

that the operators (1−sA)−1/2 , s > 0, are γ-bounded by Proposition 2.6), we obtain
that assumption (c) of Proposition 3.2 is satisfied.

(b) ⇒ (a): By Proposition 3.2, t 7→ (−tA)1/2 exp(tA)B = (−tA)1/2S(t)B belongs

to γ(L2(R+,
dt
t ;H), Ė−1/2). This is equivalent to saying that t 7→ S(t)B belongs to

γ(L2(R+;H), E). �

Remark 3.5. The following direct proof of the implication (a)⇒ (b) of Theorem 1.1,
suggested to us by Mark Veraar, avoids the use of Rademacher interpolation.

Without loss of generality we may assume that H is separable. Let (hn)n>1 be
an orthonormal basis of H and let Pn denote the orthogonal projection onto the
span of h1, . . . , hn. Let Cm = AR( 1

m , A), so that Cmx → x strongly for all x ∈ E
(see [17, Proposition 9.4]). Set Bmn := CmBPn. By the γ-convergence lemma [23,
Proposition 2.4] it suffices to prove the

‖(−A)−1/2Bmn‖γ(H,E) . ‖S(·)Bmn‖γ(L2(R+;H),E), (3.2)

with implied constant independent of m and n. The idea is to extend the action
of the semigroup S from E to γ(H,E) by putting S(h ⊗ x) := h ⊗ S(t)x. The
generator of this extended semigroup, IH ⊗ A, belongs to S(γ(H,E)) and has a
bounded H∞-calculus of angle < π/2. Hence, by Proposition 2.8 and property (α),

‖(−A)−1/2Bmn‖γ(H,E) = ‖(−A)1/2R( 1
m , A)BPn‖γ(H,E)

h ‖(−tA)1/2S(·)[A1/2R( 1
m , A)BPn]‖γ(L2(R+, dtt ),γ(H,E))
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= ‖S(·)Bmn‖γ(L2(R+),γ(H,E))

h ‖S(·)Bmn‖γ(L2(R+;H),E).

This proves (3.2).

For the proofs of the implications (b) ⇒ (d) ⇒ (c) of Theorem 1.1 we need some
further preparations.

An interval in R+ will be called dyadic (with respect to the measure dt
t ) if it is

of the form [2k/2
M

, 2(k+1)/2M ) with M ∈ N and k ∈ Z.

Lemma 3.6. Let −A ∈ S(E) be γ-sectorial, let F ⊆ Z be a finite subset, and let
In, n ∈ F , be dyadic intervals. For any choice of the numbers sn, tn ∈ In we have
the equivalence∥∥∥

∑

n∈F

γns
1/2
n R(sn, A)B

∥∥∥
L2(Ω;γ(H,E))

h

∥∥∥
∑

n∈F

γnt
1/2
n R(tn, A)B

∥∥∥
L2(Ω;γ(H,E))

with constants independent of the set F , the intervals In, and the choice of sn, tn.

Proof. First note that, since In is dyadic, |s
1/2
n ± t

1/2
n | 6 4max{s

1/2
n , t

1/2
n }.

We have, using the resolvent identity, the γ-boundedness of the operators tR(t, A)
for t > 0, and the contraction principle,∥∥∥

∑

n∈F

γn(s
1/2
n R(sn, A)− t

1/2
n R(tn, A))B

∥∥∥
L2(Ω;γ(H,E))

6
∥∥∥
∑

n∈F

γn
tn − sn

t
1/2
n s

1/2
n

snR(sn, A)t
1/2
n R(tn, A)B

∥∥∥
L2(Ω;γ(H,E))

+
∥∥∥
∑

n∈F

γn
s
1/2
n − t

1/2
n

t
1/2
n

t
1/2
n R(tn, A)B

∥∥∥
L2(Ω;γ(H,E))

.
∥∥∥
∑

n∈F

γnt
1/2
n R(tn, A)B

∥∥∥
L2(Ω;γ(H,E))

.

By the triangle inequality in L2(Ω; γ(H,E)) it then follows that
∥∥∥
∑

n∈F

γns
1/2
n R(sn, A)B

∥∥∥
L2(Ω;γ(H,E))

.
∥∥∥
∑

n∈F

γnt
1/2
n R(tn, A)B

∥∥∥
L2(Ω;γ(H,E))

.

The converse inequality is obtained by reversing the roles of sn and tn. �

Lemma 3.7. Let f : Σθ → H be a bounded analytic function and suppose that, for
some 0 < η < θ, the functions t 7→ f(e±iηt) belong to L2(R+,

dt
t ;H). Then

∑

n∈Z

‖f(2n)‖2H <∞.

Proof. Since f is continuous we may suppose that H is separable. By expanding
the values of f with respect to an orthonormal basis in H, it suffices to prove the
lemma for the case when H equals the scalar field.

By considering g(z) = f(exp(z)), we may reformulate the problem on the strip
Sθ = {z ∈ C : |Im z| < θ}. The objective is then to show that if the restriction of
a bounded analytic function g on Sθ to the lines Im z = ±η belongs to L2(R), then∑

n∈Z
|g(n ln 2)|2 <∞. The proof of this uses the following standard technique. By

the Poisson formula for the strip we have

sup
|ζ|<η

∥∥g|{Im z=ζ}

∥∥
2
<∞

and therefore g|Sη
∈ L2(Sη). For 0 < δ < η consider the discs

Qn = {z ∈ C : |z − n ln 2| < δ}, n ∈ Z,
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centred around n ∈ Z. Taking δ small enough, the functions φn = |Qn|−
1/21Qn

have
disjoint support and are hence orthonormal in L2(Sη). By the mean value theorem
we obtain

∑

n∈Z

|g(n ln 2)|2 =
∑

n∈Z

∣∣∣ 1

|Qn|

ˆ

Qn

g(x+ iy) dx dy
∣∣∣
2

=
1

πδ2

∑

n∈Z

∣∣∣
ˆ

Sη

g(x+ iy)φn(x+ iy) dx dy
∣∣∣
2

6
1

πδ2
∥∥g|Sη

∥∥2
L2(Sη)

. �

This lemma can be restated as saying that the mapping f 7→ (f(2n))n∈Z is
bounded from the weighted Hardy space H2(Ση, µ;H) to ℓ2(H), where µ is the im-
age on the sector Ση of the Lebesgue measure on the strip Sη under the exponential
mapping; note that Lebesgue measure on horizontal lines in the strip Sη is mapped
to the measure dt/t on rays emanating from the origin in the sector Ση.

By the Kalton–Weis extension theorem, this mapping extends to a bounded
operator from γ(H2(Ση, µ;H), E) to γ(ℓ2(H), E), for any Banach space E. This is
what will be needed below.

End of the proof of Theorem 1.1. We shall now prove the remaining implications
(b) ⇒ (d) ⇒ (c).

We begin with the proof of (b) ⇒ (d). First of all, Lemma 3.1 implies that
R(t, A)B ∈ γ(H,E) for all t > 0. By the implication (b) ⇒ (c) applied to the
operators e±iθA for a sufficiently small θ > 0 we find that the functions

t 7→ t
1/2R(t, e±iθA)B = e∓iθ t

1/2R(te∓iθ, A)B

belong to γ(L2(R+,
dt
t ;H), E). By Lemma 3.7 and the remark following it, we

obtain that the sequence (2
n/2R(2n, A)B)n∈Z belongs to γ(ℓ2(H), E). But this is

the same as saying that (d) holds.

We turn to the proof of (d) ⇒ (c). Let S
(M)
nm denote the average of t

1/2R(t, A)

(with respect to dt/t) over the dyadic interval I
(M)
nm = [2n+m2−M

, 2n+(m+1)2−M

).

Let t
(M)
nm = 2n+m2−M

be the left endpoint of the interval I
(M)
nm . Then, writing

ffl

I
= 1

|I|

´

I
for the average over an interval I, we have

S(M)
nm B =

 

I
(M)
nm

t
1/2R(t, A)B

dt

t

=

 

I
(M)
nm

t
1/2
(
R(t, A)(t(M)

nm −A)
)
R(t(M)

nm , A)B
dt

t

=
(  

I
(M)
nm

t
1/2

(t
(M)
nm )1/2

( t(M)
nm

t
· tR(t, A)−AR(t, A)

)dt
t

)
◦ [(t(M)

nm )
1/2R(t(M)

nm , A)B]

=: U (M)
nm ◦ [(t(M)

nm )
1/2R(t(M)

nm , A)B].

Since t/t
(M)
nm ∈ [1, 2] on I

(M)
nm , the operators U

(M)
nm belong (up to a constant) to the

closure of the absolute convex hull of {AR(t, A), tR(t, A) : t > 0}. By γ-sectoriality
of A (which follows from Proposition 2.6) this family is γ-bounded.

Fix a finite set F ⊆ Z. Then,

∥∥∥
∑

n∈F

2M−1∑

m=0

1
I
(M)
nm

⊗ S(M)
nm B

∥∥∥
γ(L2(R+, dtt ;H),E)
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(1)
h

∥∥∥
∑

n∈F

2M−1∑

m=0

1
I
(M)
nm

⊗ S(M)
nm B

∥∥∥
γ(L2(R+, dtt ),γ(H,E))

(2)
h

1

2M/2

∥∥∥
∑

n∈F

2M−1∑

m=0

γnmS
(M)
nm B

∥∥∥
L2(Ω;γ(H,E))

(3)

.
1

2M/2

∥∥∥
∑

n∈F

2M−1∑

m=0

γnm(t(M)
nm )

1/2R(t(M)
nm , A)B

∥∥∥
L2(Ω;γ(H,E))

(4)
h

1

2M/2

∥∥∥
∑

n∈F

2M−1∑

m=0

γnm2
n/2R(2n, A)B

∥∥∥
L2(Ω;γ(H,E))

(5)
=

∥∥∥
∑

n∈F

2M−1∑

m=0

1
I
(M)
nm

⊗ 2
n/2R(2n, A)B

∥∥∥
γ(L2(R+, dtt ),γ(H,E))

=
∥∥∥
∑

n∈F

1In ⊗ 2
n/2R(2n, A)B

∥∥∥
γ(L2(R+, dtt ),γ(H,E))

(6)
h

∥∥∥
∑

n∈F

γn2
n/2R(2n, A)B

∥∥∥
L2(Ω;γ(H,E))

with implicit constants independent of F and M . In this computation, (1) follows
from property (α); (2), (5), (6) from the identity (2.1) along with the fact that the

dyadic interval I
(M)
nm has dt/t-measure h 2−M ; Estimate (3) follows from the γ-

boundedness of the operators U
(M)
nm ; and (4) from Lemma 3.6 applied to the points

sn=2n and t
(M)
nm in In = [2n, 2n+1).

By the γ-Fatou lemma (see (2.3)), the above estimate implies (c). �
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