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Département de Mathématiques,
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Abstract

This paper gives geometric tools: comparison, Nash and Sobolev inequalities for pieces of the
relevent Markov operators, that give useful bounds on rates of convergence for the Metropolis
algorithm. As an example, we treat the random placement of N hard discs in the unit square,
the original application of the Metropolis algorithm.

1 Introduction and Results

Let Ω be a bounded, connected open subset of R
d. We assume that its boundary, ∂Ω, has Lipschitz

regularity. Let B1 be the unit ball of R
d and ϕ(z) = 1

vol(B1)1B1
(z) so that

∫

ϕ(z)dz = 1. Let ρ(x)

be a measurable positive bounded function on Ω such that
∫

Ω ρ(x)dx = 1. For h ∈]0, 1], set

Kh,ρ(x, y) = h−dϕ

(

x− y

h

)

min

(

ρ(y)

ρ(x)
, 1

)

, (1.1)

and let Th,ρ be the Metropolis operator associated with these data, that is,

Th,ρ(u)(x) = mh,ρ(x)u(x) +

∫

Ω
Kh,ρ(x, y)u(y)dy,

mh,ρ(x) = 1 −

∫

Ω
Kh,ρ(x, y)dy ≥ 0.

(1.2)

Then the Metropolis kernel Th,ρ(x, dy) = mh,ρ(x)δx=y + Kh,ρ(x, y)dy is a Markov kernel, the
operator Th,ρ is self-adjoint on L2(Ω, ρ(x)dx), and thus the probability measure ρ(x)dx on Ω is
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stationary. For n ≥ 1, we denote by Tnh,ρ(x, dy) the kernel of the iterated operator (Th,ρ)
n. For

any x ∈ Ω, Tnh,ρ(x, dy) is a probability measure on Ω, and our main goal is to get some estimates
on the rate of convergence, when n → +∞, of the probability Tnh,ρ(x, dy) toward the stationary
probability ρ(y)dy.

A good example to keep in mind is the random placement of N non-overlapping discs of radius
ε > 0 in the unit square. This was the original motivation for the work of Metropolis et al.
[MRR+53]. One version of their algorithm goes as follows: from a feasable configuration, pick a
disc (uniformly at random) and a point within distance h of the center of the chosen disc (uniformly
at random). If recentering the chosen disc at the chosen point results in a feasable configuration,
the change is made. Otherwise, the configuration is kept as it started. If N is fixed and ε and
h are small, this gives a Markov chain with a uniform stationary distribution over all feasable
configurations. The state space consists of the N centers corresponding to feasible configurations.
It is a bounded domain with a Lipschitz boundary when Nǫ is small (see Section 4, Proposition 4.1).
The scientific motivation for the study of random packing of hard discs as a way of understanding
the apparent existence of a liquid/solid phase transition for arbitrarily large temperatures (for
suitably large pressure) is clearly described in Uhlenbeck [Uhl68, Sect. 5, p. 18]. An overview of the
large literature is in Lowen [Löw00]. Entry to the zoo of modern algorithms to do the simulation
(particularly in the dense case) with many examples is in Krauth [Kra06]. Further discussion,
showing that the problem is still of current interest, is in Radin [Rad08].

We shall denote by g(h, ρ) the spectral gap of the Metropolis operator Th,ρ. It is defined as the
largest constant such that the following inequality holds true for all u ∈ L2(ρ) = L2(Ω, ρ(x)dx).

‖u‖2
L2(ρ) − (u|1)2L2(ρ) ≤

1

g(h, ρ)
(u− Th,ρu|u)L2(ρ), (1.3)

or equivalently,
∫

Ω×Ω
|u(x) − u(y)|2ρ(x)ρ(y)dxdy ≤

1

g(h, ρ)

∫

Ω×Ω
Kh,ρ(x, y)|u(x) − u(y)|2ρ(x)dxdy. (1.4)

Definition 1. We say that an open set Ω ⊂ R
d is Lipschitz if it is bounded and for all a ∈ ∂Ω

there exists an orthonormal basis Ra of R
d, an open set V = V ′×] − α, α[ and a Lipschitz map

η : V ′ →] − α, α[ such that in the coordinates of Ra, we have

V ∩ Ω =
{(

y′, yd < η(y′)
)

, (y′, yd) ∈ V ′×] − α, α[
}

V ∩ ∂Ω =
{(

y′, η(y′)
)

, y′ ∈ V ′
}

.
(1.5)

Our first result is the following:

Theorem 1.1. Let Ω be an open, connected, bounded, Lipschitz subset of R
d. Let 0 < m ≤M <∞

be given numbers. There exists h0 > 0, δ0 ∈]0, 1/2[ and constants Ci > 0 such that for any h ∈]0, h0],
and any probability density ρ on Ω which satisfies for all x, m ≤ ρ(x) ≤ M , the following holds
true.

i) The spectrum of Th,ρ is a subset of [−1+δ0, 1], 1 is a simple eigenvalue of Th,ρ, and Spec(Th,ρ)∩
[1 − δ0, 1] is discrete. Moreover, for any 0 ≤ λ ≤ δ0h

−2, the number of eigenvalues of Th,ρ in
[1 − h2λ, 1] (with multiplicity) is bounded by C1(1 + λ)d/2.

ii) The spectral gap g(h, ρ) satisfies

C2h
2 ≤ g(h, ρ) ≤ C3h

2 (1.6)
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and the following estimate holds true for all integer n:

supx∈Ω‖T
n
h,ρ(x, dy) − ρ(y)dy‖TV ≤ C4e

−ng(h,ρ). (1.7)

The next result will give some more information on the behavior of the spectral gap g(h, ρ)
when h→ 0. To state this result, let

αd =

∫

ϕ(z)z2
1dz =

1

d

∫

ϕ(z)|z|2dz =
1

d+ 2
(1.8)

and let us define ν(ρ) as the largest constant such that the following inequality holds true for all u
in the Sobolev space H1(Ω):

‖u‖2
L2(ρ) − (u|1)2L2(ρ) ≤

1

ν(ρ)

αd
2

∫

Ω
|∇u|2(x)ρ(x)dx, (1.9)

or equivalently,
∫

Ω×Ω
|u(x) − u(y)|2ρ(x)ρ(y)dxdy ≤

αd
ν(ρ)

∫

Ω
|∇u|2(x)ρ(x)dx. (1.10)

Observe that for a Lipschitz domain Ω, the constant ν(ρ) is well-defined thanks to Sobolev embed-
ding. For a smooth density ρ, this number ν(ρ) > 0 is closely related to the unbounded operator
Lρ acting on on L2(ρ).

Lρ(u) =
−αd

2
(△u+

∇ρ

ρ
.∇u)

D(Lρ) =
{

u ∈ H1(Ω),−∆u ∈ L2(Ω), ∂nu|∂Ω = 0
}

(1.11)

We now justify and explain the choice of domain in (1.11). Background for the following
discussion and tools for working in Lipschitz domains is in [AF03].

When Ω has smooth boundary, standard elliptic regularity results show that for any u ∈ H1(Ω)
such that −∆u ∈ L2(Ω), the normal derivative of u at the boundary, ∂nu = −→n (x).∇u|∂Ω is well
defined and belongs to the Sobolev space H−1/2(∂Ω). Here, we denote by −→n (x) the incoming
unit normal vector to ∂Ω at a point x. In the case where ∂Ω has only Lipschitz regularity, the
Sobolev spaces Hs(∂Ω) are well defined for all s ∈ [−1, 1]. The trace operator, γ0(u) = u|∂Ω maps
H1(Ω) onto H1/2(∂Ω) = Ran(γ0), and its kernel is Ker(γ0) = H1

0 (Ω). Equipped with the norm
‖u‖H1/2 = inf{‖v‖H1 , γ0(v) = u} it is an Hilbert space. Then, for any ϕ ∈ H1/2(∂Ω)∗, there exists
a unique v ∈ H−1/2(∂Ω) such that ϕ(u) =

∫

∂Ω vudσ for all u ∈ H1/2(∂Ω) (where σ is the measure

induced on the boundary). For v ∈ H−1/2(∂Ω), the support of v can be defined in a standard way.
The trace operator acting on vector fields u ∈ (L2)d with div(u) ∈ L2,

γ1 :
{

u ∈ (L2(Ω))d,div(u) ∈ L2(Ω)
}

→ H−1/2(∂Ω), (1.12)

is then defined by the formula
∫

Ω
div(u)(x)v(x)dx = −

∫

Ω
u(x).∇v(x)dx−

∫

∂Ω
γ1(u)v|∂Ωdσ(x), ∀v ∈ H1(Ω). (1.13)

In particular, for u ∈ H1(Ω) satisfying ∆u = div∇u ∈ L2(Ω) we can define ∂nu|∂Ω = γ1(∇u) ∈
H−1/2(∂Ω) and the set D(Lρ) is well defined. From (1.13) we deduce that for any u ∈ H1(Ω) with
∆u ∈ L2 and any v ∈ H1(Ω) we have

〈(Lρ + 1)u, v〉L2(ρ) =
αd
2

(

〈∇u,∇v〉L2(ρ) + 〈∂nu, ρv〉H−1/2(∂Ω),H1/2(∂Ω)

)

+ 〈u, v〉L2(ρ). (1.14)
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Then, it is standard that Lρ is the self-adjoint realization of the Dirichlet form

αd
2

∫

Ω
|∇u(x)|2ρ(x)dx. (1.15)

A standard argument [RS78, Sects. 13, 14] using Sobolev embedding show that Lρ has a compact
resolvant. Denote its spectrum by ν0 = 0 < ν1 < ν2 < . . . and by mj the multiplicity of νj . In
particular, ν(ρ) = ν1. Observe also that m0 = 1 since KerL is spanned by the constant function
equal to 1.

To state our theorem, we need a basic definition:

Definition 2. Let Ω be a Lipschitz open set of R
d. We say that ∂Ω is quasi-regular if ∂Ω =

Γreg ∪Γsing,Γreg ∩Γsing = ∅ with Γreg a finite union of smooth hypersurfaces, relatively open in ∂Ω,
and Γsing a closed subset of R

d such that

v ∈ H−1/2(∂Ω) and sup(v) ⊂ Γsing =⇒ v = 0. (1.16)

Observe that 1.16 is obviously satisfied if ∂Ω is smooth, since in that case one can take Γsing = ∅.
More generally, the boundary is quasi-regular if it is ‘piece-wise smooth’ in the following sense:
suppose Ω is a Lipschitz open set of R

d such that ∂Ω = Γreg ∪ Γsing, Γreg ∩ Γsing = ∅, where Γreg

is a smooth hypersurface of R
d, relatively open in ∂Ω, and Γsing a closed subset of R

d such that
Γsing = ∪j≥2Sj where the Sj are smooth disjoint submanifolds of R

d such that

codimRdSj ≥ j, ∪k≥jSk = Sj , (1.17)

then Ω is quasi-regular, since in that case, if v ∈ H−1/2(∂Ω) is such that near a point x0, the
support of v is contained in a submanifold S of codimension ≥ 2 in R

d, then v = 0 near x0. This
follows from the fact that the distribution 〈u, φ〉 = 〈v, φ|∂Ω〉 on R

d belongs to H−1(Rd), and if
u ∈ D′(Rd) is such that u ∈ H−1(Rd) and sup(u) ⊂ {x1 = x2 = 0}, then u = 0. As an example, a
cube in R

d is quasi-regular. This ‘piece-wise smooth’ condition (often called “stratified”) is easy to
visualize. In our applications (Section 4) it was hard to work with products of stratified sets. The
definition we give works easily with products and is exactly what is needed in the proof.

Theorem 1.2. Let Ω be an open, connected, bounded and Lipschitz subset of R
d, such that ∂Ω is

quasi-regular. Assume that the positive density ρ is continuous on Ω. Then

lim
h→0

h−2g(h, ρ) = ν(ρ). (1.18)

Moreover, if the density ρ is smooth on Ω, then for any R > 0 and ε > 0 such that νj+1 − νj > 2ε
for νj+2 < R, there exists h1 > 0 such that one has for all h ∈]0, h1],

Spec

(

1 − Th,ρ
h2

)

∩]0, R] ⊂ ∪j≥1[νj − ε, νj + ε], (1.19)

and the number of eigenvalues of
1−Th,ρ

h2 in the interval [νj − ε, νj + ε] is equal to mj.

Theorem 1.1 is proved in Section 2. This is done from the spectrum of the operator by compar-
ison with a ‘ball walk’ on a big box B containing Ω. One novelty is the use of ‘normal extensions’
of functions from Ω to B allowing comparison of the two Dirichlet forms. When the Dirichlet forms
and stationary distributions for random walk on a compact group are comparible, the rates of con-
vergence are comparable as well [DSC93, Lemma 5]. Here, the Metropolis Markov chain is far from
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a random walk on a group. Indeed, because of the holding implicit in the Metropolis algorithm,
the operator does not have any smoothing properties. The transfer of information is carried out
by a Sobolev inequality for a spectrally-truncated part of the operator. This is transfered to a
Nash inequality and then an inductive argument is used to obtain decay bounds on iterates of the
kernel. A further technique is the use of crude Weyl type estimates to get bounds on the number
of eigenvalues close to 1. All of these enter the proof of the total variation estimate (1.7). All of
these techniques seem broadly applicable.

Theorem 1.2 is proved in Section 3. It gives rigorous underpinnings to a general picture of
the spectrum of the Metropolis algorithm based on small steps. This was observed and proved
in special cases [DL08], [LM08]. The picture is this: because of the holding (or presence of the
multiplier mh,ρ in (1.2)) in the Metropolis algorithm, the operator always has continuous spectrum.
This is well isolated from 1 and can be neglected in bounding rates of convergence. The spectrum
near 1 is discrete and for h small, merges with the spectrum of an associated Neumann problem.
This is an analytic version of the weak convergence of the discrete time Metropolis chain to the
Langevin diffusion with generator (1.11).

In Section 4, we return to the hard disc problem showing that a suitable power of the operators
and domains involved satisfies our hypothesis. Precisely, in Theorem 4.6 we shall prove that the
results of Theorem 1.1 and Theorem 1.2 hold true in this case.

2 A Proof of Theorem 1.1

Let us recall that

Kh,ρ(x, y) = h−dϕ

(

x− y

h

)

min

(

ρ(y)

ρ(x)
, 1

)

, (2.1)

so that
Th,ρ(u) = u−Qh,ρ(u),

Qh,ρ(u)(x) =

∫

Ω
Kh,ρ(x, y) (u(x) − u(y)) dy,

((1 − Th,ρ)u|u)L2(ρ) =
1

2

∫ ∫

Ω×Ω
|u(x) − u(y)|2Kh,ρ(x, y)ρ(x)dxdy.

(2.2)

Observe that since Ω is Lipschitz, from (1.2) we get that for any h0 > 0, there exists δ0 > 0 such
that for any density ρ with 0 ≤ m ≤ ρ(x) ≤M one has supx∈Ωmh,ρ(x) ≤ 1 − 2δ0 for all h ∈]0, h0].
Thus the essential spectrum of Th is a subset of [0, 1 − 2δ0] and the spectrum of Th in [1 − δ0, 1] is
discrete. From the last line of 2.2, we get that if u ∈ L2 is such that u = Th,ρ(u), then u(x) = u(y)
for almost all x, y ∈ Ω, |x− y| < h and since Ω is connected, u is constant. Therefore, 1 is a simple
eigenvalue of Th,ρ. In particular, for any h > 0, the spectral gap satisfies

g(h, ρ) > 0 (2.3)

For the proof of Theorem 1.1, we will not really care about the precise choice of the density ρ. In
fact, if ρ1, ρ2 are two densities such that m ≤ ρi(x) ≤M for all x, then

ρ2(x) ≤ ρ1(x)

(

1 +
‖ρ1 − ρ2‖∞

m

)

,

Kh,ρ1(x, y)ρ1(x) ≤ Kh,ρ2(x, y)ρ2(x)

(

1 +
‖ρ1 − ρ2‖∞

m

)

,

(2.4)
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and this implies, using the definition (1.4) of the spectral gap and of νρ,

gh,ρ1
gh,ρ2

≤

(

1 +
‖ρ1 − ρ2‖∞

m

)3

,

νρ1
νρ2

≤

(

1 +
‖ρ1 − ρ2‖∞

m

)3

.

(2.5)

In particular, it is sufficient to prove (1.6) for a constant density.
The proof that for some δ0 > 0, independent of ρ, one has Spec(Th,ρ) ⊂ [−1 + δ0, 1] for all

h ∈]0, h0] is the following: one has

(u+ Th,ρu|u)L2(ρ) =
1

2

∫

Ω×Ω
Kh,ρ(x, y)|u(x) + u(y)|2ρ(x)dxdy + 2(mh,ρu|u)L2(ρ). (2.6)

Therefore, it is sufficient to prove that there exists h0, C0 > 0 such that the following inequality
holds true for all h ∈]0, h0] and all u ∈ L2(Ω):

∫

Ω×Ω
h−dϕ

(

x− y

h

)

|u(x) + u(y)|2dxdy ≥ C0‖u‖
2
L2(Ω). (2.7)

Let ωj ⊂ Ω, ∪jωj = Ω be a covering of Ω such that diam(ωj) < h and for some Ci > 0 independent
of h, vol(ωj) ≥ C1h

d, and for any j, the number of k such that ωj ∩ ωk 6= ∅ is less than C2. Such a
covering exists as Ω is Lipschitz. Then

C2

∫

Ω×Ω
h−dϕ

(

x− y

h

)

|u(x) + u(y)|2dxdy ≥
∑

j

∫

ωj×ωj

h−dϕ

(

x− y

h

)

|u(x) + u(y)|2dxdy

≥
∑

j

h−d
1

|B1|

∫

ωj×ωj

|u(x) + u(y)|2dxdy

≥
∑

j

2h−d
1

|B1|
vol(ωj)‖u‖

2
L2(ωj)

≥
2C1

|B1|
‖u‖2

L2(Ω).

(2.8)

From (2.8), we get that (2.7) holds true.
For the proof of (1.6) we need a suitable covering of Ω. Given ǫ > 0 small enough, there exists

some open sets Ω0, . . . ,ΩN such that {x ∈ R
d,dist(x,Ω) ≤ ǫ2} ⊂ ∪Nj=0Ωj , where the Ωj ’s have the

following properties:

1. Ω0 = {x ∈ Ω, d(x, ∂Ω) > ǫ2}.

2. For j = 1, . . . , N , there exists rj > 0, an affine isometry Rj of R
d and a Lipschitz map

ϕj : R
d−1 → R such that, denoting φ̃j(x

′, xd) = (x′, xd + ϕj(x
′)) and φj = Rj ◦ φ̃j , we have

φj is injective on B(0, 2rj)×] − 2ǫ, 2ǫ[

Ωj = φj(B(0, rj)×] − ǫ, ǫ[)

Ωj ∩ Ω = φj(B(0, rj)×]0, ǫ[)

φj (B(0, 2rj)×]0, 2ǫ[) ⊂ Ω

(2.9)
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We put our open set Ω in a large boxB =]−A/2, A/2[d and define an extension map E : L2(Ω) →
L2(B). For j = 0, . . . , N we let χj ∈ C∞

0 (Ωj) be such that
∑

j χj(x) = 1 for dist(x,Ω) ≤ ǫ2. For any

function u ∈ L2(Ω), let uj , j = 0, . . . , N be defined in a neighborhood of Ωj by uj = u◦φj ◦S ◦φ−1
j ,

where S(x′, xd) = (x′,−xd) if xd < 0 and S(x′, xd) = (x′, xd) if xd ≥ 0. For x ∈ Ω ∩ Ωj , one has
uj(x) = u(x) and we define

E(u)(x) =

N
∑

j=0

χj(x)uj(x). (2.10)

We observe that φ̃−1
j (x) = (x′, xd − ϕj(x

′)). Consequently, as ϕj is Lipschitz-continuous, then

φj and φ−1
j are also Lipschitz-continuous. Hence, formula (2.10), gives us an extension map from

L2(Ω) into L2(B), which is also bounded from H1(Ω) into H1(B). For u ∈ L2(Ω), v ∈ L2(B), set

Eh,ρ(u) = ((1 − Th,ρ)u|u)L2(ρ),

Eh(v) =

∫ ∫

B×B,|x−y|≤h
h−d|v(x) − v(y)|2dxdy.

(2.11)

Since for A large, E(u) vanishes near the boundary of B, we can extend v = E(u) as an A-
periodic function on R

d, and write its Fourier series v(x) = E(u)(x) =
∑

k∈Zd ck(v)e
2iπkx/A with

ck(v) = A−d
∫

B e
−2iπkx/Av(x)dx. Then

‖E(u)‖2
L2(B) = Ad

∑

k

|ck|
2 ≃ ‖u‖2

L2(Ω),

‖E(u)‖2
H1(B) = Ad

∑

k

(1 + 4π2k2/A2)|ck|
2 ≃ ‖u‖2

H1(Ω).
(2.12)

Moreover, one gets

Eh(v) = Ad
∑

k

|ck|
2θ(hk),

θ(ξ) =

∫

|z|≤1
|e2iπξz/A − 1|2dz.

(2.13)

Observe that the function θ is nonnegative, quadratic near 0 and has a positive lower bound for
|ξ| ≥ 1.

The next two lemmas show that the Dirichlet forms for u ∈ L2(Ω) and its extension to L2(B)
are comparable.

Lemma 2.1. For all α > 1, there exists C > 0 and h0 > 0 such that

Eαh,ρ(u) ≤ CEh,ρ(u) ∀u ∈ L2(Ω), ∀h ∈]0, h0]. (2.14)

Proof. Using (2.2) and (2.4), we observe that it suffices to prove the lemma in the case where
ρ(x) = ρ is constant, and we first we show the result when Ω is convex. In that case, since
|u(x) − u(y)| ≤ |u(x) − u(x+y2 )| + |u(x+y2 ) − u(y)|, one has

Eαh,ρ(u) =
(hα)−d

2vol(B1)

∫

Ω

∫

Ω
1|x−y|≤αh|u(x) − u(y)|2ρdxdy

≤
2(hα)−d

vol(B1)

∫

Ω

∫

Ω
1|x−y|≤αh|u(x) − u(

x+ y

2
)|2ρdxdy

=
2(hα/2)−d

vol(B1)

∫

φ(Ω×Ω)
1|x−y|≤αh

2

|u(x) − u(y)|2ρdxdy,

(2.15)
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where φ(x, y) = (x, x+y2 ). As Ω is convex φ(Ω × Ω) ⊂ Ω × Ω and we get Eαh,ρ(u) ≤ 4Eαh
2
,ρ(u).

Iterating this process we obtain the anounced result for convex domains.
In the general case, we use the local covering introduced in (2.9). Let Ω+

i = Ωi∩Ω (respectively
Ω−
i = Ωi ∩ (Rd \ Ω)) and Ui(h) = {(x, y) ∈ Ω+

i × Ω, |x − y| ≤ αh}. Since by (2.2), Ω ⊂ ∪iΩ
+
i , we

have Eαh,ρ(u) ≤
∑N

i=0 E
i
αh,ρ(u) with

E iαh,ρ(u) =
(αh)−d

2vol(B1)

∫

Ui(h)
1|x−y|≤αh|u(x) − u(y)|2ρdxdy. (2.16)

Let us estimate E0
αh,ρ(u). For h ∈]0, ǫ2/α[ and (x, y) ∈ U0(h), we have [x, y] ⊂ Ω. Therefore, the

change of variable φ(x, y) = (x, x+y2 ) maps U0(h) into Ω0 × Ω and we get as above

E0
αh,ρ(u) ≤

2(αh)−d

vol(B1)

∫

U0(h)
1|x−y|≤αh|u(x) − u(

x+ y

2
)|2ρdxdy ≤ 4Eαh

2
,ρ(u). (2.17)

For i 6= 0 and h > 0 small enough, we remark that Ui(h) ⊂ Ω̃+
i ×Ω̃+

i , where Ω̃±
i = φi(B(0, 2ri)×{0 <

±xd < 2ǫ}). Denoting Qi = B(0, ri)×]0, ǫ[, Q̃i = B(0, 2ri)×]0, 2ǫ[, we can use the Lipschitz-
continuous change of variable φi : Q̃i → Ω̃+

i ⊂ Ω to get

E iαh,ρ(u) ≤
(αh)−d

2vol(B1)

∫

Q̃i

∫

Q̃i

Jφi
(x)Jφi

(y)1|φi(x)−φi(y)|≤αh|u ◦ φi(x) − u ◦ φi(y)|
2ρdxdy (2.18)

where the Jacobian Jφi
of φi is a bounded function defined almost everywhere. As both φi, φ

−1
i

are Lipschitz-continuous, there exists Mi,mi > 0 such that for all x, y ∈ Q̃i we have mi|x − y| ≤
|φi(x) − φi(y)| ≤Mi|x− y|. Therefore,

E iαh,ρ(u) ≤ Ch−d
∫

Q̃i

∫

Q̃i

1|x−y|≤ αh
mi

|u ◦ φi(x) − u ◦ φi(y)|
2ρdxdy, (2.19)

where C denotes a positive constant changing from line to line. As Q̃i is convex, it follows from
the study of the convex case that

E iαh,ρ(u) ≤ Ch−d
∫

Q̃i

∫

Q̃i

1|x−y|≤ h
Mi

|u ◦ φi(x) − u ◦ φi(y)|
2ρdxdy

≤ Ch−d
∫

Q̃i

∫

Q̃i

1|φi(x)−φi(y)|≤h|u ◦ φi(x) − u ◦ φi(y)|
2ρdxdy

≤ Ch−d
∫

Ω̃+
i

∫

Ω̃+
i

1|x−y|≤h|u(x) − u(y)|2ρdxdy ≤ CiEh,ρ(u),

(2.20)

and the proof is complete.

Lemma 2.2. There exist C0, h0 > 0 such that the following holds true for any h ∈]0, h0] and any
u ∈ L2(ρ).

Eh,ρ(u)/C0 ≤ Eh (E(u)) ≤ C0

(

Eh,ρ(u) + h2‖u‖2
L2

)

. (2.21)

As a byproduct, there exists C1 such that for all h ∈]0, h0], any function u ∈ L2(ρ) such that

‖u‖2
L2(ρ) + h−2 ((1 − Th,ρ)u|u)L2(ρ) ≤ 1

admits a decomposition u = uL + uH with uL ∈ H1(Ω), ‖uL‖H1 ≤ C1, and ‖uH‖L2 ≤ C1h.
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Proof. Using the second line of (2.4), we may assume that the density ρ is constant. The proof of
the left inequality in (2.21) is obvious. For the upper bound, we remark that there exists C > 0
such that Eh(E(u)) ≤ C

∑N
j=0(E

j,1
h + Ej,2h ) with

Ej,1h = h−d
∫

B×B
1|x−y|≤h|χj(x) − χj(y)|

2|uj(x)|
2dxdy (2.22)

and

Ej,2h = h−d
∫

B×B
1|x−y|≤h|χj(y)|

2|uj(x) − uj(y)|
2dxdy. (2.23)

As the functions χj are regular, there exist some χ̃j ∈ C∞
0 (B) equal to 1 near the support of χj

such that

Ej,1h ≤ Ch−d
∫

B
χ̃j(x)|uj(x)|

2

(∫

B
1|x−y|≤h|x− y|2dy

)

dx ≤ Ch2‖u‖2
L2(Ω). (2.24)

In order to estimate Ej,2h one has to estimate the contribution of the points x ∈ Ω, y /∈ Ω and
x /∈ Ω, y /∈ Ω. All the terms are treated in the same way and we only examine

Ej,3h = h−d
∫

Ω×(B\Ω)
1|x−y|≤h|χj(y)|

2|uj(x) − uj(y)|
2dxdy

= h−d
∫

Ω̃+
j ×Ω−

j

1|x−y|≤h|χj(y)|
2|u(x) − u ◦ φj ◦ S ◦ φ−1

j (y)|2dxdy,
(2.25)

with S defined below (2.9). Let σ : R
d → R

d be the symmetry with respect to {yd = 0}, so
that Sσ = Id on {yd < 0}. We use the Lipschitz-continuous change of variable ψj : y ∈ Ω+

j 7→

φj ◦ σ ◦ φ−1
j (y) ∈ Ω−

j to get

Ej,3h ≤ Ch−d
∫

Ω̃+
j ×Ω+

j

1|x−ψj(y)|≤h|χj ◦ ψj(y)|
2|u(x) − u(y)|2dxdy. (2.26)

We claim that there exists β > 0 such that

|ψj(y) − x| ≥ β−1|x− y| ∀(x, y) ∈ Ω̃+
j × Ω+

j . (2.27)

Indeed, as both φj and φ−1
j are Lipschitz-continuous, (2.27) is equivalent to finding β > 0 such that

|σ(y) − x| ≥ β−1|x− y| ∀(x, y) ∈ φ−1
j (Ω̃+

j × Ω+
j ), (2.28)

which is obvious with β = 1. From (2.27) it follows that for some α > 1, one has

Ej,3h ≤ Ch−d
∫

Ω̃+
j ×Ω+

j

1|x−y|≤αh|u(z) − u(y)|2dzdy ≤ CEαh,ρ(u), (2.29)

and the upper bound is then a straightforward consequence of Lemma 2.1.
The by-product is obtained by projecting the extension v = E(u) on low frequencies h|k| ≤ 1

and high frequencies h|k| > 1 and the fact that the function θ is quadratic near 0 and has a positive
lower bound for |ξ| ≥ 1. The proof of Lemma 2.2 is complete.
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We are in position to prove the estimate (1.6) on the spectral gap. To show the right inequality,
it suffices to plug a function u ∈ C∞

0 (Ω) into (1.3) with support contained in a small ball Q ⊂ Ω
and such that

∫

Ω u(x)ρ(x)dx = 0. As Q is convex, it follows from Taylor’s formula that for such u,
we have 〈u− Thu, u〉 = O(h2).

To show the left inequality in (1.6), we first observe that it is clearly satisfied when Ω is convex.
Indeed, given u ∈ L2(Ω) we have by Cauchy-Schwarz

∫

Ω×Ω
|u(x) − u(y)|2dxdy ≤ Ch−1

K(h)−1
∑

k=0

∫

Ω×Ω
|u (x+ k~(y − x)) − u (x+ (k + 1)~(y − x)) |2dxdy,

(2.30)
where K(h) is the greatest integer ≤ h−1 and K(h)~ = 1. With the new variables x′ = x+k~(y−x),
y′ = x+ (k + 1)~(y − x), one has dx′dy′ = ~

ddxdy and we get

∫

Ω×Ω
|u(x) − u(y)|2dxdy ≤ Ch−d−1K(h)

∫

Ω×Ω
1|x′−y′|<~diam(Ω)|u(x

′) − u(y′)|2dx′dy′, (2.31)

By lemma 2.1, this proves the left inequality in (1.6) in the case where Ω is convex.
In the general case, we can find some open sets contained in Ω, ωj ⊂⊂ Ω+

j ⊂⊂ Ω̃+
j , j =

1, . . . , N+M such that for j = 1, . . . , N , Ω+
j , Ω̃

+
j are given in the previous lemma, (Ω+

j )j=N+1,...,N+M

are convex Ω0 ⊂ ∪M+N
j=N+1Ω

+
j , Ω ⊂ ∪N+M

j=1 ωj , and where A ⊂⊂ B means that A
Ω
⊂ B. Hence for

h > 0 small enough,

Eh,ρ(u) ≥ C

N+M
∑

j=1

h−d
∫

Ω+
j ×Ω̃+

j

1|x−y|<h(u(x) − u(y))2dxdy

≥ C

N
∑

j=1

h−d
∫

Qj×Q̃j

1|φj(x)−φj(y)|<h(u ◦ φj(x) − u ◦ φj(y))
2dxdy

+ C

N+M
∑

j=N+1

h−d
∫

Ω+
j ×Ω̃+

j

1|x−y|<h(u(x) − u(y))2dxdy.

(2.32)

From the estimate proved precedently in the convex case, we know that there exists a > 0 inde-
pendant of h such that the second sum in (2.32) is bounded from below by

Ch2
N+M
∑

j=N+1

∫

ωj×Ω+
j

(u(x) − u(y))2 dxdy ≥ Ch2
N+M
∑

j=N+1

∫

ωj×Ω,|x−y|<a
(u(x) − u(y))2 dxdy. (2.33)

On the other hand, thanks to the fact that φj is a Lipschitz diffeomorphism, there exists α > 0
such that 1|x−y|<h/α ≤ 1|φj(x)−φj(y)|<h ≤ 1|x−y|<αh. Using the convexity of Qi and Lemma 2.1 it
follows that the first sum in the right hand side of (2.32) is bounded from below by

Ch2
N
∑

j=1

∫

ωj×Ω,|x−y|<a
(u(x) − u(y))2 dxdy. (2.34)

Combining (2.32), (2.33) and (2.34), we get

Eh,ρ(u) ≥ Ch2

∫

Ω×Ω,|x−y|<a
(u(x) − u(y))2 dxdy (2.35)
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for some fixed a > 0 independant of h. Since by (2.3) we have g(a, ρ) > 0, we get

Eh,ρ(u) ≥ Ch2

∫

Ω×Ω
(u(x) − u(y))2 dxdy (2.36)

The proof of (1.6) is complete.

Lemma 2.3. There exists δ0 ∈]0, 1/2[ such that Spec(Th,ρ) ∩ [1 − δ0, 1] is discrete, and for any
0 ≤ λ ≤ δ0/h

2, the number of eigenvalues of Th in [1 − h2λ, 1] (with multiplicity) is bounded by
C1(1 + λ)d/2. Moreover, any eigenfuntion Th(u) = λu with λ ∈ [1 − δ0, 1] satisfies the bound

‖u‖L∞ ≤ C2h
−d/2‖u‖L2 . (2.37)

Proof. To get (2.37), we just write that since λ is not in the range of mh, one has

u(x) =
1

λ−mh(x)

∫

Ω
h−dϕ

(

x− y

h

)

min

(

ρ(y)

ρ(x)
, 1

)

u(y)dy,

and we apply Cauchy–Schwarz. The important point here is the estimate on the number of eigen-
values in [1 − h2λ, 1] by a power of λ. This is obtained by the min-max and uses (2.21). The
min-max gives: if for some closed subspace F of L2(ρ) with codim(F ) = N one has for all u ∈ F ,
h−2((1 − Th)u|u)L2(ρ) ≥ λ‖u‖2

L2(ρ), then the number of eigenvalues of Th in [1 − h2λ, 1] (with mul-

tiplicity) is bounded by codim(F ) = N . Then, we fix c > 0 small enough, and we choose for F the
subspace of functions u such that their extension v = E(u) is such that the Fourier coefficients sat-
isfy ck(E(u)) = 0 for |k| ≤ D with hD ≤ c. The codimension of this space F is exactly the number
of k ∈ Z

d such that |k| ≤ D, since if p is a trigonometric polynomial such that E∗(p) = 0, we will
have

∫

Ω p(x)u(x)dx = 0 for any function u with compact support in Ω and such that E(u) = u,
and this implies p = 0. Thus codim(F ) ≃ (1 + D)d. On the other hand, the right inequality in
(2.21) gives for u ∈ F , h−2((1 − Th)u|u)L2(ρ) ≥ C0(D

2 − C1)‖u‖
2
L2(ρ) for universal C0, C1, since by

(2.13), there exists C > 0 such that one has θ(hk)h−2 ≥ CD2 for all D ≤ c/h and all |k| > D. The
proof of our lemma is complete.

We are now ready to prove the total variation estimate (1.7). We use the notation Th = Th,ρ
and Tnh,x0

= Tnh,ρ(x0, dy). Let Π0 be the orthogonal projector in L2(f) on the space of constant
functions

Π0(u)(x) = 1Ω(x)

∫

Ω
u(y)ρ(y)dy. (2.38)

Then
2 sup
x0∈Ω

‖Tnh,x0
− ρ(y)dy‖TV = ‖Tnh − Π0‖L∞→L∞ . (2.39)

Thus, we have to prove that there exist C0, h0, such that for any n and any h ∈]0, h0], one has

‖Tnh − Π0‖L∞→L∞ ≤ C0e
−ngh,ρ . (2.40)

Observe that since we know that for h0 small, the estimate (1.6) holds true for any ρ, we may
assume n ≥ Ch−2. In order to prove (2.40), we split Th into three pieces, using spectral theory.

Let 0 < λ1,h ≤ · · · ≤ λj,h ≤ λj+1,h ≤ · · · ≤ h−2δ0 be such that the eigenvalues of Th in the
interval [1 − δ0, 1[ are the 1 − h2λj,h, with associated orthonormal eigenfunctions ej,h,

Th(ej,h) = (1 − h2λj,h)ej,h, (ej,h|ek,h)L2(ρ) = δj,k. (2.41)
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Then we write Th − Π0 = Th,1 + Th,2 + Th,3 with

Th,1(x, y) =
∑

λ1,h≤λj,h≤h−α

(1 − h2λj,h)ej,h(x)ej,h(y),

Th,2(x, y) =
∑

h−α<λj,h≤h−2δ0

(1 − h2λj,h)ej,h(x)ej,h(y),

Th,3 = Th − Π0 − Th,1 − Th,2.

(2.42)

Here α > 0 is a small constant that will be chosen later. One has Tnh −Π0 = Tnh,1 +Tnh,2 +Tnh,3, and
we will get the bound (2.40) for each of the three terms. We start by very rough bounds. Since
there are at most Ch−d eigenvalues λj,h and using the bound (2.37), we get that there exists C
independent of n ≥ 1 and h such that

‖Tn1,h‖L∞→L∞ + ‖Tn2,h‖L∞→L∞ . ≤ Ch−3d/2 (2.43)

Since Tnh is bounded by 1 on L∞, we get from Tnh − Π0 = Tnh,1 + Tnh,2 + Tnh,3

‖Tn3,h‖L∞→L∞ . ≤ Ch−3d/2 (2.44)

Next we use (1.2) to write Th = mh +Rh with

‖mh‖L∞→L∞ ≤ γ < 1,

‖Rh‖L2→L∞ ≤ C0h
−d/2.

(2.45)

From this, we deduce that for any p = 1, 2, . . . , one has T ph = Ap,h+Bp,h, with A1,h = mh, B1,h = Rh
and the recurrence relation Ap+1,h = mhAp,h, Bp+1,h = mhBp,h +RhT

p
h . Thus one gets, since T ph is

bounded by 1 on L2,

‖Ap,h‖L∞→L∞ ≤ γp,

‖Bp,h‖L2→L∞ ≤ C0h
−d/2(1 + γ + · · · + γp) ≤ C0h

−d/2
/

(1 − γ).
(2.46)

Let θ = 1 − δ0 < 1 so that ‖T3,h‖L2→L2 ≤ θ. Then one has

‖Tn3,h‖L∞→L2 ≤ ‖Tn3,h‖L2→L2 ≤ θn,

and for n ≥ 1, p ≥ 1, one gets, using (2.46) and (2.44),

‖T p+n3,h ‖L∞→L∞ = ‖T phT
n
3,h‖L∞→L∞

≤ ‖Ap,hT
n
3,h‖L∞→L∞ + ‖Bp,hT

n
3,h‖L∞→L∞

≤ Ch−3d/2γp + C0h
−d/2θn

/

(1 − γ).

(2.47)

Thus we get, for some C > 0, µ > 0,

‖Tn3,h‖L∞→L∞ ≤ Ce−µn, ∀h, ∀n ≥ 1/h, (2.48)

and thus the contribution of Tn3,h is far smaller than the bound we have to prove in (2.40).

Next, for the contribution of Tn2,h, we just write, since there are at most Ch−d eigenvalues λj,h
and using the bound (2.37),

Tnh,2(x, y) =
∑

h−α<λj,h≤h−2δ0

(1 − h2λj,h)
nej,h(x)ej,h(y),

‖Tn2,h‖L∞→L∞ ≤ Ch−3d/2(1 − h2−α)n.

(2.49)
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Thus we get for some Cα > 0,

‖Tn2,h‖L∞→L∞ ≤ Cαe
−nh2−α

2 , ∀h, ∀n ≥ h−2+α/2, (2.50)

and thus this contribution is still neglectible for h ∈]0, h0] for h0 small. It remains to study the
contribution of Tnh,1.

Let Eα be the (finite dimensional) subspace of L2(ρ) spanned by the eigenvectors ej,h, λj,h ≤
h−α. By Lemma 2.3, one has dim(Eα) ≤ Ch−dα/2. We next prove a Sobolev-type inequality for
the form Eh,ρ. For background on Sobolev and the following Nash inequality, see [DSC96], [SC97].

Lemma 2.4. There exist α > 0, p > 2 and C independent of h such that for all u ∈ Eα, the
following inequality holds true:

‖u‖2
Lp ≤ Ch−2

(

Eh,ρ(u) + h2‖u‖2
L2

)

. (2.51)

Proof. Clearly, one has for u =
∑

λ1,h≤λj,h≤h−α ajej,h ∈ Eα,

Eh,ρ(u) + h2‖u‖2
L2 =

∑

λ1,h≤λj,h≤h−α

h2(1 + λj,h)|aj |
2.

Take u ∈ Eα such that h−2(Eh,ρ(u) + h2‖u‖2
L2) ≤ 1. Then by (2.21), one has h−2Eh(E(u)) ≤ C0.

Let ψ(t) ∈ C∞
0 (R) be equal to 1 near t = 0, and for v(x) =

∑

k∈Zd ck(v)e
2iπkx/A, set

v = vL + vH , vL(x) =
∑

k∈Zd

ψ(h|k|)ck(v)e
2iπkx/A. (2.52)

Then v = vL + vH is a decomposition of the extension v = E(u) in low frequencies (vL) and high
frequencies (vH). One has vL(x) =

∫

Rd h
−dθ(x−yh )v(y)dy, where θ is the function in the Schwartz

space defined by θ̂(2πz/A) = ψ(|z|). Hence, the map v 7→ vL is bounded uniformly in h on all the
spaces Lq for 1 ≤ q ≤ ∞. Then, from (2.13) we get

‖vL‖H1(B) ≤ C. (2.53)

Thus, with uL = vL|Ω and uH = vH |Ω, we get ‖uL‖H1(Ω) ≤ C so by Sobolev for p < 2d
d−2 ,

‖uL‖Lp ≤ C. (2.54)

One the other hand, one has also by (2.21),

h−2Eh (E(ej,h)) ≤ C0(1 + λj,h), (2.55)

and this implies, by (2.13),

h−2‖E(ej,h)H‖
2
L2 ≤ C0(1 + λj,h) ≤ C0(1 + h−α). (2.56)

Thus for α ≤ 1, we get ‖E(ej,h)H‖L2 ≤ Ch1/2. On the other hand, since ‖ej,h‖L∞ ≤ Ch−d/2, using
the definition of the low frequency cut-off we get

‖E(ej,h)H‖L∞ ≤ ‖E(ej,h)‖L∞ + ‖E(ej,h)L‖L∞ ≤ C‖E(ej,h)‖L∞ ≤ Ch−d/2.

By interpolation we can find some p > 2 such that

‖E(ej,h)H‖Lp ≤ C0h
1/4. (2.57)
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Thus one gets, for u =
∑

λ1,h≤λj,h≤h−α ajej,h ∈ Eα with h−2(Eh,ρ(u) + h2‖u‖2
L2) ≤ 1,

‖uH‖Lp ≤
∑

λ1,h≤λj,h≤h−α

|aj |‖E(ej,h)H‖Lp

≤ C0h
1/4 dim(Eα)1/2‖u‖L2 ≤ Ch1/4h−dα/4.

(2.58)

Our lemma follows from (2.54) and (2.58) if one takes α small. Observe that here, the estimate
on the number of eigenvalues (i.e., the estimation of the dimension of Eα) is crucial. The proof of
Lemma 2.4 is complete.

From Lemma 2.4, using the interpolation inequality ‖u‖2
L2 ≤ ‖u‖

p
p−1

Lp ‖u‖
p−2

p−1

L1 , we deduce the
Nash inequality, with 1/D = 2 − 4/p > 0,

‖u‖
2+1/D
L2 ≤ Ch−2

(

Eh,ρ(u) + h2‖u‖2
L2

)

‖u‖
1/D
L1 , ∀u ∈ Eα. (2.59)

For λj,h ≤ h−α, one has h2λj,h ≤ 1, and thus for any u ∈ Eα, one gets Eh,ρ(u) ≤ ‖u‖2
L2−‖Thu‖

2
L2

and thus we get, from (2.59),

‖u‖
2+1/D
L2 ≤ Ch−2

(

‖u‖2
L2 − ‖Thu‖

2
L2 + h2‖u‖2

L2

)

‖u‖
1/D
L1 , ∀u ∈ Eα. (2.60)

From (2.48) and (2.50), and Tnh −Π0 = Tnh,1 + Tnh,2 + Tnh,3, we get that there exists C2 such that

‖Tn1,h‖L∞→L∞ ≤ C2, ∀h, ∀n ≥ h−2+α/2, (2.61)

and thus since T1,h is self adjoint on L2,

‖Tn1,h‖L1→L1 ≤ C2, ∀h, ∀n ≥ h−2+α/2. (2.62)

Fix p ≃ h−2+α/2. Take g ∈ L2 such that ‖g‖L1 ≤ 1 and consider the sequence cn, n ≥ 0,

cn = ‖Tn+p
1,h g‖2

L2 . (2.63)

Then 0 ≤ cn+1 ≤ cn, and from (2.60) and (2.62), we get

c
1+ 1

2D
n ≤ Ch−2

(

cn − cn+1 + h2cn
)

‖Tn+p
1,h g‖

1/D
L1

≤ CC
1/D
2 h−2

(

cn − cn+1 + h2cn
)

.
(2.64)

From this inequality, we deduce that there exist A ≃ CC2 sup0≤n≤h−2(2+n)(1+h2 − (1− 1
n+2)2D)

which depends only on C, C2, D, such that for all 0 ≤ n ≤ h−2, one has cn ≤ (Ah
−2

1+n )2D, and thus

there exist C0 which depends only on C, C2, D, such that for N ≃ h−2, one has cN ≤ C0. This
implies

‖TN+p
1,h g‖L2 ≤ C0‖g‖L1 , (2.65)

and thus taking adjoints,
‖TN+p

1,h g‖L∞ ≤ C0‖g‖L2 , (2.66)

and so we get, for any n and with N + p ≃ h−2,

‖TN+p+n
1,h g‖L∞ ≤ C0(1 − h2λ1,h)

n‖g‖L2 . (2.67)

And thus for n ≥ h−2,

‖Tn1,h‖L∞→L∞ ≤ C0e
−(n−h−2)h2λ1,h = C0e

λ1,he−ngap, ∀h, ∀n ≥ h−2. (2.68)

This concludes the proof of Theorem 1.1.
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Remark 1. We believe that (2.37) is true with a power of Λ instead of a power of h with λ = 1−h2Λ.
We have no proof for this which is why we use a Nash inequality for T1,h.

Remark 2. The above proof seems to apply for a more general choice of the elementary Markov
kernel h−dϕ(x−yh ). Replace ϕ by a positive symmetric measure of total mass 1 with support in the
unit ball, and let Th be the Metropolis algorithm with this data. Assume that one is able to prove
that for some δ0 > 0 one has Spec(Th) ⊂ [−1 + δ0, 1] for all h ≤ h0, and that for some power M ,
one has for some C, c > 0,

TMh (x, dy) = µh(x, dy) + Ch−d1|x−y|≤chρ(y)dy, µh(x, dy) ≥ 0.

Then there exists γ < 1 such that ‖µh‖L∞ ≤ γ. Moreover, the right inequality in (2.21) and (2.37)
are still valid for TMh . Also, the spectral gap of TMh is given by formula (1.4) with TMh (x, dy) in
place of Kh,ρ(x, y)dy, and therefore the left inequality in (1.6) holds true, and the right one is true,
since if ρ is constant, for any θ ∈ C∞

0 (Ω), one has u− Thu ∈ O(h2).

We shall use these remarks in the study of the hard disc problem, in Section 4.

3 A Proof of Theorem 1.2

In this section, we suppose additionally that Ω is quasi-regular (Definition 2). For a given continuous
density ρ, using (2.5) and an approximation of ρ in L∞ by a sequence of smooth densities ρk on Ω,
one sees that the first assertion (1.18) of Theorem 1.2 is a consequence of the second one (1.19).
Assume now that ρ is smooth.

Lemma 3.1. Let θ ∈ C∞(Ω) be such that sup(θ) ∩ Γsing = ∅ and ∂nθ|Γreg
= 0. Then, with Qh,ρ

defined in (2.2), Lρ defined in (1.11),

Qh,ρ(θ) = h2Lρ(θ) + r, ‖r‖L2 ∈ O(h5/2). (3.1)

Proof. For θ ∈ C∞(Ω) and x ∈ Ω, we can use the Taylor formula to get

Qh,ρ(θ)(x) =
1

vol(B1)

∫

A(x,h)
min

(

1 + h
∇ρ(x)

ρ(x)
.z +O(h2|z|2), 1

)



−h∇θ(x).z −
h2

2

∑

i,j

zizj∂xi∂xjθ(x) +O(h3|z|3)



 dz,

(3.2)

with A(x, h) = {z ∈ R
d, |z| < 1, x+ hz ∈ Ω}. As A(x, h) = A+(x, h) ∪ A−(x, h), with A±(x, h) =

{z ∈ A(x, h), ±(ρ(x+ hz) − ρ(x)) ≥ 0}, it follows by an easy computation that

Qh,ρ(θ)(x) = −
h

vol(B1)
∇θ(x).

∫

A(x,h)
zdz −

h2

2vol(B1)

d
∑

i,j=1

∂xi∂xjθ(x)

∫

A(x,h)
zizjdz

−
h2

vol(B1)

∫

A−(x,h)

∇ρ(x)

ρ(x)
.z∇θ(x).zdz + r(x)

=f1(x) + f2(x) + f3(x) + r(x),

(3.3)

with ‖r‖L∞(Ω) = O(h3). Let χ = 1d(x,∂Ω)<2h, then for j = 2, 3,

‖χfj‖L2(Ω) ≤ ‖χ‖L2(Ω)‖fj‖L∞(Ω) = O(h5/2), (3.4)
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thanks to the support properties of χ. Moreover, for x ∈ sup(1 − χ), A(x, h) = {|z| < 1} and the
change of variable z 7→ −z shows that (1 − χ)f2 = −(1 − χ)αd

2 h
2∆θ(x) thanks to (1.8). Hence,

f2(x) = −
αd
2
h2∆θ(x) + r(x), (3.5)

with ‖r‖L2 = O(h5/2).
To compute f3(x) for x ∈ sup(1 − χ), we first observe that |f3(x)| ≤ Ch2|∇ρ(x)||∇θ(x)|. We

thus get ‖1|∇ρ|≤h1/2f3‖L∞ ≤ Ch5/2‖∇θ‖L∞ . At a point x where |∇ρ(x)| ≥ h1/2, we may write

z = t ∇ρ(x)
|∇ρ(x)| + z⊥, t = z.∇ρ(x)

|∇ρ(x)| and z⊥.∇ρ(x) = 0. In these coordinates, one has A−(x, h) =

{|z| < 1, (t, z⊥), t|∇ρ(x)| +O(h(t2 + |z⊥|2)) ≤ 0}. From |∇ρ(x)| ≥ h1/2 we get that the symmetric
difference R between A−(x, h) and {t ≤ 0} satisfies meas(R) = O(h1/2) (the symmetric difference
of two sets A,B is A ∪B \A ∩B). Therefore

1|∇ρ|≥h1/2(1−χ)f3(x) = −h21|∇ρ|≥h1/2

(1 − χ)(x)

vol(B1)

∫

{|z|<1,∇ρ(x).z≤0}

∇ρ(x)

ρ(x)
.z∇θ(x).zdz+r(x), (3.6)

with ‖r‖L∞ = O(h5/2). Using the change of variable z 7→ z − 2z⊥, we get

1|∇ρ|≥h1/2(1 − χ)f3(x) = −h21|∇ρ|≥h1/2

αd
2

(1 − χ)(x)
∇ρ(x)

ρ(x)
.∇θ(x) + r(x), (3.7)

and therefore, using (3.4), we get

f3(x) = −h2αd
2

∇ρ(x)

ρ(x)
.∇θ(x) + r(x), (3.8)

with ‖r‖L2 = O(h5/2). It remains to show that ‖f1‖L2(Ω) = O(h5/2). Using the change of variable
z 7→ −z we easily obtain (1−χ)f1 = 0. Hence, it suffices to show that f ′1(x, h) = χ

∫

A(x,h) z.∇θ(x)dz

satisfies ‖f ′1‖L∞(Ω) = O(h). As Γsing is compact and sup(θ)∩Γsing = ∅, this is a local problem near
any point x0 of the regular part Γreg of the boundary. Let ψ be a smooth function such that near
x0 = (0, 0) one has Ω = {xd > ψ(x′)}. For x close to x0 one has

A(x, h) =
{

z ∈ R
d, |z| < 1, xd + hzd > ψ(x′ + hz′)

}

. (3.9)

Set
A1(x, h) =

{

z ∈ R
d, |z| < 1, xd + hzd > ψ(x′) + h∇ψ(x′)z′

}

, (3.10)

then the symmetric difference R between A(x, h) and A1(x, h) satisfies meas(R) = O(h) uniformly
in x close to x0. This yields

f ′1(x, h) = ∇θ(x).v(x, h) + r(x), v(x, h) =

∫

A1(x,h)
zdz, (3.11)

with ‖r‖L∞ = O(h). Let ν(x) be the vector field defined by ν(x) = (−∇ψ(x′), 1). Observe that

v(x, h) = φ(ψ(x′)−xd

h|ν(x)| ) ν(x)|ν(x)| with φ(a) =
∫

|z|<1,z1>a
z1dz, vanishes for dist(x, ∂Ω) > Ch and that for

x ∈ ∂Ω, ν(x) is collinear to the unit normal to the boundary −→n (x). Since ∂nθ|Γreg
= 0, we thus get

‖f ′1‖L∞ = O(h). The proof of our lemma is complete.
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Let us recall that we denote 1 = ν0 < ν1 < · · · < νj < . . . the eigenvalues of Lρ and mj the
associated multiplicities. We introduce the bilinear form

aρ(u, v) =
αd
2
〈∇u,∇v〉L2(ρ) + 〈u, v〉L2(ρ). (3.12)

This defines an Hilbertian structure on H1(Ω) which is equivalent to the usual one. We write ‖.‖H1
ρ

for the norm induced by aρ. We denote

D0 =
{

θ ∈ C∞(Ω), θ = 0 near Γsing, ∂nθ|Γreg
= 0
}

. (3.13)

Lemma 3.2. D0 is dense in H1(Ω).

Proof. Let f ∈ H1(Ω) be orthogonal to D0 for aρ. Then, it is orthogonal to C∞
0 (Ω) so that

(Lρ + 1)f = 0 in the sense of distributions. In particular −∆f ∈ L2(Ω). Hence we can use the
Green formula (1.14) to get for any θ ∈ D0, since aρ(f, θ) = 0,

〈∂nf, ρθ〉H−1/2,H1/2 = 0. (3.14)

For any ψ ∈ C∞
0 (Γreg), using smooth local coordinates we can find ψ̃ in D0 such that ψ̃|∂Ω = ψ.

Consequently,
〈∂nf, ρψ〉H−1/2,H1/2 = 〈∂nf, ρψ̃〉H−1/2,H1/2 = 0. (3.15)

Hence, ∂nf|Γreg
= 0. This shows that ∂nf|∂Ω ∈ H−1/2 is supported in Γsing. From (1.16) this implies

∂nf|∂Ω = 0. This shows that f ∈ D(Lρ). As the operator Lρ + 1 is strictly positive, this implies
f = 0. The proof of our lemma is complete.

We are now in position to achieve the proof of Theorem 1.2. We first observe that if νh ∈ [0,M ]
and ψh ∈ L2(ρ) satisfy ‖ψh‖L2 = 1, h−2Qh,ρψh = νhψh, then thanks to Lemma 2.2 the family
(ψh)h∈]0,1] is relatively compact in L2(ρ) so that we can suppose (extracting a subsequence hk) that
νh → ν and ψh → ψ in L2(ρ), ‖ψ‖L2 = 1, and moreover by Lemma 2.2, the limit ψ belongs to
H1(ρ). Given θ ∈ D0, it follows from self-ajointness of Qh,ρ and Lemma 3.1 that

0 =
〈

(h−2Qh,ρ − νh)ψh, θ
〉

L2(ρ)
= 〈ψh, (Lρ − νh)θ〉L2(ρ) +O(h1/2). (3.16)

Making h → 0 we obtain 〈ψ, (Lρ − ν)θ〉L2(ρ) = 0 for all θ ∈ D0. It follows that (Lρ − ν)ψ = 0 in
the distribution sense, and integrating by parts that ∂nψ vanishes on Γreg. Since ψ ∈ H1(ρ), we
get as above using (1.16) that ∂nψ = 0, and it follows that ψ ∈ D(Lρ). This shows that ν is an
eigenvalue of Lρ, and thus (1.19) is satisfied. Moreover, by compactness in L2 of the sequence ψh,
one gets that for any ǫ > 0 small enough, there exists hǫ > 0 such that

♯Spec(h−2Qh,ρ) ∩ [νj − ǫ, νj + ǫ] ≤ mj , (3.17)

for h ∈]0, hǫ] with hǫ > 0 small enough. It remains to show that there is equality in (3.17), and we
shall proceed by induction on j.

Let ǫ > 0, small, be given such that for 0 ≤ νj ≤ M + 1, the intervals Iǫj = [νj − ǫ, νj + ǫ]

are disjoint. Let (µj)j≥0 be the increasing sequence of eigenvalues of h−2Qh,ρ, σN =
∑N

j=1mj and
(ek)k≥0 the eigenfunctions of Lρ such that for all k ∈ {1+σN , . . . , σN+1}, one has (Lρ−νN+1)ek = 0.
As 0 is a simple eigenvalue of both Lρ and Qh,ρ, we have clearly ν0 = µ0 = 0 and m0 = 1 =
♯Spec(h−2Qh,ρ) ∩ [ν0 − ǫ, ν0 + ǫ].

Suppose that for all n ≤ N , mn = ♯Spec(h−2Qh,ρ) ∩ [νn − ǫ, νn + ǫ]. Then, one has by (1.19),
for h ≤ hε,

µ1+σN ≥ νN+1 − ǫ. (3.18)
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By the min-max principle, if G is a finite dimensional subspace of H1 with dim(G) = 1 + σN+1,
one has

µσN+1
≤ sup

ψ∈G,‖ψ‖=1
〈h−2Qh,ρψ,ψ〉L2(ρ) (3.19)

Thanks to Lemma 3.2, for all ek, 0 ≤ k ≤ σN+1 and all α > 0, there exists ek,α ∈ D0 such that
‖ek − ek,α‖H1

ρ
≤ α. Let Gα be the vector space spanned by the ek,α, 0 ≤ k ≤ σN+1. For α small

enough, one has dim(Gα) = 1 + σN+1. From Lemma 3.1, one has

〈h−2Qh,ρek,α, ek′,α〉L2(ρ) = 〈Lρek,α, ek′,α〉L2(ρ) +Oα(h1/2). (3.20)

Since ek,α ∈ D0, one has 〈Lρek,α, ek′,α〉L2(ρ) = αd
2 〈∇ek,α,∇ek′,α〉L2

ρ
and 〈∇ek,α,∇ek′,α〉L2

ρ
= 〈∇ek,

∇ek′〉L2
ρ
+O(α). Therefore, for ψ ∈ Gα, ‖ψ‖ = 1, we get

〈h−2Qh,ρψ,ψ〉L2(ρ) ≤ νN+1 + Cα+Oα(h1/2). (3.21)

Taking α > 0 small enough and h < hα, we obtain from (3.19) and (3.21), µσN+1
≤ νN+1 + ǫ.

Combining this with (3.18) and (3.17), we get mN+1 = ♯Spec(h−2Qh,ρ)∩ [νN+1 − ǫ, νN+1 + ǫ]. The
proof of Theorem 1.2 is complete.

4 Application to Random Placement of Non-Overlapping Balls

In this section, we suppose that Ω is a bounded, Lipschitz, quasi-regular, connected, open subset
of R

d with d ≥ 2. Let N ∈ N, N ≥ 2 and ǫ > 0 be given. Let ON,ǫ be the open bounded subset of
R
Nd,

ON,ǫ =
{

x = (x1, . . . , xN ) ∈ ΩN ,∀ 1 ≤ i < j ≤ N, |xi − xj | > ǫ
}

.

We introduce the kernel

Kh(x, dy) =
1

N

N
∑

j=1

δx1
⊗ · · · ⊗ δxj−1

⊗ h−dϕ

(

xj − yj
h

)

dyj ⊗ δxj+1
⊗ · · · ⊗ δxN , (4.1)

and the associated Metropolis operator on L2(ON,ǫ)

Th(u)(x) = mh(x)u(x) +

∫

ON,ǫ

u(y)Kh(x, dy), (4.2)

with

mh(x) = 1 −

∫

ON,ǫ

Kh(x, dy). (4.3)

The operator Th is Markov and self -adjoint on L2(ON,ǫ). The configuration space ON,ǫ is the set
of N disjoint closed balls of radius ǫ/2 in R

d, with centers at the xj ∈ Ω. The topology of this set,
and the geometry of its boundary is generally hard to understand, but since d ≥ 2, ON,ǫ is clearly
non-void and connected for a given N if ǫ is small enough. The Metropolis kernel Th is associated
to the following algorithm: at each step, we choose uniformly at random a ball, and we move its
center uniformly at random in R

d in a ball of radius h. If the new configuration is in ON,ǫ, the
change is made. Otherwise, the configuration is kept as it started.

In order to study the random walk associated to Th, we will assume that N and ǫ are such
that Nǫ is small enough. Under this condition, we prove in Proposition 4.1 that the open set ON,ǫ

is connected, Lipschitz and quasi-regular, and in Proposition 4.4 we prove that the kernel of the
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iterated operator TMh (with M large, but independent of h) admits a suitable lower bound, so that
we will be able to use Remark 2 at the end of Section 2. The main results are collected together in
Theorem 4.6 below.

We define Γreg and Γsing the set of regular and singular points of ∂ON,ǫ as follows. Denote
NN = {1, . . . , N}. For x ∈ ON,ǫ set

R(x) = {i ∈ NN , xi ∈ ∂Ω},

S(x) = {τ = (τ1, τ2) ∈ NN , τ1 < τ2 and |xτ1 − xτ2 | = ǫ} ,

r(x) = ♯R(x), s(x) = ♯S(x).

(4.4)

The functions r and s are lower semi-continuous and any x ∈ ON,ǫ belongs to ∂ON,ǫ iff r(x)+s(x) ≥
1. Define

Γreg =
{

x ∈ ON,ǫ, s(x) = 1 and r(x) = 0
}

∪
{

x ∈ ON,ǫ, s(x) = 0, R(x) = {j0} and xj0 ∈ ∂Ωreg

} (4.5)

and Γsing = ∂ON,ǫ \ Γreg. Then Γsing is clearly closed, and the Γreg is the union of smooth disjoint
hypersurfaces in R

Nd.

Proposition 4.1. There exists α > 0 such that for Nǫ ≤ α, the set ON,ǫ is connected, Lipschitz
and quasi-regular.

Remark 3. Observe that in the above Proposition, the smallness condition on ǫ is Nǫ ≤ α where
α > 0 depends only on Ω. The condition Nǫd ≤ c, which says that the density of the balls is
sufficiently small, does not imply that the set ON,ǫ has Lipschitz regularity. As an example, if
Ω =]0, 1[2 is the unit square in the plane, then x = (x1, . . . , xN ), xj = ((j − 1)ǫ, 0), j = 1, . . . , N ,
with ǫ = 1

N−1 is a configuration point in the boundary ∂ON,ǫ. However, ∂ON,ǫ is not Lipschitz at
x: otherwise, there would exist νj = (aj , bj) such that (x1 + tν1, . . . , xN + tνN ) ∈ ON,ǫ for t > 0
small enough, and this implies a1 > 0, aj+1 > aj and aN < 0 which is impossible.

Proof. For ν ∈ Sp−1, p ≥ 1 and δ ∈]0, 1[, denote

Γ±(ν, δ) = {ξ ∈ R
p, ±〈ξ, ν〉 > (1 − δ)|ξ|, |〈ξ, ν〉| < δ} . (4.6)

We remark [AF03] that an open set O ⊂ R
p is Lipschitz if and only if it satisfies the cone property:

∀a ∈ ∂O,∃δ > 0,∃νa ∈ Sp−1,∀b ∈ B(a, δ) ∩ ∂O we have

b+ Γ+(νa, δ) ⊂ O and b+ Γ−(νa, δ) ⊂ R
p \ O. (4.7)

Let us first show that ON,ǫ is connected for Nǫ small. For x ∈ ON,ǫ define

I(x) = inf
i6=j

|xi − xj |. (4.8)

Then I(x) > ǫ and we have the following lemma.

Lemma 4.2. There exists α0 > 0 such that for any N ∈ N, ǫ > 0 with Nǫ ≤ α0, there exists δN,ǫ > 0
such that for any x ∈ ON,ǫ with I(x) < α0/N , there exists a continuous path γ : [0, 1] → ON,ǫ such
that γ(0) = x and I(γ(1)) ≥ I(x) + δN,ǫ.
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Proof. As Ω is bounded and Lipschitz, a compactness argument shows that there exists δ0 > 0, r0 >
0 such that

∀x0 ∈ Ω,∃ν ∈ Sd−1,∀x ∈ B(x0, r0) ∩ Ω, x+ Γ+(ν, δ0) ⊂ Ω

∀x0 ∈ ∂Ω,∃ν ∈ Sd−1,∀x ∈ B(x0, r0) ∩ ∂Ω, x+ Γ−(ν, δ0) ⊂ R
d \ Ω.

(4.9)

Let α0 < min(δ0, r0)/100. For K ∈ N
∗ denote δK = α0/K

3, ρK = 10α0/K
2. Observe that it

suffices to show the following statement:

∀K ∈ N
∗,∀ǫ ∈]0, α0/K],∀N ∈ NK ,∀x ∈ ON,ǫ s.t. I(x) < α0/K,

∃γ ∈ C([0, 1],ON,ǫ), s.t.

γ(0) = x, I(γ(1)) ≥ I(x) + δK and ∀t ∈ [0, 1], |x− γ(t)|∞ ≤ NρK

(4.10)

Let K ≥ 1 and 0 < ǫ < α0/K. We proceed by induction on N ∈ NK . (Recall that NK =
{0, 1, . . . ,K}.) In the case N = 1, there is nothing to show. Suppose that the above property holds
true at rank N − 1 and let x ∈ ON,ǫ be such that I(x) < α0/K (this is possible since ǫ < α0/K).
Introduce the equivalence relation on NN defined by i ≃x j iff xi and xj can be connected by a
path lying in ∪k∈NN

B(xk, 40α0/K) and denote by c(x) the number of equivalence class.
Suppose that c(x) ≥ 2. Then there exists a partition NN = I ∪ J , such that NI = ♯I ≥ 1,

NJ = ♯J ≥ 1 and for all i ∈ I, j ∈ J , |xi − xj | > 40α0/K. By induction, there exists a path
γI : [0, 1] → ΩNI ∩{(xi)i∈I , ∀i 6= j, |xi−xj | > ǫ} such that γI(0) = (xi)i∈I , I(γI(1)) ≥ I(γI(0))+δK
and |γI(0) − γI(t)|∞ < NIρK . The same construction for the set J provides a path γJ with the
same properties. Define the path γ̃ on [0, 1] by (γ̃(t))i = (γI(t))i for i ∈ I and (γ̃(t))j = (γJ(t))j
for j ∈ J . Since 40α0/K − (NI + NJ)ρK > α0/K + δK > ǫ, γ̃ has values in ON,ǫ and we have
I(γ̃(1)) ≥ I(x) + δK as well as

|x− γ(t)|∞ < max(NI , NJ)ρK ≤ (N − 1)ρK . (4.11)

Suppose now that there is only one equivalence class. Then for all k ∈ NN , |x1 − xk| ≤
40α0N/K ≤ 40α0 < r0, were r0 is defined in (4.9). In particular, there exists ν ∈ Sd−1 such that
for all y ∈ B(x1, 40α0) ∩ Ω, y + Γ+(ν, δ0) ⊂ Ω. On the other hand, we can suppose without loss of
generality that

〈x1, ν〉 ≤ · · · ≤ 〈xN , ν〉. (4.12)

For j ∈ {1, ..., N} set aj = jρK and

γ(t) = (x1 + ta1ν, ..., xN + taNν), t ∈ [0, 1] (4.13)

Then, one has |x− γ(t)|∞ ≤ sup aj = NρK , xj + tajν ∈ Ω since NρK ≤ δ0, and for i < j

|(xj + tajν) − (xi + taiν)|
2 = |xj − xi|

2 + 2t(aj − ai)〈xj − xi, ν〉 + t2|aj − ai|
2

≥ |xj − xi|
2 + t2|aj − ai|

2
(4.14)

Thus one has
I(γ(1))2 ≥ I(x)2 + ρ2

K ≥ (I(x) + δK)2 (4.15)

The proof of lemma 4.2 is complete.

Using this lemma, it is easy to show that ON,ǫ is connected for Nǫ small. For x ∈ ON,ǫ, define

Ix = {y ∈ ON,ǫ,∃γ ∈ C ([0, 1],ON,ǫ) , γ(0) = x, γ(1) = y} . (4.16)
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We first show easily that there exists y ∈ Ix such that I(y) ≥ α0/N if Nǫ < α0. Let M =
maxy∈Ix I(y). As I is a bounded function, M is finite and given γ ∈]0, δN,ǫ/2[, there exists y1 ∈ Ix
such that I(y1) ≥ M − γ. If I(y1) < α0/N , Lemma 4.2 shows that there exists y2 ∈ Ix such that
I(y2) ≥ I(y1) + δN,ǫ > M which is impossible. This shows that there exists y ∈ Ix such that
I(y) ≥ α0/N . Now by 4.9, for any x ∈ Ω, there exists νx ∈ Sd−1 such that x+ tνx ∈ Ω for t ∈ [0, δ0]
and dist(x+ tνx, ∂Ω) ≥ t sin θ0 with cos θ0 = 1− δ0. Let α1 = α0 sin θ0/20. Then for Nε ≤ α1, and
I(y) ≥ α0/N , γ(t) = (y1 + tα0/4Nνy1 , ..., yN + tα0/4NνyN ), t ∈ [0, 1] is a path in ON,ǫ and one has
with γ(1) = y′ = (y′1, ..., y

′
N ), I(y′) ≥ α0/2N , and dist(y′j , ∂Ω) > 3ε for all j.

Let CN,ǫ be the set of x ∈ ON,ǫ such that I(x) ≥ α0/2N and dist(xj , ∂Ω) > 3ε for all j. It
remains to show that for any x, y ∈ CN,ǫ there exists a continous path γ from x to y, with values
in ON,ǫ for Nǫ ≤ α1. Decreasing α0 we may assume 6cdα

d
0 < vol(Ω) with cd = vol(B(0, 1)).

Decreasing α1, we get that for any x, y ∈ CN,ǫ with Nǫ ≤ α1, there exists z ∈ CN,ǫ such that

|xp − zq| ≥ α0/2N and |yp − zq| ≥ α0/2N ∀p, q ∈ NN . (4.17)

One can easily choose the zj by induction, since for any x, y ∈ ON,ǫ and any z1, ..., zl ∈ Ω with
0 ≤ l ≤ N − 1 we have vol(∪Nj=1B(xj , α0/N)∪Nj=1 B(yj , α0/N)∪lj=1 B(zj , α0/N)) ≤ 3Ncdα

d
0N

−d <
vol(Ω)/2 < vol({x ∈ Ω, dist(x, ∂Ω)} > 3ǫ).

Thus we are reduced to showing that if y, z ∈ CN,ǫ satisfy 4.17, there exists a continuous path
γ from y to z, with values in ON,ǫ if Nǫ ≤ α1. We look for a path γ of the form γ = γN ◦ · · · ◦ γ1,
where the path γj moves only the jth ball from yj to zj . Let us explain how to choose γj . As Ω is
connected, there exists an analytic path γ̃1 which connects y1 to z1 in Ω. We have to modify the
path γ̃1 in a new path γ1 in order that

|γ1(t) − yj | > ǫ ∀j ∈ {2, . . . , N}. (4.18)

Let K = {t ∈ [0, 1],∃j0 ∈ {2, . . . , N}, |γ̃1(t) − yj0 | ≤ 2ǫ}. If K is empty, we set γ1 = γ̃1. If
K is non empty, since the path γ̃1 is analytic and I(y) ≥ α0/2N > 4ǫ, K is a disjoint union of
intervals, K = [a1, b1] ∪ ... ∪ [aL, bL] and for any l ∈ {1, ..., L} there exists a unique jl such that
|γ̃1(t) − yjl | ≤ 2ǫ for t ∈ [al, bl]. For t /∈ K we set γ1(t) = γ̃1(t) and for t ∈ [al, bl] we replace γ̃1

by a continuous path γ1 connecting γ̃1(al) to γ̃1(bl) on the sphere |x− yjl | = 2ǫ which is contained
in Ω. Then γ1(t) is continuous. Moreover, as I(y) > 4ǫ, for any j ∈ {2, ..., N} and t ∈ [0, 1] we
have |γ1(t)− yj | ≥ 2ǫ. In particular, the path t ∈ [0, 1] 7→ (γ1(t), y2, . . . , yN ) has values in ON,ǫ and
connects y and ỹ := (z1, y

′). From (4.17) it is clear that ỹ ∈ CN,ǫ and that (4.17) holds true with y
replace by ỹ. This permits iterating the construction to build a continuous path from y to z. Thus
ON,ǫ is connected for Nǫ < α1.

Let us now prove that ∂ON,ǫ has Lipschitz regularity for Nǫ ≤ r0/2, where r0 is given by 4.9.
For a given ǫ, we will prove this fact by induction on N ∈ [1, r0/2ǫ]. The case N = 1 is obvious
since ∂Ω is Lipschitz. Let x ∈ ∂ON,ǫ. The equivalence relation i ≃ j iff xi and xj can be connected
by a path lying in the union of closed balls of radius ǫ/2, gives us a partition {1, . . . , N} = ∪rk=1Fk
such that

|xi − xj | > ǫ ∀k 6= l, ∀i ∈ Fk,∀j ∈ Fl;

|xnl
− xnl+1

| = ǫ ∀k,∀i 6= j ∈ Fk,∃(nl) ∈ Fk, 1 ≤ l ≤ m,n1 = i, nm = j.
(4.19)

The Cartesien product O1 × O2 of two bounded Lipschitz open subsets Oi ⊂ R
di has Lipschitz

regularity. Thus, if r ≥ 2, the induction hypothesis on N shows that ∂ON,ǫ has Lipschitz regularity
near x. Thus we may assume r = 1, and therefore, for all i, j one has |xi − xj | ≤ ǫ(N − 1) ≤ r0/2.
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Thus there exists x0 ∈ Ω such that xi ∈ B(x0, r0/2), and 4.9 gives us a unit vector ν and δ0 > 0.
We set

ξi = αxi + ν (4.20)

with α > 0 small such that tξi ∈ Γ+(ν, δ0/2) for t > 0 small. We choose β > 0, ρ > 0, t0 > 0 such
that β << αǫ2, β << δ0, ρ << αǫ2, ρ << r0, t0|ξi|

2 << αǫ2, t0 << δ0.
Let x ∈ ∂ON,ǫ be such that |xj − xj | ≤ ρ and θi ∈ R

d be such that |θi| ≤ β. Let ξi = ξi + θi,
and ξ = (ξ1, · · · , ξN ). One has tξi ∈ Γ+(ν, δ0) for t ∈]0, t0] and tξi ∈ Γ−(ν, δ0) for t ∈ [−t0, 0[. From

〈xi − xj , ξi − ξj〉 = 〈xi − xj , ξi − ξj〉 +O(β) = α|xi − xj |
2 +O(β + ρ) (4.21)

and
|(xi + tξi) − (xj + tξj)|

2 = |xi − xj |
2 + 2t〈xi − xj , ξi − ξj〉 + t2|ξi − ξj |

2 (4.22)

we get that the function t ∈ [−t0, t0] 7→ gi,j(t) = |(xi+ tξi)− (xj + tξj)|
2 is strictly increasing. Since

by 4.9 we have xi + tξi ∈ Ω for t ∈]0, t0], we get x + tξ ∈ ON,ǫ for t ∈]0, t0]. It remains to show
x+ tξ /∈ ON,ǫ for t ∈ [−t0, 0[. If there exists two indices i, j such that |xi−xj | = ǫ, this follows from
gi,j(t) < ǫ2 for t < 0. If there exists one indice i such that xi ∈ ∂Ω, this follows from tξi ∈ Γ−(ν, δ0)
and the second line of 4.9 which implies xi + tξi /∈ Ω for t ∈ [−t0, 0[. Thus ∂ON,ǫ is Lipschitz.

Let us finally prove that ON,ǫ is quasi-regular. Let u ∈ H−1/2(∂ON,ǫ) be supported in Γsing.
We have to show that u is identically zero. This is a local problem near any point x ∈ Γsing.
Let x be such that s(x) = 0, R(x) = {j0} (say j0=1) and xj0 ∈ ∂Ωsing. Denote DN,ǫ = {x ∈
(Rd)N , |xi − xj | > ǫ, ∀1 ≤ i < j ≤ N}. Let χ be a cut-off function supported near x such that
sup(χ) ⊂ (Rd×ΩN−1)∩DN,ǫ. Then, for any ψ ∈ C∞

0 (ΩN−1) the linear form uψ defined onH1/2(∂Ω)
by

〈uψ, f〉 = 〈χu, f(x1)ψ(x2, . . . , xN )〉 (4.23)

is continuous and supported in ∂Ωsing. As ∂Ω is quasi-regular, it follows that uψ is equal to zero for
all ψ and hence, χu = 0. Therefore, we can suppose that u is supported in the set {r(x)+s(x) ≥ 2}.
Let v be the distribution on R

Nd

〈v, ϕ〉 = 〈u, ϕ|∂ON,ǫ
〉 (4.24)

Then v ∈ H−1(RNd) and its support is equal to sup(u). The Sobolev space H−1 is preserved by
bi-Lipschitz maps. Therefore, if there exists a bi-Lipschitz map Φ defined near x such that locally
one has Φ(sup(u)) ⊂ {y1 = y2 = 0}, then u is identically 0 near x. For n ∈ N, n ≥ 2, introduce the
following property:

(Pn) : for any x ∈ Γsing with r(x) + s(x) = n, we have u = 0 near x. (4.25)

This property is proved by induction on n. By lower semicontinuity of the functions r and s, we
may assume in the proof that for x ∈ sup(u) close to x, one has r(x) = r(x) and s(x) = s(x) and
hence R(x) = R(x) and S(x) = S(x). Therefore, we are reduced to proving that for x ∈ Γsing with
r(x) + s(x) ≥ 2 and u ∈ H−1/2(∂ON,ǫ) supported in R(x) = R(x) and S(x) = S(x), we have u = 0
near x .

First assume r(x) = s(x) = 1. Then, we can suppose without losing generality, that u is
supported near x in G = (∂Ω × ΩN−1) ∩ {|xi − x2| = ǫ} for some i ∈ {1, 3, . . . , N}. Denoting
xi = (xi,1, . . . , xi,d), we may assume that near x, G is given by two equations,

x1,1 = α(x′1), x′1 = (x1,2, ..., x1,d)

x2,k = β(x′2, xi), x′2 = (x2,1, ..., x2,k−1, x2,k+1, ..., x2,d).
(4.26)
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with α Lipschitz and β smooth. Then, ν(x) = (x1,1 − α(x′1), x2,k − β(x′2, xi), x
′
1, x

′
2, x3, . . . , xN )

defines a local bi-Lipschitz homeomorphism of R
Nd such that ν ◦ G ⊂ {0}2 × R

Nd−2. Therefore,
ν∗(v) vanishes identically near ν(x) and hence u is null near x.

We may thus assume that s(x) ≥ 2 or r(x) ≥ 2. In the case s(x) ≥ 2, the support of u near x
is contained in a set A of the form |x1 − x2| = |x2 − x3| = ǫ or |x1 − x2| = |x3 − x4| = ǫ. Since A is
a subvariety of R

Nd of codimension 2, we get as above that u is null near x. In the case r(x) ≥ 2,
the support of u near x is contained in a set B of the form ∂Ω × ∂Ω × R

(N−2)d which is near x
bi-Lipschitz homeomorphic to (y1 = y2 = 0) × R

Nd−2, and thus u is null near x. The proof of
Proposition 4.1 is complete.

Define for j ∈ NN the two functions πj from R
Nd to R

Nd and σj from R
d to R

Nd by

πj(x1, . . . , xj , . . . , xN ) = (x1, . . . , 0, . . . , xN ),

σj(y) = (0, . . . , y, . . . , 0),
(4.27)

so that x = πj(x)+σj(xj). The following geometric lemma will be the main ingredient of the proof
of Proposition 4.4.

Lemma 4.3. Let α0 = r0/10 with r0 given by 4.9. For all N ∈ N and ǫ ∈]0, α0/N ], there exists
δN,ǫ > 0 and a finite covering (Ul)l of ON,ǫ such that for all l, there exists j and ν ∈ Sd−1 such
that

x+ σj(Γ+(ν, δN,ǫ)) ⊂ ON,ǫ ∀x ∈ Ul ∩ ON,ǫ. (4.28)

Proof. Since ON,ǫ is compact, we have to prove that for any given x0 ∈ ON,ǫ, there exist r > 0,
δ = δN,ǫ > 0, j and ν ∈ Sd−1 such that (4.28) holds true for x ∈ ON,ǫ ∩B(x0, r). This means that
we can select one ball, and that moving only this ball by a vector in Γ+(ν, δ) while keeping the
other balls fixed, results in an admissible configuration. We shall proceed by induction on N ≥ 1.
For N = 1, this is true since Ω is Lipschitz. Let N ≥ 2. If one can write {1, . . . , N} as the disjoint
union I ∪ J with ♯I ≥ 1, ♯J ≥ 1, and

|x0
i − x0

j | ≥ 5ǫ ∀i ∈ I,∀j ∈ J, (4.29)

then, by the induction hypothesis, the result is true for some δN,ǫ ∈]0, 4ǫ[. Thus, using the definition
of α0, we may assume that all the x0

i are in a small neighborhood of a given point y0 ∈ Ω and
supk|x

0
k − y0| ≤ r0/2. By 4.9 there exist ν, δ0 > 0, r0 > 0 such that

y ∈ Ω and |y − y0| ≤ r0 =⇒ y + Γ+(ν, δ0) ∈ Ω (4.30)

It remains to show that there exist j, r′0 ∈]0, r0[, and ν ′, δ′0 > 0, with Γ+(ν ′, δ′0) ⊂ Γ+(ν, δ0), such
that for all x = (x1, . . . , xN ) ∈ ON,ǫ with dist(x, x0) ≤ r′0, and all z ∈ xj + Γ+(ν ′, δ′0), one has
|z − xk| > ǫ for all k 6= j. This will be a consequence of the following property:

∀β > 0,∃j,∃ν ′ ∈ Sd−1 s.t. |ν ′ − ν| ≤ β and ν ′.(x0
j − x0

k) > 0 ∀k 6= j. (4.31)

In fact, if (4.31) holds true, first take β small enough, such that for all ν ′ ∈ Sd−1 with |ν ′ −
ν| ≤ β there exists δ′0 > 0 with Γ+(ν ′, δ′0) ⊂ Γ+(ν, δ0); then (4.31) gives us a pair ν ′, j such
that ν ′.(x0

j − x0
k) > 0 ∀k 6= j. For r′0 > 0, δ′0 > 0 small enough, we get for all ξ ∈ Γ+(ν ′, δ′0)

and all x ∈ ON,ǫ,dist(x, x0) ≤ r′0, that infk 6=jξ.(xj − xk) ≥ δ′0|ξ|, and thus there exists t0 such
that for t ∈ [0, t0] and k 6= j, the function t 7→ |xk − (xj + tξ)|2 is strictly increasing for all
x ∈ ON,ǫ,dist(x, x0) ≤ r′0 and all ξ ∈ Γ+(ν ′, δ′0).
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Let us show that (4.31) holds true. If j 7→ ν.x0
j achieve its maximum at a single j, then (4.31)

is obvious with ν = ν ′. Otherwise, the set A = {ν ′ ∈ Sd−1,∃j 6= k, ν′.(x0
j −x

0
k) = 0} is contained in

a finite union of equators in the sphere Sd−1, with ν ∈ A, and thus (4.31) is still obvious by taking
ν ′ ∈ Sd−1 \A close to ν. The proof of Lemma 4.3 is complete.

For k ∈ N
∗ denote Bk = BRk(0, 1) the unit Euclidean ball and ϕk(z) = 1

vol(Bk)
1Bk

(z).

Proposition 4.4. Let N, ǫ be given such that Lemma 4.3 holds true. There exists h0 > 0, c0, c1 > 0
and M ∈ N

∗ such that for all h ∈]0, h0], one has

TMh (x, dy) = µh(x, dy) + c0h
−NdϕNd

(

x− y

c1h

)

dy, (4.32)

where for all x ∈ ON,ǫ, µh(x, dy) is a positive Borel measure.

Proof. For x, y ∈ ON,ǫ, we set dist(x, y) = sup1≤i≤N |xi−yi|. For N ≥ 1, denote by Kh,N the kernel
given in (4.1). It is sufficient to prove the following: there exists h0 > 0, c0, c1 > 0 and M(N) ∈ N

∗

such that for all h ∈]0, h0], one has for all nonnegative function f ,

K
M(N)
h,N (f)(x) ≥ c0h

−Nd

∫

y∈ON,ǫ,dist(y,x)≤c1h
f(y)dy. (4.33)

First note that it is sufficient to prove the weaker version: for all x0 ∈ ON,ǫ, there existM(N,x0), r =
r(x0) > 0, c0 = c0(x0) > 0, c1 = c1(x0) > 0, h0 = h0(x0) > 0 such that for all h ∈]0, h0], all x ∈ ON,ǫ

and all nonnegative function f

dist(x, x0) ≤ 2r =⇒ K
M(N,x0)
h,N (f)(x) ≥ c0h

−Nd

∫

y∈ON,ǫ,dist(y,x)≤c1h
f(y)dy. (4.34)

Let us verify that (4.34) implies (4.33). Decreasing r(x0) if necessary, we may assume that any set
{dist(x, x0) ≤ 2r(x0)} is contained in one of the open set Ul of Lemma 4.3. There exists a finite set F
such that ON,ǫ ⊂ ∪x0∈F {dist(x, x0) ≤ r(x0)}. Let M(N) = supx0∈F M(N,x0), c

′
i = minx0∈F ci(x0)

and h′0 = minx0∈F h0(x0). One has to check that for any x0 ∈ F and any x with dist(x, x0) ≤ r(x0),
the right inequality in (4.34) holds true with M(N) = M(N,x0) +n in place of M(N,x0) for some
constants c0, c1, h0. Let l be such that dist(x, x0) ≤ r(x0) implies x ∈ Ul. Let j and Γ+(ν, δ) be
given by Lemma 4.3. Clearly, if f is nonnegative, one has

K
M(N,x0)+1
h,N (f)(x) ≥

1

N
h−d

∫

x+σj(z)∈ON,ǫ

ϕ(z/h)K
M(N,x0)
h,N (f)(x+ σj(z))dz (4.35)

For dist(x, x0) ≤ 2r(x0)− c′1h/2, and |z| ≤ c′1h/2, z ∈ Γ+(ν, δ), one has dist(x+ σj(z), x
0) ≤ 2r(x0)

and by (4.28), x + σj(z) ∈ ON,ǫ. Moreover, dist(y, x) ≤ c′1h/2 =⇒ dist(y, x + σj(z)) ≤ c′1h. From
(4.35) and (4.34) we thus get, with a constant Cδ depending only on the δ given by Lemma 4.3,
and for h ≤ h′0,

dist(x, x0) ≤ 2r(x0) − c′1h/2 =⇒ K
M(N,x0)+1
h,N (f)(x)

≥
Cδ
N
c′0h

−Nd

∫

y∈ON,ǫ,dist(y,x)≤c′1h/2
f(y)dy.

(4.36)

By induction on n, we thus get

dist(x, x0) ≤ 2r(x0) − c′1h =⇒ K
M(N,x0)+n
h,N (f)(x)

≥

(

Cδ
N

)n

c′0h
−Nd

∫

y∈ON,ǫ,dist(y,x)≤c′1
h
2n

f(y)dy.
(4.37)
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Since n is bounded, we get the desired result with h0 = min(minx0∈F r(x
0)/c′1, h

′
0).

To complete the proof, let us show (4.34) by induction on N . The case N = 1 is obvious.
Suppose that (4.34) holds for N − 1 discs. Let x0 ∈ ON,ǫ be fixed. Thanks to Lemma 4.3, we can
suppose that there exists an open neighborhood U of x0, a direction ν ∈ Sd−1 and δ > 0 such that
(4.28) holds with j = 1. Let us denote x = (x1, x

′) and define

Kh,N = Kh,N,1 +Kh,N,> (4.38)

with

Kh,N,1f(x) =
h−d

N

∫

(y1,x′)∈ON,ǫ

ϕ

(

x1 − y1

h

)

f
(

y1, x
′
)

dy1. (4.39)

We also denote G(ν, δ) = {x1 ∈ Γ+(ν, δ), |x1| >
δ
2}. Then, we have the following:

Lemma 4.5. For any δ′ ∈]0, δ/2], there exists C > 0, α > 0, h0 > 0 and r0 > 0 such that
∀r ∈]0, r0], ∀h ∈]0, h0], ∀x ∈ U ∩ON,ǫ, ∀x̃ ∈ x+h(G(ν, δ′)×B(0, r)N−1) with x̃′ ∈ ON−1,ǫ, we have
x̃ ∈ ON,ǫ and

Kh,N,>f(x̃) ≥ CKαh,N−1 (f(x̃1, .))
(

x̃′
)

, (4.40)

for any nonnegative function f . In particular, for all M ∈ N
∗, there exists C, r0, h0, α as above

such that ∀x ∈ U ∩ ON,ǫ and ∀x̃ ∈ x+ h(G(ν, δ′) ×B(0, r)N−1), we have

KM
h,N,>f(x̃) ≥ CKM

αh,N−1 (f(x̃1, .))
(

x̃′
)

. (4.41)

Proof. Inequality (4.41) is obtained easily from (4.40) by induction on M . To prove (4.40), observe
that for nonnegative f and α ∈]0, 1[ we have

Kh,N,>f(x̃) ≥
h−d

N

N
∑

j=2

∫

Aj,α,h(x̃)
f(x̃1, . . . , yj , . . . , x̃N )dyj , (4.42)

with Aj,α,h(x̃) = {z ∈ Ω, |x̃j−z| < αh and ∀k 6= j, |x̃k−z| > ǫ}. Let Bj,α,h(x̃) = {z ∈ Ω, |x̃j−z| <
αh and ∀k 6= 1, j, |x̃k − z| > ǫ}. Then Aj,α,h ⊂ Bj,α,h and we claim that for α, r > 0 small enough
and x̃ ∈ x + h(G(ν, δ′) × B(0, r)N−1) with x̃′ ∈ ON−1,ǫ, we have Bj,α,h(x̃) = Aj,α,h(x̃). Indeed,
let x̃1 = x1 + hu1 with u1 ∈ G(ν, δ′) and x̃′ ∈ ON−1,ǫ be such that |x̃j − xj | < hr. Then for
z ∈ Bj,α,h(x̃),

|x̃1 − z| = |x1 − xj + hv1|, (4.43)

with v1 = u1 +
xj−x̃j

h +
x̃j−z
h . Taking α, r small enough (w.r.t. δ) it follows that v1 ∈ Γ+(ν, δ).

Consequently, Lemma 4.3 shows that |x̃1 − z| > ǫ and hence z ∈ Aj,α,h(x̃) (the same argument
shows that x̃ ∈ ON,ǫ). Therefore,

Kh,N,>f(x̃) ≥
h−d

N

N
∑

j=2

∫

Bj,α,h(x̃)
f(x̃1, . . . , yj , . . . , x̃N )dyj

=
(N − 1)vol(Bd)

N
Kαh,N−1 (f(x̃1, .))

(

x̃′
)

,

(4.44)

and the proof of Lemma 4.5 is complete.
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Using this lemma we can complete the proof of (4.34). Let p ∈ N, α ∈]0, α0] and x ∈ ON,ǫ, then

Kp+1
h,N f(x) ≥ Kh,N,1K

p
h,N,>f(x)

≥
h−d

N

∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)
Kp
h,N,>f

(

z1, x
′
)

dz1

≥ C
h−d

N

∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)
Kp
αh,N−1 (f(z1, .))

(

x′
)

dz1,

(4.45)

thanks to Lemma 4.5. From the induction hypothesis we can choose p ∈ N so that

Kp+1
h,N f(x) ≥ Ch−Nd

∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)

∫

|x′−y′|<αh,y′∈ON−1,ǫ

f
(

z1, y
′
)

dy′dz1 (4.46)

Hence, for any β ∈]0, 1] we get

Kp+2
h,N f(x) ≥ Kp+1

h,NKh,N,1f(x) ≥ Ch−Nd
∫

Dα,β,h(x)
f
(

y1, y
′
)

γh(x, y1)dy1dy
′, (4.47)

with
Dα,β,h(x) =

{

y ∈ ON,ǫ, |x
′ − y′| < αh, |x1 − y1| < βh

}

(4.48)

and

γh(x, y1) = h−d
∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)
1|z1−y1|<hdz1. (4.49)

We have to show that γh is bounded from below by a positive constant, uniformly with respect to
(x, y1) when |x1 − y1| < βh. For z1 ∈ x1 + hG(ν, δ′), one has |z1 − y1| ≤ |z1 − x1| + |x1 − y1| ≤
hδ′ + hβ < h for β and δ′ small. Thus for |x1 − y1| < βh one has

γh(x, y1) = h−d
∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)
dz1 =

∫

u∈G(ν,δ′)
1(x1+hu,x′)∈ON,ǫ

du. (4.50)

Using Lemma 4.3 again, we get for |x1 − y1| < βh

γh(x, y1) =

∫

u∈G(ν,δ′)
du = C0 > 0. (4.51)

Plugging this lower bound into (4.47), gives

Kp+2
h,N ≥ Ch−Nd

∫

Dα,β,h(x)
f(y)dy, (4.52)

and the proof of (4.34) is complete. This completes the proof of Proposition 4.4.

By Proposition 4.1, we can consider the Neumann Laplacian |∆|N on ON,ǫ defined by

|∆|N = −
αd
2N

∆,

D(|∆|N ) =
{

u ∈ H1(ON,ǫ), −∆u ∈ L2(ON,ǫ), ∂nu|∂ON,ǫ
= 0
}

.
(4.53)

We still denote 0 = ν0 < ν1 < ν2 < . . . the spectrum of |∆|N and mj the multiplicity of νj . Our
main result is the following.
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Theorem 4.6. Let N ≥ 2 be fixed. Let ǫ > 0 be small enough such that Proposition 4.1 and
Proposition 4.4 hold true. Let R > 0 be given and β > 0 such that the spectrum νj of the Neumann
Laplacian (4.53) satisfies νj+1 − νj > 2β for all j such that νj+2 ≤ R.

There exists h0 > 0, δ0 ∈]0, 1/2[ and constants Ci > 0 such that for any h ∈]0, h0], the following
hold true:

i) The spectrum of Th is a subset of [−1 + δ0, 1], 1 is a simple eigenvalue of Th, and Spec(Th)∩
[1 − δ0, 1] is discrete. Moreover,

Spec

(

1 − Th
h2

)

∩]0, R] ⊂ ∪j≥1[νj − β, νj + β];

♯Spec

(

1 − Th
h2

)

∩ [νj − β, νj + β] = mj ∀νj ≤ R;

(4.54)

and for any 0 ≤ λ ≤ δ0h
−2, the number of eigenvalues of Th in [1−h2λ, 1] (with multiplicity)

is bounded by C1(1 + λ)dN/2.

ii) The spectral gap g(h) satisfies
lim
h→0+

h−2g(h) = ν1 (4.55)

and the following estimate holds true for all integer n:

sup
x∈ON,ǫ

‖Tnh (x, dy) −
dy

vol(ON,ǫ)
‖TV ≤ C4e

−ng(h). (4.56)

The rest of this section is devoted to the proof of Theorem 4.6.
Let µh(x, dy) be given by (4.32) and µh(f)(x) =

∫

ON,ǫ
f(y)µh(x, dy). Thanks to the positivity

of µh(x, dy), using the Markov property of TMh and Lipschitz-continuity of the boundary, we get
for some δ′0 > 0, independant of h > 0, small enough

‖µh‖L∞,L∞ ≤ 1 − inf
x∈ON,ǫ

∫

ON,ǫ

c0h
−NdϕNd

(

x− y

c1h

)

dy < 1 − δ′0. (4.57)

Since by (4.32) µh is self-adjoint on L2(ON,ǫ), we also get

‖µh‖L1,L1 ≤ 1 − δ′0, (4.58)

and by interpolation it follows that ‖µh‖L2,L2 ≤ 1 − δ′0. In particular the essential spectrum of

TMh is contained in [0, 1 − δ′0] so that σess(Th) ⊂ [0, 1 − 2δ0] with 2δ0 = 1 − (1 − δ′0)
1/M . Thus

Spec(Th) ∩ [1 − δ0, 1] is discrete. Let us verify that, decreasing δ0 > 0, we may also assume

Spec(Th) ⊂ [−1 + δ0, 1]. (4.59)

Thanks to the Markov property of TMh , to prove this, it suffices to find M ∈ 2N + 1 such that
∫

ON,ǫ

∫

ON,ǫ

(u(x) + u(y))2 TMh (x, dy)dx ≥ δ0‖u‖
2
L2 , (4.60)

for any u ∈ L2(Ω). Thanks to the proof of Proposition 4.4, there exists M ∈ 2N + 1 such that
∫

ON,ǫ

∫

ON,ǫ

(u(x) + u(y))2 TMh (x, dy)dx ≥ c0h
−Nd

∫

ON,ǫ×ON,ǫ

(u(x) + u(y))2 ϕNd

(

x− y

c1h

)

dxdy.

(4.61)
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Hence, (4.59) follows from (4.61) and (2.7).
Following the strategy of Section 2 we put ON,ǫ in a large box B =]−A/2, A/2[Nd and, thanks

to Proposition 4.1, there is an extension map E : L2(ON,ǫ) → L2(B) which is also bounded from
H1(ON,ǫ) into H1(B). Define

Eh,k(u) =
〈

(1 − T kh )u, u
〉

L2(ON,ǫ)
, (4.62)

and define Eh as in Section 2. Moreover, the identities (2.12) and (2.13) remain true with obvious
modifications.

Lemma 4.7. There exist C0, h0 > 0 such that the following holds true for any h ∈]0, h0] and any
u ∈ L2(ON,ǫ):

Eh (E(u)) ≤ C0

(

Eh,M (u) + h2‖u‖2
L2

)

. (4.63)

Proof. Thanks to Lemma 2.2 we have

Eh (E(u)) ≤ C0

(

∫

ON,ǫ×ON,ǫ

(u(x) − u(y))2 c0h
−NdϕNd

(

x− y

c1h

)

dydx+ h2‖u‖L2(ON,ǫ)

)

. (4.64)

Combined with (4.32), this shows that

Eh (E(u)) ≤ C0

(

∫

ON,ǫ×ON,ǫ

(u(x) − u(y))2 TMh (x, dy)dx+ h2‖u‖L2(ON,ǫ)

)

, (4.65)

and the proof is complete.

Lemma 4.8. For any 0 ≤ λ ≤ δ0/h
2, the number of eigenvalues of Th in [1 − h2λ, 1] (with

multiplicity) is bounded by C1(1+λ)Nd/2. Moreover, any eigenfunction Th(u) = λu with λ ∈]1−δ0, 1]
satisfies the bound

‖u‖L∞ ≤ C2h
−Nd/2‖u‖L2 . (4.66)

Proof. Suppose that Th(u) = λu with λ ∈ [1 − δ0, 1], then TMh u = λMu and thanks to (4.32), we
get

‖(µh − λM )u‖L∞ = O(h−Nd/2). (4.67)

The estimate (4.66) follows from (4.57). Let ζk(λ, h) be the number of eigenvalues of T kh in the
interval [1 − h2λ, 1] for h2λ < δ0. Thanks to Lemma 4.7, we can mimick the proof of Lemma 2.3
to get

ζM (λ, h) ≤ C(1 + λ)Nd/2. (4.68)

Then from (4.59), one has

ζ1(λ, h) = ζk

(

1 − (1 − h2λ)k

h2
, h

)

. (4.69)

Combining (4.68) and (4.69), we easily obtain the announced estimate. The proof of Lemma 4.8 is
complete.

The rest of the proof of Theorem 4.6 follows the strategy of Sections 2 and 3. Using the spectral
decomposition (2.41), (2.42) we get easily the estimates (2.48) and (2.50), and it remains to estimate
Tnh,1. Following the proof of Lemma 2.4, we can find α > 0 small enough and C > 0 such that the
following Nash inequality holds with 1/D = 2 − 4/p > 0:

‖u‖
2+1/D
L2 ≤ Ch−2

(

Eh,M (u) + h2‖u‖2
L2

)

‖u‖
1/D
L1 , ∀u ∈ Eα. (4.70)
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From this inequality, we deduce that for k ≥ h−2,

‖T kM1,h ‖L∞,L∞ ≤ Ce−kMg(h), (4.71)

and this implies for k ≥ h−2, since the contributions of T kM2,h , T
kM
3,h are negligible,

‖T kMh ‖L∞,L∞ ≤ C ′e−kMg(h). (4.72)

As Th is bounded by 1 on L∞ we can replace kM by n ≥ h−2 in (4.72) and (4.56) is proved.
Assertion (4.55) is an obvious consequence of (4.54). The proof of (4.54) is the same as the one of
Theorem 1.2. Thus, the following lemma will end the proof of Theorem 4.6.

Lemma 4.9. Let θ ∈ C∞(ON,ǫ) be such that sup(θ) ∩ Γsing = ∅ and ∂nθ|Γreg
= 0. Then

(1 − Th)θ = h2|∆|Nθ + r, ‖r‖L2 = O(h5/2). (4.73)

Proof. Let θ ∈ C∞(ON,ǫ) be such that sup(θ)∩Γsing = ∅ and ∂nθ|Γreg
= 0 and denote Qh = 1−Th.

Then Qh = 1
N

∑N
j=1Qj,h with

Qj,hθ(x) =
h−d

vol(B1)

∫

Ω
1|xj−y|<hΠk 6=j1|xk−y|>ǫ (θ(x) − θ (πj(x) + σj(y))) dy. (4.74)

Let χ0(x) = 1dist(x,∂ON,ǫ)<2h. The same proof as in Section 3 shows that

(1 − χ0)Qj,hθ(x) = −
αd
2
h2∂2

j θ(x) +OL∞(h3), (4.75)

so that
(1 − χ0)Qhθ(x) = h2|∆|Nθ(x) +OL2(h3). (4.76)

We study χ0Qhθ. As ‖χ0‖L2 = O(h1/2) it suffices to show that ‖χ0Qhθ‖L∞ = O(h2). On the other
hand, by Taylor expansion we have

χ0Qj,hθ(x) = −
hχ0(x)

vol(B1)

∫

|z|<1
Πk 6=j1|xj+hz−xk|>ǫ1xj+hz∈Ωz.∂jθ(x)dz +OL∞(h2). (4.77)

Hence, it suffices to show that

v(x) = χ0(x)

N
∑

j=1

∫

|z|<1
Πk 6=j1|xj+hz−xk|>ǫ1xj+hz∈Ωz.∂jθ(x)dz (4.78)

satisfies ‖v‖L∞ = O(h). Since dist(sup(θ),Γsing) > 0, there exists disjoint compact sets Fl ⊂
{s(x) = 0, R(x) = l}, and Fi,j ⊂ {r(x) = 0, S(x) = (i, j)} such that

sup(χ0θ) ⊂ ∪l {x,dist(x, Fl) ≤ 4h} ∪i,j {x,dist(x, Fi,j) ≤ 4h} .

If x ∈ sup(χ0θ) is in {x,dist(x, F1) ≤ 4h}, then the same parity arguments as in Section 3 show
that

v(x) = χ0(x)

∫

|z|<1,x1+hz∈Ω
z.∂1θ(x)dz = O(h). (4.79)

If x ∈ sup(χ0θ) is in {x,dist(x, F1,2) ≤ 4h}, then

v(x) = χ0(x)

∫

|z|<1
z.(∂1θ(x)1|x1+hz−x2|>ǫ + ∂2θ(x)1|x2+hz−x1|>ǫ)dz (4.80)

and the result follows from (x1 − x2).(∂1θ − ∂2θ)(x) = 0(h) for {x,dist(x, F1,2) ≤ 4h}, since ∂nθ
vanishes on the boundary |x1 − x2| = ǫ. The proof of Lemma 4.9 is complete.
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