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Abstract

This paper gives geometric tools: comparison, Nash and Sobolev inequalities for pieces of the
relevent Markov operators, that give useful bounds on rates of convergence for the Metropolis
algorithm. As an example, we treat the random placement of N hard discs in the unit square,
the original application of the Metropolis algorithm.

1 Introduction and Results

Let Q be a bounded, connected open subset of R%. We assume that its boundary, 02, has Lipschitz
regularity. Let By be the unit ball of R? and ¢(z) = mlgl(z) so that [ ¢(z)dz = 1. Let p(x)

be a measurable positive bounded function on Q such that Jo p(z)dz = 1. For h €]0,1], set

<zg;,1> , (1.1)

and let T} , be the Metropolis operator associated with these data, that is,

Kt 1% (5 i

Ty (1) () = o () () + /Q K p(z, y)uly)dy,
(1.2)

mpp(x) =1— /QKh’p(m,y)dy > 0.

Then the Metropolis kernel T}, ,(z,dy) = mp p(2)03—y + K p(z,y)dy is a Markov kernel, the
operator Ty, is self-adjoint on L*((2, p(z)dz), and thus the probability measure p(z)dz on € is
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stationary. For n > 1, we denote by T}' (z,dy) the kernel of the iterated operator (Tj,)". For
any x € 2, T p(x,dy) is a probability measure on €2, and our main goal is to get some estimates
on the rate of convergence, when n — +o00, of the probability T; ,? p(x, dy) toward the stationary
probability p(y)dy.

A good example to keep in mind is the random placement of N non-overlapping discs of radius
€ > 0 in the unit square. This was the original motivation for the work of Metropolis et al.
[MRR"53]. One version of their algorithm goes as follows: from a feasable configuration, pick a
disc (uniformly at random) and a point within distance h of the center of the chosen disc (uniformly
at random). If recentering the chosen disc at the chosen point results in a feasable configuration,
the change is made. Otherwise, the configuration is kept as it started. If N is fixed and ¢ and
h are small, this gives a Markov chain with a uniform stationary distribution over all feasable
configurations. The state space consists of the N centers corresponding to feasible configurations.
It is a bounded domain with a Lipschitz boundary when Ne is small (see Section 4, Proposition 4.1).
The scientific motivation for the study of random packing of hard discs as a way of understanding
the apparent existence of a liquid/solid phase transition for arbitrarily large temperatures (for
suitably large pressure) is clearly described in Uhlenbeck [Uhl68, Sect. 5, p. 18]. An overview of the
large literature is in Lowen [Low00]. Entry to the zoo of modern algorithms to do the simulation
(particularly in the dense case) with many examples is in Krauth [Kra06]. Further discussion,
showing that the problem is still of current interest, is in Radin [Rad08].

We shall denote by g(h, p) the spectral gap of the Metropolis operator T}, ,. It is defined as the
largest constant such that the following inequality holds true for all u € L?(p) = L%(Q, p(x)dx).

2 2
HUHLQ(p) - (uyl)LQ(p) < g(h, P) (u - Th,ﬂu|u)L2(p)7 (13)

or equivalently,

/ lu(z) — u(y)*p(z)p(y)dady < / K p(z,y)u(z) — u(y)*p(z)dzdy. (1.4)
QxN QxQ

g(h, p)

Definition 1. We say that an open set  C R? is Lipschitz if it is bounded and for all a € 99
there exists an orthonormal basis R, of R%, an open set V = V' X] — a,af and a Lipschitz map
n: V' =] — a, af such that in the coordinates of R,, we have

VNQ={(v,ya<n)), ¥, va) € V'x] — a,al}
Vo= {(y.n)).v eV'}.

Our first result is the following:

(1.5)

Theorem 1.1. Let Q be an open, connected, bounded, Lipschitz subset of R4, Let 0 < m < M < oo
be given numbers. There exists hg > 0, dg €]0,1/2[ and constants C; > 0 such that for any h €0, hg,
and any probability density p on Q which satisfies for all x, m < p(x) < M, the following holds
true.

i) The spectrum of Ty, , is a subset of [—14-00, 1], 1 is a simple eigenvalue of T}, ,, and Spec(Th, ,)N
[1 — 60,1] is discrete. Moreover, for any 0 < A < 6oh™2, the number of eigenvalues of Th,p in
(1 — R\, 1] (with multiplicity) is bounded by Cy(1 4 X\)%2.

it) The spectral gap g(h, p) satisfies

Cyh? < g(h, p) < C3h? (1.6)



and the following estimate holds true for all integer n:
supzea|| T, (z, dy) — p(y)dyl|rv < Cye 90, (L.7)

The next result will give some more information on the behavior of the spectral gap g(h, p)
when h — 0. To state this result, let

cu= [ o= [ oo)laPdz =

and let us define v(p) as the largest constant such that the following inequality holds true for all u
in the Sobolev space H'(Q):

1

s (1.8)

1 «
[l = (011 < =5 [ [Vule)ola)da, (1.9)
or equivalently,
— U 2 X X & u 2 X X )ax. .
[ tute) = uPole)odsdy < 7 [ 1VaP @ty (1.10)

Observe that for a Lipschitz domain 2, the constant v(p) is well-defined thanks to Sobolev embed-
ding. For a smooth density p, this number v(p) > 0 is closely related to the unbounded operator
L, acting on on L?(p).

TNV v
Ly(u) = —5*(Du+ ; Vu) (.11

D(L,) = {u € H'(Q),-Au € L*(Q),pulon = 0}

We now justify and explain the choice of domain in (1.11). Background for the following
discussion and tools for working in Lipschitz domains is in [AF03].

When  has smooth boundary, standard elliptic regularity results show that for any u € H'(Q)
such that —Awu € L?(f2), the normal derivative of u at the boundary, d,u = 7 (z).Vu|aq is well
defined and belongs to the Sobolev space H~1/2(9Q). Here, we denote by 7 (x) the incoming
unit normal vector to 02 at a point z. In the case where 9} has only Lipschitz regularity, the
Sobolev spaces H*(9f2) are well defined for all s € [—1,1]. The trace operator, yo(u) = u|gq maps
H'Y(Q) onto H'/2(8Q) = Ran(vp), and its kernel is Ker(yo) = Ha(Q). Equipped with the norm
|wll gyis2 = inf{|Jv]| g1, Y0(v) = u} it is an Hilbert space. Then, for any ¢ € H'/?(9Q)*, there exists
a unique v € H~/2(99Q) such that ¢(u) = Joq vudo for all u € H'Y2(09) (where o is the measure
induced on the boundary). For v € H -1/ 2(082), the support of v can be defined in a standard way.
The trace operator acting on vector fields u € (L?)? with div(u) € L?,

e {u € (L2(Q)%, div(u) € L2<Q)} — H12(50), (1.12)

is then defined by the formula
/div(u)(m)v(m)dm = —/ u(x).Vv(a:)da;—/ 71 (u)v|gado(z), Yo € HY(Q). (1.13)
Q Q o0

In particular, for u € H(Q) satisfying Au = divVu € L?(Q) we can define d,ulsq = 71(Vu) €
H~'/2(99) and the set D(L,) is well defined. From (1.13) we deduce that for any u € H'(Q) with
Au € L? and any v € H'(Q2) we have

aq

((Lp+ 1)u,v>L2(p) =5 ((Vu, V) 20y + <anu’p”)H*1/2(BQ),H1/2(8Q)) + (u, v) £2(p)- (1.14)
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Then, it is standard that L, is the self-adjoint realization of the Dirichlet form

% /Q \Vu(x)|*p(x)dz. (1.15)

A standard argument [RS78, Sects. 13, 14] using Sobolev embedding show that L, has a compact
resolvant. Denote its spectrum by vy = 0 < v; < 1p < ... and by m; the multiplicity of v;. In
particular, v(p) = v1. Observe also that my = 1 since KerL is spanned by the constant function
equal to 1.

To state our theorem, we need a basic definition:

Definition 2. Let © be a Lipschitz open set of R We say that 09 is quasi-regular if 0Q =
Ireg UTsing, I'reg M Tsing = 0 with T reg @ finite union of smooth hypersurfaces, relatively open in 02,
and I'gne a closed subset of R% such that

ve HY2(00) and sup(v) C Lsing = v =0. (1.16)

Observe that 1.16 is obviously satisfied if 02 is smooth, since in that case one can take I'sjng = .
More generally, the boundary is quasi-regular if it is ‘piece-wise smooth’ in the following sense:
suppose €2 is a Lipschitz open set of R? such that 99 = Dieg U L'sing, I'reg N sing = (0, where [ieg
is a smooth hypersurface of R?, relatively open in 052, and Lging a closed subset of R? such that
Iging = U;j>25; where the S; are smooth disjoint submanifolds of R% such that

COdideSj > 7, UijSk = 57]‘, (1.17)

then € is quasi-regular, since in that case, if v € H~/2(d9Q) is such that near a point xg, the
support of v is contained in a submanifold S of codimension > 2 in R?, then v = 0 near xo. This
follows from the fact that the distribution (u,¢) = (v, ¢|sq) on R? belongs to H~'(RY), and if
u € D'(RY) is such that « € H~1(R?) and sup(u) C {x; = 29 = 0}, then u = 0. As an example, a
cube in R? is quasi-regular. This ‘piece-wise smooth’ condition (often called “stratified”) is easy to
visualize. In our applications (Section 4) it was hard to work with products of stratified sets. The
definition we give works easily with products and is exactly what is needed in the proof.

Theorem 1.2. Let Q be an open, connected, bounded and Lipschitz subset of R%, such that 99 is
quasi-reqular. Assume that the positive density p is continuous on . Then

lim h=2g(h, p) = v(p)- (1.18)

Moreover, if the density p is smooth on Q, then for any R > 0 and € > 0 such that Viy1 — v > 2¢
for vito < R, there exists hy > 0 such that one has for all h €0, hi],

1-1T;
Spec (h2hp> N0, R] C Uj>1[vj —e,vj + €], (1.19)

and the number of eigenvalues of 1_}3;h’” in the interval [v; — e, v; + €] is equal to m;.

Theorem 1.1 is proved in Section 2. This is done from the spectrum of the operator by compar-
ison with a ‘ball walk’ on a big box B containing 2. One novelty is the use of ‘normal extensions’
of functions from (2 to B allowing comparison of the two Dirichlet forms. When the Dirichlet forms
and stationary distributions for random walk on a compact group are comparible, the rates of con-
vergence are comparable as well [DSC93, Lemma 5]. Here, the Metropolis Markov chain is far from



a random walk on a group. Indeed, because of the holding implicit in the Metropolis algorithm,
the operator does not have any smoothing properties. The transfer of information is carried out
by a Sobolev inequality for a spectrally-truncated part of the operator. This is transfered to a
Nash inequality and then an inductive argument is used to obtain decay bounds on iterates of the
kernel. A further technique is the use of crude Weyl type estimates to get bounds on the number
of eigenvalues close to 1. All of these enter the proof of the total variation estimate (1.7). All of
these techniques seem broadly applicable.

Theorem 1.2 is proved in Section 3. It gives rigorous underpinnings to a general picture of
the spectrum of the Metropolis algorithm based on small steps. This was observed and proved
in special cases [DLO08|, [LMO8]. The picture is this: because of the holding (or presence of the
multiplier my, , in (1.2)) in the Metropolis algorithm, the operator always has continuous spectrum.
This is well isolated from 1 and can be neglected in bounding rates of convergence. The spectrum
near 1 is discrete and for h small, merges with the spectrum of an associated Neumann problem.
This is an analytic version of the weak convergence of the discrete time Metropolis chain to the
Langevin diffusion with generator (1.11).

In Section 4, we return to the hard disc problem showing that a suitable power of the operators
and domains involved satisfies our hypothesis. Precisely, in Theorem 4.6 we shall prove that the
results of Theorem 1.1 and Theorem 1.2 hold true in this case.

2 A Proof of Theorem 1.1

Let us recall that

K p(,y) = h™% <x;y> min (p<y§ 1) , (2.1)

p(x
so that
Th,p( u) =u— Qpp(u),

Qnpl / K () (u(z) — u(y)) dy, )
(1= Th)ulu) ., / /Q y )2 K (. y)p(x) dedy.

Observe that since 2 is Lipschitz, from (1.2) we get that for any hg > 0, there exists o > 0 such
that for any density p with 0 < m < p(x) < M one has sup,comp () < 1 — 25 for all h €]0, ho).
Thus the essential spectrum of T}, is a subset of [0,1 — 2dp] and the spectrum of T}, in [1 — do, 1] is
discrete. From the last line of 2.2, we get that if u € L? is such that u = T}, ,(u), then u(z) = u(y)
for almost all z,y € Q, |x — y| < h and since € is connected, u is constant. Therefore, 1 is a simple
eigenvalue of T}, ,. In particular, for any h > 0, the spectral gap satisfies

g(h,p) >0 (2.3)

For the proof of Theorem 1.1, we will not really care about the precise choice of the density p. In
fact, if p1, p2 are two densities such that m < p;(z) < M for all z, then

pa(a) < pr(a) <1+ ”"1‘””“’) ,

m
lp1 — PzHoo)

Ky (2,9)p1(x) < Kppy (2, y)p2(2) <1 + —



and this implies, using the definition (1.4) of the spectral gap and of v,,

3
Ihpr <1+ [l p1 —P2||oo>
g m )

gthQ

3
to < (1 =il
Vpy m

In particular, it is sufficient to prove (1.6) for a constant density.
The proof that for some 9 > 0, independent of p, one has Spec(T} ,) C [—1 + do, 1] for all
h €]0, ho] is the following: one has

1
(0t Tl =5 [ Koo p)lua) + ulo)Pota)dady + 2wz (26)
X

Therefore, it is sufficient to prove that there exists hg, Cy > 0 such that the following inequality
holds true for all h €]0, ho] and all u € L(Q):

_ T —
e (552 luto) + ) Pdady > Collulsoy (2.7
X

Let w; C Q, Ujw; = Q be a covering of Q such that diam(w;) < h and for some C; > 0 independent
of h, vol(w;) > C1h4, and for any j, the number of k such that w; Nwy, # 0 is less than Cy. Such a
covering exists as €1 is Lipschitz. Then

_ T —y - vy
Co /QXQ =% ( A > lu(z) + u(y)|Pdzdy > Z/wjij h=4 < - > () + u(y)Pdzdy
=3 1 u(z) + u(y)Pdedy

|B1| wj Xwj

> Z2h dmml willulZs,)

201

From (2.8), we get that (2.7) holds true.

For the proof of (1.6) we need a suitable covering of Q. Given e¢ > 0 small enough, there exists
some open sets {, ...,y such that {z € R? dist(z,Q) < €2} C U;V:()Qj, where the Q;’s have the
following properties:

1. Qo = {z € Q,d(z,09Q) > €*}.

2. For j = 1,..., N, there exists r; > 0, an affine isometry R; of R? and a Lipschitz map

@; : R — R such that, denoting ¢;(z’, z4) = (¢/,24 + ¢;(2')) and ¢; = R; o ¢;, we have

¢; is injective on B(0,2r;) x| — 2, 2¢]
Q) = ¢;(B(0,75)x] — €, €])

Q;NQ = ¢;(B(0,r;)x]0,¢€)
¢ (B(0,2r;)x]0,2¢[) C Q

(2.9)



We put our open set € in a large box B =]—A/2, A/2[¢ and define an extension map E : L?(2) —
L*(B). For j =0,...,N welet x; € C§°(£);) be such that > xj(x) =1for dist(z, Q) < €2. For any
function u € L?(2), let u;,j = 0,..., N be defined in a neighborhood of Q; by u; = uo¢;oSo ]—1’
where S(2/,xq) = (¢/, —xq) if zq < 0 and S(2/,z4) = (2, 2q) if zq > 0. For z € QN Q;, one has
uj(z) = u(z) and we define

B)(@) = 3 xj(@)u;(a). (2.10)

M-

Jj=0

We observe that gZ)j_l(:v) = (2/,z4 — p;(2’)). Consequently, as ¢; is Lipschitz-continuous, then
¢; and gb;l are also Lipschitz-continuous. Hence, formula (2.10), gives us an extension map from
L?(Q2) into L?(B), which is also bounded from H'(2) into H'(B). For u € L?(Q),v € L?(B), set

Eh,p( u) = (1= Thp)ulu)2(p),

//BXBW yl<h ho(z) - v(y)Pdady.

Since for A large, E(u) vanishes near the boundary of B, we can extend v = E(u) as an A-
periodic function on RY, and write its Fourier series v(z) = E(u)(z) = Yz cp(v)e?™he/A with
cx(v) = A7 [, e=2mk2/Ay (3)dz. Then

IE@) 1323 = A D lexl® = ||ullfz(
"

(2.11)

(2.12)
1E ()7 = AT Y (1 +4n°k2 /A% ey = [|ulfps g
k
Moreover, one gets
En(v) = AT " |ex[*0(Rk),
F (2.13)

9(5) — / |62i7r§z/A _ 1|2d2.
|z]<1

Observe that the function 6 is nonnegative, quadratic near 0 and has a positive lower bound for
€] > 1.

The next two lemmas show that the Dirichlet forms for v € L?(Q) and its extension to L?(B)
are comparable.

Lemma 2.1. For all o > 1, there exists C' > 0 and hy > 0 such that
Sahyp(u) < Cé'h,p(u) Yu € LQ(Q), Vh 6]0, ho]. (2.14)

Proof. Using (2.2) and (2.4), we observe that it suffices to prove the lemma in the case where

p(z) = p is constant, and we first we show the result when 2 is convex. In that case, since
u(z) —u(y)| < |u(z) - U(”y)\ + \U(‘”y) u(y)|, one has

gah,p( 2V01 Bl //1x y|<ah’u _u( )’ pdl’dy
- Vol 31 // Loyl <anlu(z )—u( )| pdxdy (2.15)
2(ha/2)~ /
= vol(By) Ly yicanlu(z pdady,
vol(B1) Jyax) lz—y|<5 on[u(z) — u(y))?

7



where ¢(z,y) = (7, Z54). As Q is convex ¢(2 x Q) C Q x Q and we get Eupp(u) < 45%17 (w).
Iterating this process we obtain the anounced result for convex domains.

In the general case, we use the local covering introduced in (2.9). Let Q:r = Q;NQ (respectively
Q7 = QN (RI\ Q) and U;(h) = {(z,y) € Qf x Q, |z —y| < ah}. Since by (2.2), Q@ C U;Q;F, we
have Eqpp(u) < S21o EL, (u) with

Py = L / | lu(z) — uly)2pdad (2.16)
ah,p 2V01(Bl) Uik lz—y|<ah y)Ip Y. .
Let us estimate Sgh’p(u). For h €]0,€%/a and (x,y) € Uy(h), we have [z,y] C Q. Therefore, the
change of variable ¢(z,y) = (z, ITJFy) maps Uy(h) into Qg x Q and we get as above
2(ah)~? T+y
0 2
Eah’p(u) < W /Uo(h) 1‘x,y‘§ah|u(a:) — u(T)\ pdxdy < 45%’p(u). (2.17)

For i # 0 and h > 0 small enough, we remark that U;(h) C Q;L X Q;r, where in = ¢;i(B(0,2r;) x{0 <
+x4 < 2¢}). Denoting Q; = B(0,7;)x]0,¢[, Q; = B(0,2r;)x]0,2¢[, we can use the Lipschitz-
continuous change of variable ¢; : Q; — Qj C Q to get

. h)—¢
00 < gz [ T T arontu e i) — w0 Fpdrdy (219

where the Jacobian Jy, of ¢; is a bounded function defined almost everywhere. As both ¢, qﬁi_l
are Lipschitz-continuous, there exists M;, m; > 0 such that for all z,y € Q; we have m;|x — y| <
|pi(x) — ¢i(y)| < M;|x — y|. Therefore,

< ont | /Q 1), yjen [0 @i(x) — o i(y) P pdady, (2.19)

where C' denotes a positive constant changing from line to line. As Q; is convex, it follows from
the study of the convex case that

0 < 0nt [ /Q 1o yje o 61(x) — o i(y) P pdady

IN

ch / /Q Ligs(a)—s(o)|<nlte © @i(@) — w0 di(y) [ pdady (2.20)

IN

o /m /m Loyi<nlu(x) — u(y)®pdaedy < Ci€pp(u),

and the proof is complete. O

Lemma 2.2. There exist Cy, ho > 0 such that the following holds true for any h €]0, ho] and any
u € L%(p).
S;W(U)/CO < (‘:h (E(u)) < C() (Eh,p(u) + h2\|u|]%2) . (2.21)

As a byproduct, there exists Cy such that for all h €]0, hg], any function u € L*(p) such that
ull22(,y + 52 (1 = Th)ul) oy < 1

admits a decomposition v = ur, +ug with ur, € HY(Q), ||ur|lg < C1, and ||ug||2 < Cih.



Proof. Using the second line of (2.4), we may assume that the density p is constant. The proof of
the left inequality in (2.21) is obvious. For the upper bound, we remark that there exists C' > 0
such that &,(E(u)) < C YN (€7 + £)%) with

& =h" / Loyl<n X (2) = X5(0)| g (@) Pdwdy (2.22)
BxB
and

&’ = h_d/g B Lo—yi<nlXg ()P ug(x) = u;(y)[dady. (2.23)
X

As the functions y; are regular, there exist some x; € Cg°(B) equal to 1 near the support of x;
such that

&' < ont [ K@)l ( / 1x_y<hm—y12dy) dr < CRlulay.  (2:24)

In order to estimate 8}{’2 one has to estimate the contribution of the points z € Q,y ¢ Q and
x ¢ Qy ¢ Q. All the terms are treated in the same way and we only examine

& = h_d/ Layi<n 5 (W) P (x) — uj(y)|*dzdy
Qx(B\Q)
(2.25)
- h_d/~ Lo—yl<nbi (9) Plu(z) —uwo dj 0 5 0 ¢t (y)Pdady,
afxQy

with S defined below (2.9). Let o : R* — R? be the symmetry with respect to {yg = 0}, so
that So = Id on {y; < 0}. We use the Lipschitz-continuous change of variable 1; : y € Qj —

pjooo0 (b;l(y) € Q; to get

&P <ot [ iy %) Plu(e) - u(y) Pdady. (2.26)

afxaf
We claim that there exists 8 > 0 such that
Wi(y) — 2| = Bz -yl V(z,y) € Qf x Q. (2.27)
Indeed, as both ¢; and qu_l are Lipschitz-continuous, (2.27) is equivalent to finding 5 > 0 such that
o(y) —a| = 87z —yl  V(z,y) € ¢; 1 (QF x Q) (2:28)

which is obvious with # = 1. From (2.27) it follows that for some o > 1, one has

g3 < on / Lamyi<anlt(z) — u(y)Pdzdy < CEapp(u), (2:29)

5+ O+
Qj ><Qj

and the upper bound is then a straightforward consequence of Lemma 2.1.

The by-product is obtained by projecting the extension v = E(u) on low frequencies h|k| < 1
and high frequencies h|k| > 1 and the fact that the function 6 is quadratic near 0 and has a positive
lower bound for || > 1. The proof of Lemma 2.2 is complete. O



We are in position to prove the estimate (1.6) on the spectral gap. To show the right inequality,
it suffices to plug a function v € C§°(Q2) into (1.3) with support contained in a small ball @ C
and such that [, u(x)p(z)dz = 0. As Q is convex, it follows from Taylor’s formula that for such u,
we have (u — Thu,u) = O(h?).

To show the left inequality in (1.6), we first observe that it is clearly satisfied when €2 is convex.
Indeed, given u € L?() we have by Cauchy-Schwarz

K(h)—1
—Uu 2dx -1 u(x —x)) —u(x — 1)) |2dz
/Qxﬂu(fv) (y)|"dzdy < Ch kzo /QXQI (x+kh(y — ) —u(z+ (k+ 1Ay — x)) ["dzdy,

(2.30)
where K (h) is the greatest integer < h~! and K (h)h = 1. With the new variables 2’ = z+kh(y—x),
v =2z + (k+1)h(y — ), one has da'dy’ = hdxdy and we get

| Jut@) —ut)Pdrdy < Ch KW [ty chtamoy ule!) — )P, (23)
QxQ QxQ
By lemma 2.1, this proves the left inequality in (1.6) in the case where 2 is convex. .

In the general case, we can find some open sets contained in 2, w; CC Qj cC Q;r, j =
1,...,N+M such thatforj=1,..., N, Qj, Q;r are given in the previous lemma, (Qj)j:NH,m’NJrM

—Q
are convex 2y C Uin}JLQj, QC U;V:’;ij, and where A CC B means that A~ C B. Hence for

h > 0 small enough,

N+M

En (u) >C h_d/ 1, u(z) —u 2dxd
hop (1) ; ot <t e—yl<n(W(T) — u(y)) dzdy

N
>Cy, hd/ Loy @—oywi<n(w 0 65(2) = uo ¢;(y)) dedy (2.32)

j=1 iX&

+C S [t yeaula) - u(y)Pdedy

A+
J=N+1 ;XY

From the estimate proved precedently in the convex case, we know that there exists a > 0 inde-
pendant of h such that the second sum in (2.32) is bounded from below by

N+M N+M
cnt / (u(z) — u(y))? dzdy > Ch2 / () — u(y))? dady.  (2.33)
j=N—+1 w]-XQ;' j=N4+17wi xQ,|lz—yl<a

On the other hand, thanks to the fact that ¢; is a Lipschitz diffeomorphism, there exists a@ > 0
such that 1, yj<n/a < g @)—¢;(w)<h < ljz—y|<an- Using the convexity of @; and Lemma 2.1 it
follows that the first sum in the right hand side of (2.32) is bounded from below by

N

Ch*> / (u(z) — u(y))? dzdy. (2.34)
=1 wixQ,lz—yl<a
Combining (2.32), (2.33) and (2.34), we get
En () > CI / (u(x) — u(y))? dady (2.35)
QxQ,|lz—y|<a
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for some fixed a > 0 independant of h. Since by (2.3) we have g(a, p) > 0, we get

Enp(u) > Ch? /Q . (u(x) — u(y))? dedy (2.36)

The proof of (1.6) is complete.

Lemma 2.3. There exists 69 €]0,1/2[ such that Spec(T},,) N [1 — do, 1] is discrete, and for any
0 < X\ < 6o/h?, the number of eigenvalues of Ty, in [1 — h®\, 1] (with multiplicity) is bounded by
C1(1+ N)¥2. Moreover, any eigenfuntion Tj,(u) = \u with X € [1 — &y, 1] satisfies the bound

lullpee < Coh™2||ul| . (2.37)

Proof. To get (2.37), we just write that since A is not in the range of my, one has

u(z) = A_;h(x) /Q =iy (T) min (%’ 1) u(y)dy,

and we apply Cauchy—Schwarz. The important point here is the estimate on the number of eigen-
values in [1 — h2),1] by a power of A\. This is obtained by the min-max and uses (2.21). The
min-max gives: if for some closed subspace F of L?(p) with codim(F) = N one has for all u € F,
=2 (1 = Th)ulu) 2 > )\HuH%Q(p), then the number of eigenvalues of T}, in [1 — A2\, 1] (with mul-
tiplicity) is bounded by codim(F') = N. Then, we fix ¢ > 0 small enough, and we choose for F' the
subspace of functions u such that their extension v = F(u) is such that the Fourier coefficients sat-
isfy cx(E(u)) = 0 for |k| < D with hD < ¢. The codimension of this space F' is exactly the number
of k € Z¢ such that |k| < D, since if p is a trigonometric polynomial such that E*(p) = 0, we will
have [, p(x)u(z)dz = 0 for any function u with compact support in  and such that E(u) = u,
and this implies p = 0. Thus codim(F) ~ (1 4+ D)%. On the other hand, the right inequality in
(2.21) gives for u € F, h=2((1 — Th)ulu)r2(p) > Co(D? — Cl)HuH%Q(p) for universal Cy, Cy, since by
(2.13), there exists C' > 0 such that one has 8(hk)h=2 > CD? for all D < ¢/h and all |k| > D. The

proof of our lemma is complete. O

We are now ready to prove the total variation estimate (1.7). We use the notation T}, = T},
and Ty, = T} (wo,dy). Let Ily be the orthogonal projector in L?(f) on the space of constant
functions

Mo (u) () = la(z) /Q u()p(y)dy. (2.38)

Then

2 sup T3 2 — P(Y)dyllrv = || T} — || Loc— Loo. (2.39)
o€

Thus, we have to prove that there exist C, hg, such that for any n and any h €]0, ho|, one has
T3 — Mol poe— e < Coe™ M. (2.40)

Observe that since we know that for hg small, the estimate (1.6) holds true for any p, we may
assume n > Ch~2. In order to prove (2.40), we split T}, into three pieces, using spectral theory.

Let 0 < Ay <o <A S Ajpqp < -0 < h=25y be such that the eigenvalues of T} in the
interval [1 — dp, 1] are the 1 — h2)\j7h, with associated orthonormal eigenfunctions e; j,

Th(ej,h) = (1 - hQ)\j,h>€j,h7 (e]}h

ek’,h)LQ(p) = (5j,k- (2.41)

11



Then we write Tj, — Ily = T} 1 + T} 2 + T} 3 with

Tha(z,y) = > A=EPNn)ein(@)ein(y),
AR <Aj R<h™@
Tho(z,y) = Z (1= RN n)ein(@)ejn(y), (2.42)

h_a<>\j7h§h_250
Thy =Ty —Ilog —Tp1 —Thpo.

Here o > 0 is a small constant that will be chosen later. One has 17" — Il = T;Zl + T;ZQ + Tf?ﬁ’ and
we will get the bound (2.40) for each of the three terms. We start by very rough bounds. Since
there are at most Ch~% eigenvalues Aj.n and using the bound (2.37), we get that there exists C
independent of n > 1 and h such that

T4l oo + T35l Lo poe. < CH73/2 (2.43)
Since T} is bounded by 1 on L, we get from T;" —Ilo = T3y + T’y + Tj'4
T3 || oo o . < CRT342 (2.44)
Next we use (1.2) to write T, = my, + Ry, with

lmp|| e —pe < v <1,

_ (2.45)
| Ryl 2 poe < Coh™%2,

From this, we deduce that for any p = 1,2, ..., one has T} = Ay p+ By ,, with Ay j, = mp, B1p, = Ry,
and the recurrence relation Ay, = mpAy,p, Bpt1,n = mpBpn + RhT,’; . Thus one gets, since T,f is
bounded by 1 on L?,

| Ap.nllLoe—pee < AP,
| Bpillz—pee < Coh™ 214y 4+ +4P) < Coh™ 2 /(1 — 7).

Let # =1 — 09 < 1 so that || 75| 2.2 < 6. Then one has

(2.46)

T3l e — 2 < T3l L2—p2 < 07,
and for n > 1, p > 1, one gets, using (2.46) and (2.44),
TS Lo —noe = | TRT || Loo s Loe
<N Ap T3 Loe—roe + | BpnTaip || Loo— oo (2.47)
< Ch=3424P 4 Coh= 420" /(1 — 7).
Thus we get, for some C' > 0, ;> 0,
T34l Lo r0e < Ce™#, Yh, Vn>1/h, (2.48)

and thus the contribution of 77" is far smaller than the bound we have to prove in (2.40).

Next, for the contribution of 73, , we just write, since there are at most Ch~? eigenvalues Ajh
and using the bound (2.37),

Tpo(z,y) = Yoo (A=A en(@)ein(y),
h=a<X; n<h=28 (2.49)

T3 | Lo —poe < CRT3Y2(1 — R22)".
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Thus we get for some C, > 0,

h2—a

T3 poeroe < Coe™ 2, Vh, V¥n>h72te/2 (2.50)

and thus this contribution is still neglectible for h €]0, ho] for hy small. It remains to study the
contribution of 77!,

Let E, be the (finite dimensional) subspace of L?(p) spanned by the eigenvectors e;p, Ajp <
h~®. By Lemma 2.3, one has dim(E,) < Ch~%/2. We next prove a Sobolev-type inequality for
the form &}, ,. For background on Sobolev and the following Nash inequality, see [DSC96], [SCI7].

Lemma 2.4. There exist « > 0, p > 2 and C independent of h such that for all u € E,, the
following inequality holds true:

ul|7o < Ch™2 (Epp(u) + h2|ul|72) - (2.51)

Proof. Clearly, one has for u = Z/\th)\j,hghﬂ ajejn € Fq,

Enp(w) + B2 |ulfa = Y KL+ Nn)lel

AR <A R<h™™

Take u € Eq such that h=%(&y, ,(u) + h?||ul|2,) < 1. Then by (2.21), one has h™2,(E(u)) < Co.
Let ¥(t) € C§°(R) be equal to 1 near ¢t = 0, and for v(z) = 3, cya cx(v)e?™2/4 set

v = vy, +vg, = (hlk|)ep(v)e? /A, (2.52)

kezd

Then v = vy, + vy is a decomposition of the extension v = E(u) in low frequencies (vy,) and high
frequencies (vy). One has vp(z) = [pa h™@0(%2)v(y)dy, where 6 is the function in the Schwartz

space defined by 0(2rz/A) = (|z\) Hence, the map v +— vy, is bounded uniformly in A on all the
spaces L? for 1 < g < oo. Then, from (2.13) we get

Thus, with ur, = v|q and ug = vg|q, we get ||uL||H1 y < C so by Sobolev for p < 75

lur|r < C. (2.54)
One the other hand, one has also by (2.21),
h™2En (E(ejn)) < Co(1+ Ajn), (2.55)
and this implies, by (2.13),
DB (el < Coll + M) < Col1 +h7). (2.56)

Thus for a < 1, we get | E(ejn)mz2 < ChY2. On the other hand, since ||e; ||z~ < Ch~%2 using
the definition of the low frequency cut-off we get

I1E(ejn)allz= < 1E(ejn)llre + 1E(ejn)illr= < CllE(ejn)llz= < Ch™2.
By interpolation we can find some p > 2 such that

IE(ejn)ulle < CohM™, (2.57)
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Thus one gets, for u =} <y n<h—e 5€5n € Eo with h2(Epp(u) + h2|ull2,) < 1,

lurllce < > laglllE(ejn)mllee
AMn<Ajp<h—e (2.58)

< CohM* dim(Ey)Y?|ul| 2 < ChMAR=d/4,
Our lemma follows from (2.54) and (2.58) if one takes a small. Observe that here, the estimate

on the number of eigenvalues (i.e., the estimation of the dimension of E,) is crucial. The proof of
Lemma 2.4 is complete. O

i p=2
From Lemma 2.4, using the interpolation inequality |jul[3, < [Jul|7,"[[ul|}7", we deduce the
Nash inequality, with 1/D =2 —4/p > 0,

lul25/7 < Ch=2 (Ep(w) + B2[Ju)22) ull P, Vu € Ea. (2.59)

For \j, < h™®, one has h?);, < 1, and thus for any u € E,, one gets &, p(u) < |Jull3, — | Thul|?,
and thus we get, from (2.59),

P Yue B, (2.60)

From (2.48) and (2.50), and T} —Ilo = T}, + 1!, + T}3, we get that there exists Cy such that

2+1/D —
lul 737 < Ch2 (fullfe = 1 ThullFe + b2 Jullf2) llul

ITPpll o0 < Coy  Vh, ¥n>h7H2 (2.61)
and thus since 71 5, is self adjoint on L?,
TPy < Gy VR, Vn > BT (2.62)
Fix p ~ h=2t®/2, Take g € L? such that ||g||,» < 1 and consider the sequence c,, n > 0,
cn = 1773 g1 75- (2.63)

Then 0 < ¢p11 < ¢y, and from (2.60) and (2.62), we get

1455 -
en 2P < Ch™% (ep — cnt1 + hPcp) HTEZPQHZD (2.64)
<0y h (en = engr + hen)

From this inequality, we deduce that there exist A ~ CCysupgc,<p-2(24n)(1+h* — (1 — %H)QD)
which depends only on C, Cs, D, such that for all 0 < n < h~2, one has ¢, < (%)QD, and thus
there exist Cy which depends only on C, Cy, D, such that for N ~ h™2, one has ¢y < Cp. This

implies

N
1775 P gll> < Collgllz, (2.65)
and thus taking adjoints,
N
1Ty, P gl < Collgll 2, (2.66)
and so we get, for any n and with N +p ~ h=2,
1T gl < ColL = B2A10)"llgll 2. (2.67)
And thus for n > h=2,
T3, | poopoe < Coe™h WM = Goeine=noar o i > h72, (2.68)

This concludes the proof of Theorem 1.1.
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Remark 1. We believe that (2.37) is true with a power of A instead of a power of h with A = 1—h2A.
We have no proof for this which is why we use a Nash inequality for T j,.

Remark 2. The above proof seems to apply for a more general choice of the elementary Markov
kernel h_dcp(%). Replace ¢ by a positive symmetric measure of total mass 1 with support in the
unit ball, and let T}, be the Metropolis algorithm with this data. Assume that one is able to prove
that for some dp > 0 one has Spec(T}) C [—1 + dp, 1] for all A < hg, and that for some power M,
one has for some C, ¢ > 0,

TI{L\/[(xa dy) = Mh(x7 dy) + Ch_d1|x—y\§chp(y)dyv Mh(xv dy) > 0.

Then there exists v < 1 such that ||up|| < 7. Moreover, the right inequality in (2.21) and (2.37)
are still valid for 7M. Also, the spectral gap of T} is given by formula (1.4) with T/ (z,dy) in
place of K}, ,(x,y)dy, and therefore the left inequality in (1.6) holds true, and the right one is true,
since if p is constant, for any § € C§°(€2), one has u — Tj,u € O(h?).

We shall use these remarks in the study of the hard disc problem, in Section 4.

3 A Proof of Theorem 1.2

In this section, we suppose additionally that 2 is quasi-regular (Definition 2). For a given continuous
density p, using (2.5) and an approximation of p in L by a sequence of smooth densities pj on €,
one sees that the first assertion (1.18) of Theorem 1.2 is a consequence of the second one (1.19).
Assume now that p is smooth.

Lemma 3.1. Let 0 € C*(Q) be such that sup(0) N Tsing = 0 and 0,0|r,.,, = 0. Then, with Qp,
defined in (2.2), L, defined in (1.11),

Qnp(0) = RLy(0) + 7, |Ir]p2 € O(RY?). (3.1)

Proof. For § € C*°(Q) and z € €2, we can use the Taylor formula to get

1 . Vp(z) 2),(2
Qn, 0:1;—/ m1n<1+h 2+ 0O(h%|z]9),1
hp( )( ) VOl(Bl) Alwh) p(l‘) ( ‘ ‘ )
2 - (3.2)
—hV(z).z — 5 Zzizj&,%axj@(x) + O(R?|2]?) | dz,
0]

with A(z,h) = {z € R, |2| < 1,z +hz € Q}. As A(z,h) = At (2, h) U A~ (z,h), with A*(x,h) =

{z € A(z,h), £(p(z + hz) — p(x)) > 0}, it follows by an easy computation that

h [
Qhﬁ(e) (.’I)) = — mve(:ﬂ) /A(x,h) zdz — m igz:l 8%,63?] 9(.’1)) A(x7h) Zzzde
h? Vp(x) (33)
- Wl(B) /A(Lh) ) 2VO(x).zdz + r(x)

=N1(x) + folz) + f3(x) + r(2),

with HTHLOO(Q) = O(hg) Let X = 1d(a:,8§2)<2h7 then for ] = 2,3,
Ixfillza@ < Ixllzalfillz=(Q) = O(R2), (34)
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thanks to the support properties of x. Moreover, for z € sup(1 — x), A(z,h) = {|2| < 1} and the
change of variable z — —z shows that (1 — x)fo = —(1 — x)%th?Af(z) thanks to (1.8). Hence,

folw) = =S W A8(x) + r(a), (3.5)

with ||r||2 = O(h°/?).
To compute f3(x) for € sup(1 — x), we first observe that |f3(z)| < Ch?|Vp(x)||VO(x)|. We
thus get |[1g,<p1/2f3llree < Ch®2||V0)||p~. At a point = where |Vp(z)| > hY/?, we may write

z = t|§28\ +zht = T'va/(’g') and z1.Vp(z) = 0. In these coordinates, one has A~ (z,h) =

{l2] < 1,(t, 25), t|Vp(x)| + O(h(t? + |21]?)) < 0}. From |Vp(z)| > hY/? we get that the symmetric
difference R between A~ (z,h) and {t < 0} satisfies meas(R) = O(h'/?) (the symmetric difference
of two sets A, B is AU B\ AN B). Therefore

_ 2 (1—x)(=) Vp(z)
1‘vp‘2h1/2(1*)()f3(l‘) =—h 1|vﬂ|>h1/2VOl(Bl)/{|Z|<17vp(z)‘z§0} (@) 2V0(x).zdz+r(x), (3.6)

with ||r|| = O(h°/?). Using the change of variable z > z — 227, we get

a1 = X)a(e) = Pl os L~ @) 5 V0@ +r(a), ()
and therefore, using (3.4), we get
fala) = —n224YP@) Goon ), (3.8)

2 p(z)

with ||| 2 = O(h®/?). Tt remains to show that | fillz2(0) = O(hP/?). Using the change of variable
z +— —z we easily obtain (1—x)f1 = 0. Hence, it suffices to show that f{(z,h) = XfA(ac,h) 2.NVl(z)dz
satisfies || f1 zoc () = O(h). As Tsing is compact and sup(6) N Tsing = 0, this is a local problem near
any point zg of the regular part I'.eg of the boundary. Let ¢ be a smooth function such that near
xo = (0,0) one has Q = {zq > ¢ (2')}. For z close to z( one has

Az, h) = {z eRY |z| < 1, g+ hzg > h(a’ + hz')} . (3.9)

Set
Ai(z, h) = {z e R |z| < 1, g+ hzg > Y(z) + hvw(x')z’} , (3.10)

then the symmetric difference R between A(z,h) and A;(z, h) satisfies meas(R) = O(h) uniformly
in x close to xy. This yields

fi(xz,h) = VO(z).v(z, h) + r(), v(z,h) = /A o zdz, (3.11)

with ||r||z = O(h). Let v(z) be the vector field defined by v(z) = (—Vi(z),1). Observe that
v(z,h) = qﬁ(%)% with ¢(a) = le|<1 21>q #1d%, vanishes for dist(z,9Q) > Ch and that for
z € 0%, v(x) is collinear to the unit normal to the boundary 7' (x). Since 8,0|r,,, = 0, we thus get

|| fillLee = O(h). The proof of our lemma is complete. O
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Let us recall that we denote 1 = vy <17 < --- <w; < ... the eigenvalues of L, and m; the
associated multiplicities. We introduce the bilinear form

a
ap(u,v) = ;(Vu, Vo) r2(p) + (U, V) 12(p)- (3.12)

This defines an Hilbertian structure on H!(£2) which is equivalent to the usual one. We write ||. | H)
for the norm induced by a,. We denote

Dy = {6 € C*(Q2),0 = 0 near Tgng, dnfpr,,, =0} . (3.13)
Lemma 3.2. Dy is dense in H*(Q).

Proof. Let f € H'(S) be orthogonal to Dy for a,. Then, it is orthogonal to C§°(2) so that
(L, +1)f = 0 in the sense of distributions. In particular —Af € L*(Q). Hence we can use the
Green formula (1.14) to get for any 6 € Dy, since a,(f,0) = 0,

<8nf, p9>H*1/2,H1/2 =0. (3.14)

For any 9 € C§°(I'yeg), using smooth local coordinates we can find zﬁ in Dy such that 1;|aﬂ = 1.
Consequently,

(Onf, P7/1>H—1/2,H1/2 = (Onf, PTL>H—1/2,H1/2 = 0. (3.15)

Hence, 9, fir,,, = 0. This shows that 0, fljoq € H —1/2 is supported in Ising. From (1.16) this implies
Onflon = 0. This shows that f € D(L,). As the operator L, + 1 is strictly positive, this implies
f = 0. The proof of our lemma is complete. O

We are now in position to achieve the proof of Theorem 1.2. We first observe that if vy, € [0, M]
and ¢y, € L%(p) satisfy |[¢nllz2 = 1, h™2Qnptbn = vptp, then thanks to Lemma 2.2 the family
(¥n)ne)o,1) is relatively compact in L?(p) so that we can suppose (extracting a subsequence hy,) that
v, — v and ¥y — ¥ in L%(p), |[*]/;2 = 1, and moreover by Lemma 2.2, the limit ¢ belongs to
H'(p). Given 0 € Dy, it follows from self-ajointness of Qn,p and Lemma 3.1 that

0= ((h"*Qnp = vi)¥n,0) 12,y = (Wns (Lp = v0)8) 2,y + O(R'?). (3.16)

Making h — 0 we obtain (¥, (L, — v)0)12(,) = 0 for all 6 € Dy. It follows that (L, —v)y = 0 in
the distribution sense, and integrating by parts that 0,1 vanishes on I'ieg. Since ¢ € H L(p), we
get as above using (1.16) that 9,1 = 0, and it follows that ¢» € D(L,). This shows that v is an
eigenvalue of L,, and thus (1.19) is satisfied. Moreover, by compactness in L? of the sequence 1,
one gets that for any € > 0 small enough, there exists h. > 0 such that

tSpec(h2Qn,p) N [vj — €,vj + €] < my, (3.17)

for h €]0, h] with he > 0 small enough. It remains to show that there is equality in (3.17), and we
shall proceed by induction on j.

Let € > 0, small, be given such that for 0 < v; < M + 1, the intervals I = [Vj — €,vj + €
are disjoint. Let (u;);>0 be the increasing sequence of eigenvalues of h*QQh,p, ON = Zjvzl m; and
(er) k>0 the eigenfunctions of L, such that for all k € {14+0n,...,0n41}, one has (L,—vn41)er = 0.
As 0 is a simple eigenvalue of both L, and Qp ,, we have clearly 19 = pp = 0 and mg = 1 =
Spec(h™2Qp,,) N [vo — €, vp + €.

Suppose that for all n < N, m, = #Spec(h"2Qp ) N [V — €, + €]. Then, one has by (1.19),
for h < hg,

Hltoy = UN4+1 — €. (3.18)
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By the min-max principle, if G is a finite dimensional subspace of H! with dim(G) = 1 + o1,
one has

l"LUN+1 S Sup <h72Qh,pw7¢>L2(p) (319)
PeG,[|lv]I=1

Thanks to Lemma 3.2, for all e;,0 < k < on41 and all a > 0, there exists e, o € Do such that
llex — ek,aHH; < a. Let G, be the vector space spanned by the ey o,0 < k < on41. For a small
enough, one has dim(G,) =1+ on4+1. From Lemma 3.1, one has

(h2Qnph.ar e a)12(p) = (Lplhas €r.a) 12(p) + Oalh'/?). (3.20)
Since ey, o € Do, one has (Lpeka,ek/,aﬁz(p) = %(Vek,a,Vekga)Lg and <Vek,a,Vek/,a>L/2) = (Vey,

Vew)rz + O(«). Therefore, for 1) € G4, ||| = 1, we get

(W 2Qnpt, V) 12(p) < UN41 + Ca+ On(RM?). (3.21)

Taking a > 0 small enough and h < hq, we obtain from (3.19) and (3.21), poy,, < vNy1 + €
Combining this with (3.18) and (3.17), we get mn+1 = #Spec(h™2Qn.p) N [VN+1 — €, vn+1 +€]. The
proof of Theorem 1.2 is complete. O

4 Application to Random Placement of Non-Overlapping Balls

In this section, we suppose that 2 is a bounded, Lipschitz, quasi-regular, connected, open subset
of R with d > 2. Let N € N, N > 2 and € > 0 be given. Let On,e be the open bounded subset of
RNd7

On,e = {x:(:pl,...,x]\/) e QN vi1 <i<j<N,|z;— x4 >e}.

We introduce the kernel

N
1 _ Tj — Y
Kn(z, dy) = + Y 6n @@, @7 (Jhy]> dyj @ 0z, @+ @ Oay, (4.1)
j=1
and the associated Metropolis operator on L?(Oy ()
Ty(u)(@) = maoyula) + [ ulo) Koo, dy). (12)
N,e
with
mp(x) =1— Kp(z,dy). (4.3)
ON,e

The operator T}, is Markov and self -adjoint on LQ(ON,E). The configuration space Oy ¢ is the set
of N disjoint closed balls of radius ¢/2 in R?, with centers at the x; € Q. The topology of this set,
and the geometry of its boundary is generally hard to understand, but since d > 2, Oy is clearly
non-void and connected for a given N if € is small enough. The Metropolis kernel T}, is associated
to the following algorithm: at each step, we choose uniformly at random a ball, and we move its
center uniformly at random in R? in a ball of radius h. If the new configuration is in Oy, the
change is made. Otherwise, the configuration is kept as it started.

In order to study the random walk associated to T}, we will assume that N and e are such
that Ne is small enough. Under this condition, we prove in Proposition 4.1 that the open set O .
is connected, Lipschitz and quasi-regular, and in Proposition 4.4 we prove that the kernel of the
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iterated operator T,fb\/[ (with M large, but independent of h) admits a suitable lower bound, so that
we will be able to use Remark 2 at the end of Section 2. The main results are collected together in
Theorem 4.6 below.

We define I'teg and I'ging the set of regular and singular points of 0Oy, as follows. Denote
Ny ={1,...,N}. For z € Oy set

R(l’) = {Z € Ny, z; € 89},
S(z) ={r = (m1,72) € NNy, 11 <72 and |z, — Tr,| = €}, (4.4)

r(z) = tR(z),  s(z) =1S(x).

The functions r and s are lower semi-continuous and any z € Oy  belongs to 9O ¢ iff r(z)+s(z) >

1. Define o
Treg = {2 € On,c, s(z) =1 and r(z) = 0}

- _ (4.5)
U{z € On,, s(z) =0, R(z) = {jo} and zj, € Oeg }

and Igng = 00N \ I'teg. Then Ly, is clearly closed, and the I'yeq is the union of smooth disjoint
hypersurfaces in RVY,

Proposition 4.1. There exists o > 0 such that for Ne < «, the set O is connected, Lipschitz
and quasi-regular.

Remark 3. Observe that in the above Proposition, the smallness condition on € is Ne < « where
a > 0 depends only on €. The condition Ne? < ¢, which says that the density of the balls is
sufficiently small, does not imply that the set Oy has Lipschitz regularity. As an example, if
Q =]0,1[? is the unit square in the plane, then z = (x1,...,zn), ¥; = ((j — 1)¢,0), j=1,...,N,
with € = ﬁ is a configuration point in the boundary 0Oy . However, 0Oy . is not Lipschitz at
x: otherwise, there would exist v; = (a;,b;) such that (z1 + tvq,...,2n +tvy) € Oy, for t > 0

small enough, and this implies a1 > 0,aj41 > a; and ay < 0 which is impossible.
Proof. For v € SP~1 p > 1 and 6 €]0, 1], denote
Li(v,0) ={S € R, £(&v) > (1 -0)[¢], [(§,v)| <6} (4.6)

We remark [AF03] that an open set O C RP is Lipschitz if and only if it satisfies the cone property:
Ya € 00,36 > 0,3v, € SP~1 Vb € B(a,d) N O we have

b+T4(vg,0) CO and b+T_(1v,8) CRP\O. (4.7)
Let us first show that Oy, is connected for Ne small. For x € Oy define
I(z) = inf |z; — x;]. (4.8)
i#£]

Then I(z) > € and we have the following lemma.

Lemma 4.2. There exists ag > 0 such that for any N € N, e > 0 with Ne < o, there exists dn,e > 0
such that for any x € O with I(z) < ag/N, there exists a continuous path «y : [0,1] — Oy such
that v(0) =« and I(y(1)) > I(x) + dn-
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Proof. As () is bounded and Lipschitz, a compactness argument shows that there exists dg > 0,79 >
0 such that

Vg € Q,3v € S V€ B(xg,70) N Q, x+Ty(v,60) CQ

_ 4.9
Voo € 0Q,3v € 8971 Vo € B(wo,70) N0Q,  x+T_(v,8) C R\ Q. (4.9)

Let g < min(dp,79)/100. For K € N* denote dx = ag/K?>, px = 10a9/K?. Observe that it
suffices to show the following statement:

VK € N*,Ve €]0,a9/K],VN € Ng,Vx € Oy s.t. I(z) < ap/K,
Iy € C([0,1], One), s.t. (4.10)
Y(0) =z, I(v(1)) = I(z)+dx and VL€0,1], |[x—7(t)]c < Npk

Let K > 1 and 0 < € < ap/K. We proceed by induction on N € Ng. (Recall that Ng =
{0,1,..., K}.) In the case N = 1, there is nothing to show. Suppose that the above property holds
true at rank N — 1 and let * € Oy be such that I(z) < ag/K (this is possible since € < ap/K).
Introduce the equivalence relation on Ny defined by 7 ~, j iff ; and z; can be connected by a
path lying in Ugen,, B(7k, 4000/ K) and denote by c(x) the number of equivalence class.

Suppose that ¢(z) > 2. Then there exists a partition Ny = I U J, such that Ny = 41 > 1,
Ny =4J >1andforalliel, jeJ,|z;—xj > 40ap/K. By induction, there exists a path
715 0,1] = QY O {(@)ier, Vi 7, es—5] > ) such that 17(0) = (zi)ier, [(71(1) = 1((0))+ o
and |v7(0) — v7(t)|oo < Nrpr. The same construction for the set J provides a path ~; with the
same properties. Define the path 4 on [0, 1] by (¥(¢)); = (y1(t)); for i € I and (¥(¢)); = (ys(¢));
for j € J. Since 40cvg/K — (N7 + Nyj)px > ao/K + 6k > €, 7 has values in Oy, and we have
I(3(1)) > I(x) + 6k as well as

‘iL' — 'Y(t)‘oo < max(N[,NJ)pK < (N — 1),0[(. (411)

Suppose now that there is only one equivalence class. Then for all k& € Ny, |z1 — zx| <
40a9N/K < 40aq < 1o, were 7 is defined in (4.9). In particular, there exists v € S?~! such that
for all y € B(x1,4000) N Q, y + T4 (v,d0) C Q. On the other hand, we can suppose without loss of
generality that

(x1,v) <+ < (zn,v). (4.12)

For j € {1,..., N} set a; = jpx and
v(t) = (z1 + tarv, ..., xn + tayv), t€[0,1] (4.13)
Then, one has |z — ¥(t)|co < supa; = Npg, xj + ta;v € Q since Npg < g, and for i < j

|(z; + tajv) — (z; + taw)]? = |zj — @i + 2t(a; — a;)(z; — @i, v) + £]aj — aif?

(4.14)
> |y — zif” + t*]aj — aif®
Thus one has
I(y(1))? = I(x)? + pfc > (I(2) + 0k)° (4.15)
The proof of lemma 4.2 is complete. O

Using this lemma, it is easy to show that O . is connected for Ne small. For x € Oy, define
Io ={y € One, 3y € C([0,1],On,e) ,7(0) = z,7(1) =y} (4.16)
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We first show easily that there exists y € I, such that I(y) > ao/N if Ne < ap. Let M =
maxyez, I(y). As I is a bounded function, M is finite and given v €]0,0x /2|, there exists y1 € Z,
such that I(y1) > M —~. If I(y1) < ap/N, Lemma 4.2 shows that there exists y» € Z, such that
I(y2) > I(y1) + On, > M which is impossible. This shows that there exists y € Z, such that
I(y) > ag/N. Now by 4.9, for any z € €, there exists v, € S%! such that x +tv, € Q for t € [0, 5]
and dist(x + tv,, 0Q) > tsinfy with cosfy = 1 — dy. Let a1 = agsinfy/20. Then for Ne < oy, and
I(y) > ao/N, 7(t) = (1 +tag/4Nvy,, ...,yn +tag/4Nvy, ), t € [0,1] is a path in On . and one has
with v(1) =y = (¥}, .., ¥y), I(¥') > ao/2N, and dist(y}, 0Q) > 3¢ for all j.

Let Cn, be the set of x € Oy such that I(xz) > ag/2N and dist(x;,0Q) > 3¢ for all j. It
remains to show that for any x,y € Cy . there exists a continous path v from z to y, with values
in Oy, for Ne < a;. Decreasing oy we may assume 6cgad < vol(Q) with ¢q = vol(B(0,1)).
Decreasing aq, we get that for any z,y € Cy with Ne < aq, there exists 2 € Cy, such that

|zp — 24| > /2N and |y, — 24| > /2N Vp,q € Ny. (4.17)

One can easily choose the z; by induction, since for any z,y € Oy, and any z1,...,2 € Q with
0 <!< N —1 we have VOl(U;-Vle(.’IJj, ap/N) Ué\]:l B(y;,a0/N) Uézl B(zj,a0/N)) < 3NcgadN—4 <
vol(2)/2 < vol({z € Q, dist(z,080)} > 3e¢).

Thus we are reduced to showing that if y, z € Cn . satisfy 4.17, there exists a continuous path
v from y to z, with values in Oy if Ne < a;. We look for a path v of the form v =yy o--- 07,
where the path 7; moves only the jth ball from y; to z;. Let us explain how to choose v;. As (2 is
connected, there exists an analytic path 4; which connects y; to z; in 2. We have to modify the
path 41 in a new path 7; in order that

")/1(15) — yj| > € Vj S {2, . ,N}. (4.18)

Let K = {t € [0,1],3j0 € {2,..., N}, [1(t) — yjo| < 2€}. If K is empty, we set v, = 1. If
K is non empty, since the path 4 is analytic and I(y) > ap/2N > 4e, K is a disjoint union of
intervals, K = [a1,b1] U ... U [ar,br] and for any [ € {1,..., L} there exists a unique j; such that
71(t) — y;,| < 2€ for t € [a;,b]. Fort ¢ K we set v1(t) = J1(t) and for t € [a;,b;] we replace ¥,
by a continuous path 7; connecting 41 (a;) to 41(b;) on the sphere |z — y;,| = 2¢ which is contained
in Q. Then 7(t) is continuous. Moreover, as I(y) > 4e, for any j € {2,...,N} and ¢ € [0, 1] we
have |y1(t) — y;| > 2¢. In particular, the path t € [0,1] — (v1(t),y2,...,yn) has values in Oy and
connects y and ¢ := (z1,y’). From (4.17) it is clear that § € Cy ¢ and that (4.17) holds true with y
replace by g. This permits iterating the construction to build a continuous path from y to z. Thus
On e is connected for Ne < a.

Let us now prove that 0Oy has Lipschitz regularity for Ne < r¢/2, where r¢ is given by 4.9.
For a given €, we will prove this fact by induction on N € [1,79/2¢]. The case N = 1 is obvious
since 0€ is Lipschitz. Let T € 0Oy ,. The equivalence relation ¢ ~ j iff 7; and Z; can be connected
by a path lying in the union of closed balls of radius €/2, gives us a partition {1,..., N} = Uj_, F},
such that

[T — 7| >e  Vk#LVi€ F,Vje€F;

4.19
[T, — Ty, | = € Vk,Vi#j € F,3(ny) € Fi, 1 <1 <m,n; =i,ny =J. ( )

The Cartesien product O; x Oy of two bounded Lipschitz open subsets ©@; C R% has Lipschitz
regularity. Thus, if > 2, the induction hypothesis on N shows that 0Oy . has Lipschitz regularity
near . Thus we may assume r = 1, and therefore, for all 4, j one has |7; — T;| < e(IN — 1) < ro/2.
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Thus there exists zg € € such that T; € B(xg,70/2), and 4.9 gives us a unit vector v and §p > 0.
We set B
£ =aT; +v (4.20)
with a > 0 small such that t£; € 'y (v, dy/2) for ¢ > 0 small. We choose 8 >0, p > 0, to > 0 such
that 3 << ae?, B << &, p << a€?, p << rg, to|&;|> << ae?, tg << . -
Let x € 00, be such that |z; — Z;| < p and 6; € R? be such that |6;| < 8. Let & =&, + 6,
and & = (&1, ,€&n). One has t&; € Ty (v, o) for t €]0, 1] and t&; € I'_(v, dp) for t € [—to,0[. From
(0 — 25,6 — &) = (0i — 23, E, — £) + O(8) = alzi — 75 + OB + p) (421)
and
(i + t&) — (2 + )| = s — 2 * + 2t(wi — 25,6 — &) + 26 — & (4.22)
we get that the function t € [—tg, to] — ¢;;(t) = |(z; +1&) — (x; +1&;)|? is strictly increasing. Since
by 4.9 we have x; + t§; € Q for t €]0,to], we get z + 1 € Op, for t €]0,o]. It remains to show
x+t€ ¢ Oy, for t € [—to,0[. If there exists two indices 4, j such that |z; — x| = €, this follows from

gij(t) < € for t < 0. If there exists one indice i such that z; € 99, this follows from t§; € I'_(v, do)
and the second line of 4.9 which implies x; + t&; ¢ Q for ¢t € [—tp,0[. Thus 0Oy is Lipschitz.

Let us finally prove that Oy is quasi-regular. Let v € H -1/ 2(8(’)]\;,6) be supported in Igpg.
We have to show that w is identically zero. This is a local problem near any point T € [jyg.
Let = be such that s(Z) = 0, R(Z) = {jo} (say jo=1) and Zj, € 0Q4ing. Denote Dy, = {z €
RHYN |x; — zj] > €, V1 < i < j < N}. Let x be a cut-off function supported near T such that
sup(x) C (R¥xQV~"1)NDy. Then, for any ¢ € C§(QV~1) the linear form u,, defined on H'/2(09)
by

(uy, f) = (xu, f(z1)Y (22, .. 2N)) (4.23)
is continuous and supported in 0€Qing. As 082 is quasi-regular, it follows that u,, is equal to zero for
all 1) and hence, yu = 0. Therefore, we can suppose that u is supported in the set {r(z)+s(z) > 2}.
Let v be the distribution on RV¢

(v,9) = (u, ¥looy..) (4.24)

Then v € H~'(RN9) and its support is equal to sup(u). The Sobolev space H~! is preserved by
bi-Lipschitz maps. Therefore, if there exists a bi-Lipschitz map ® defined near T such that locally
one has ®(sup(u)) C {y1 = y2 = 0}, then w is identically 0 near . For n € N, n > 2, introduce the
following property:

(Pp) : for any T € I'gjng with r(T) + s(Z) = n, we have v = 0 near . (4.25)

This property is proved by induction on n. By lower semicontinuity of the functions r and s, we
may assume in the proof that for x € sup(u) close to Z, one has r(x) = r(7) and s(z) = s(z) and
hence R(x) = R(Z) and S(x) = S(). Therefore, we are reduced to proving that for Z € I'g;,4 with
7(7) + 5(F) > 2 and u € H~'/?(00y ) supported in R(z) = R(Z) and S(z) = S(Z), we have u = 0

near T .

First assume r(Z) = s(Z) = 1. Then, we can suppose without losing generality, that wu is
supported near T in G = (9Q x QN1 N {|x; — z2| = €} for some i € {1,3,...,N}. Denoting
x; = (xi1,...,Tq), we may assume that near Z, G is given by two equations,

r11 = a(x)), =)= (212, ey L1 q)

/

(4.26)
To g = B(2h, @), Th = (T2, s T2 1, T2 ft1s s T2,d)-
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with « Lipschitz and § smooth. Then, v(z) = (11 — a(x)), zox — B(xh, x;), 2], x5, x3, ..., TN)
defines a local bi-Lipschitz homeomorphism of RV such that v o G C {0}? x RV9=2. Therefore,
v, (v) vanishes identically near v(Z) and hence w is null near 7.

We may thus assume that s(Z) > 2 or 7(Z) > 2. In the case s(T) > 2, the support of u near T
is contained in a set A of the form |x; — z2| = |r9 — x3| = € or |z — 2| = |x3 — x4] = €. Since A is
a subvariety of RN¢ of codimension 2, we get as above that u is null near Z. In the case (%) > 2,
the support of u near T is contained in a set B of the form 9Q x 99 x RWV=24 which is near =
bi-Lipschitz homeomorphic to (y1 = 52 = 0) x RV4"2 and thus u is null near Z. The proof of
Proposition 4.1 is complete. O

Define for j € Ny the two functions 7; from RN to RV and oj from R? to RN by
wi(z1,..., 24, ..., 2N) = (21,...,0,...,2N),
oj(y) =(0,...,y,...,0),

so that = mj(x) +0;(z;). The following geometric lemma will be the main ingredient of the proof
of Proposition 4.4.

(4.27)

Lemma 4.3. Let ag = ro/10 with ro given by 4.9. For all N € N and € €]0,ap/N], there exists
Sn.e > 0 and a finite covering (Uy); of On, such that for all l, there exists j and v € Sa=1 such
that

T+ O‘j(F+(V, 5]\[75)) C On,e Ve € UyNONe. (4.28)

Proof. Since Oy . is compact, we have to prove that for any given 20 € Oy, there exist r > 0,
§=0Nc>0,7and v € S9! such that (4.28) holds true for z € Oy N B(z% 7). This means that
we can select one ball, and that moving only this ball by a vector in I'; (v, ) while keeping the
other balls fixed, results in an admissible configuration. We shall proceed by induction on N > 1.
For N =1, this is true since 2 is Lipschitz. Let N > 2. If one can write {1,..., N} as the disjoint
union I U J with 47 > 1,4J > 1, and

20 — 2% > 5 VielVje (4.29)

then, by the induction hypothesis, the result is true for some dy ¢ €]0,4¢e[. Thus, using the definition
of g, we may assume that all the CL‘? are in a small neighborhood of a given point 1° € Q and
supk]ajg — 4% < 79/2. By 4.9 there exist v,y > 0,79 > 0 such that

yeQ and |y—y'| <ro=y+T4(v,6) € (4.30)

It remains to show that there exist j,r €]0,7[, and v/, d) > 0, with I'; (v/, () C T'+(v,dp), such
that for all z = (z1,...,2n5) € On, with dist(z,2°) < 7, and all z € z; + T'+(V/,4}), one has
|z — x| > € for all k # j. This will be a consequence of the following property:

VB >0,35,3 € S st |V —v| < B and V/.(l’g-) —a)) >0 Vk #j. (4.31)

In fact, if (4.31) holds true, first take $ small enough, such that for all v/ € S% 1 with [/ —
v| < [ there exists &, > 0 with I';(v/,6)) C T'y(v,dp); then (4.31) gives us a pair v/,j such
that V’.(.T? —a) > 0Vk # j. For rj) > 0,5, > 0 small enough, we get for all { € I'y(V,d))
and all € Oy, dist(z,2%) < rf, that infrz€.(x; — zk) > 5)|€], and thus there exists ¢y such
that for t € [0,t0] and k # j, the function ¢ — |z — (x; + t&)|? is strictly increasing for all
T € One, dist(z,2°) <7 and all £ € T4 (V/, 8)).
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Let us show that (4.31) holds true. If j — V.l’? achieve its maximum at a single j, then (4.31)
is obvious with v = 1/. Otherwise, the set A = {1/ € S9! 35 # k, V(2§ —2})) = 0} is contained in
a finite union of equators in the sphere S?!, with v € A, and thus (4.31) is still obvious by taking
V' € 81\ A close to v. The proof of Lemma 4.3 is complete. O

For k € N* denote B¥ = Bgi(0,1) the unit Euclidean ball and ¢ (z) = ﬁBk)lBk(z).

Proposition 4.4. Let N, € be given such that Lemma 4.3 holds true. There exists hg > 0,cg,c1 > 0
and M € N* such that for all h €]0, hy], one has

_ T —
T (, dy) = pn(x, dy) + coh™ " ona <c1hy> dy, (4.32)

where for all x € On¢, pp(z,dy) is a positive Borel measure.

Proof. For z,y € On,c, we set dist(z,y) = sup;<;<n |2; —yi|. For N > 1, denote by K} n the kernel
given in (4.1). It is sufficient to prove the following: there exists hg > 0, cg,c; > 0 and M (N) € N*
such that for all h €]0, hy|, one has for all nonnegative function f,

Ky (D(@) = coh™ / fy)dy. (4.33)
YEON ¢, dist(y,x)<c1h

First note that it is sufficient to prove the weaker version: for all 2° € Oy , there exist M (N, z%),r =
r(x2%) > 0, co = co(xg) > 0,c1 = c1(x0) > 0, hg = ho(xg) > 0 such that for all h €]0, hol, all z € On,e
and all nonnegative function f

dist(z,2°) < 2r = KM (£)(2) > b N / Fy)dy. (4.34)
' yeON, o, dist(y,z)<cih

Let us verify that (4.34) implies (4.33). Decreasing r(xg) if necessary, we may assume that any set
{dist(z, 2°) < 2r(x0)} is contained in one of the open set U; of Lemma 4.3. There exists a finite set F
such that On e C Uyoep{dist(z,2%) < r(z0)}. Let M(N) = sup,ocp M (N, x0), ¢; = ming,er ¢i(zo)
and h{, = ming,cr ho(zo). One has to check that for any 2° € F and any z with dist(z, 2%) < r(z°),
the right inequality in (4.34) holds true with M(N) = M (N, x°) 4+ n in place of M (N, z") for some
constants cg, c1, ho. Let | be such that dist(z,2%) < r(xg) implies € U;. Let j and I'y (v, 6) be
given by Lemma 4.3. Clearly, if f is nonnegative, one has

20 1 a0
K%W’”%ﬂ@»zth/+(E0 P/ MELN T (N +oje)dz (4.35)
x O’j z N,e

For dist(x,2°%) < 2r(z°) — | h/2, and |z| < | h/2,z € T (v,d), one has dist(x + 0(2),2°) < 2r(20)
and by (4.28), z + 0;(z) € On,. Moreover, dist(y,z) < ¢|h/2 = dist(y,x + 0j(z)) < ¢}h. From
(4.35) and (4.34) we thus get, with a constant Cs depending only on the ¢ given by Lemma 4.3,
and for h < hy,

diSt(ﬂ?,fEO) S 27,(:1:0) _ Cllh/2 _— K;:?]S[N,gjo)+l(f)(x)

Cs , _ (4.36)
> e [ F(w)dy.
yeON, ¢, dist(y,x)<c| h/2

By induction on n, we thus get

dist(x,2°) < 2r(a°) — &hh = KT (f) ()

- <Ca> Cf)hNd/ f(y)dy.
N YO o dist(y,z)<c} 2%
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Since n is bounded, we get the desired result with ho = min(mingoep r(2°)/c}, hy).

To complete the proof, let us show (4.34) by induction on N. The case N = 1 is obvious.
Suppose that (4.34) holds for N — 1 discs. Let 2 € Op . be fixed. Thanks to Lemma 4.3, we can
suppose that there exists an open neighborhood U of 2z, a direction v € S%~! and 6§ > 0 such that
(4.28) holds with j = 1. Let us denote x = (z1,2’) and define

Knn=Kpni+ Knn> (4.38)
with

h— <$1 - yl> /
— o —— ) f(y,2") dyr. (4.39)
N (ylax/)eoN,e h ( )

We also denote G(v,d) = {x1 € 'L (v,0), |x1| > g} Then, we have the following:

Kynaif(z) =

Lemma 4.5. For any &' €]0,6/2], there exists C > 0, a > 0, hg > 0 and 19 > 0 such that
Vr €0, ro], Yh €]0, ho], Yo € UNOn,, VE € x+h(G(v,0") x B(0,r)N=1) with & € ON-1,c, we have
7€ One and

Kynsf (@) 2 CKapn-1 (f(Z1,.)) (&), (4.40)
for any nonnegative function f. In particular, for all M € N*, there exists C,rg, hg,a as above
such that Vx € U N On, and Vi € z + h(G(v,8') x B(0,7)N~1), we have

Kl f(3) 2 OBy (f(1,.)) (&) - (4.41)

Proof. Inequality (4.41) is obtained easily from (4.40) by induction on M. To prove (4.40), observe
that for nonnegative f and « €]0, 1] we have

N
Ky f(T )Zth;/A

with A; o n(Z) = {2z € Q, |Tj — 2| < ah and VEk # j, |Z, — 2| > €}. Let Bj o p(Z) = {2 € Q, |T;—2| <
ah and Vk # 1,7, |2 — 2| > €}. Then A;, ) C Bjon and we claim that for o, 7 > 0 small enough
and & € x + h(G(v,8) x B(0,r)N~1) with & € On_1,, we have Bjon(%) = Ajon(Z). Indeed,
let 1 = z1 + huy with u; € G(v,¢') and & € On_1, be such that |Z; — z;| < hr. Then for
A Bj,a,h(j),

(~) f(j}l,...,yj,...,.f]v)dyj, (442)

j,a,h\T

|.Q~71 — Z| = |.Z'1 — X+ hQ}l’, (4.43)

with v; = ug + = ; Li%  Taking «,r small enough (w.r.t. ) it follows that v; € I';(v,0).
Consequently, Lemma 4.3 shows that [Z; — 2| > € and hence z € A, (%) (the same argument
shows that £ € On ). Therefore,

Kpn> f(Z Z/ f@, -y, EN)dy;
Bjan( (4.44)
N — 1)vol(B? N 8
= ( ])\7 ( )Kozh,Nfl (f(&1,.) (&),
and the proof of Lemma 4.5 is complete. O
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Using this lemma we can complete the proof of (4.34). Let p € N, o €]0, o] and = € Op ¢, then

Ky @) > KnnaKp o f(@)
> L_d K} o f(z1,2") dz
— 1, 1
N (21,2")€ON ¢,21€x1+hG(v,6") ho N>

Kb v (f(z152) (') dz1,

> 07 /
(z1,2")€ON,e,21€x1+hG(v,0")

thanks to Lemma 4.5. From the induction hypothesis we can choose p € N so that

KN @)= on [ / £ (1) dyfdey
(z1,2")€ON,e,2z1€x1+hG(v,0") J |/ —y'|<ah,y'€ONn_1,c
Hence, for any (5 €]0, 1] we get
KV f(z) > KPS Ko f(@) > Ch_Nd/ ( )f(yl,y’) Yz, y1)dy1dy’,
Dy g,n(x

with
Dagp(z) ={y € On, |/ — /| < ah,|z1 — 1| < Bh}

and

—d
fyh(xayl) =h / 1|Z17y1\<hd21-
(Zl7x/)€ON,67Z1€x1+hG(V76/)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

We have to show that ~3 is bounded from below by a positive constant, uniformly with respect to
(x,y1) when |z1 — y1| < Bh. For z1 € 21 + hG(v,0"), one has |21 —y1| < |21 — 21| + |11 — 11| <

hé' + h( < h for § and &’ small. Thus for |z; — y1| < Bh one has

(@, Y1) = h_d/

le = / 1<x1+hu7zl)eON’€du.
(z1,2")€ON,¢,21€x1+hG(v,0") ueG(v,0")

Using Lemma 4.3 again, we get for |21 — y1| < Sh

(2, Y1) =/ du = Cy > 0.
ueG(v,8")
Plugging this lower bound into (4.47), gives
Kpgzon™ [ gy,
Da,ﬂ,h(x)
and the proof of (4.34) is complete. This completes the proof of Proposition 4.4.

By Proposition 4.1, we can consider the Neumann Laplacian |A|xy on Oy . defined by

__ %M
Ay = 2NA’

D(|A|n) = {u € H'(On,), —Au € L*(On,), Opulooy, =0} .

(4.50)

(4.51)

(4.52)

(4.53)

We still denote 0 = vy < v < vp < ... the spectrum of |A|x and m; the multiplicity of v;. Our

main result is the following.
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Theorem 4.6. Let N > 2 be fized. Let € > 0 be small enough such that Proposition 4.1 and
Proposition 4.4 hold true. Let R > 0 be given and 3 > 0 such that the spectrum v; of the Neumann
Laplacian (4.53) satisfies vji1 — vy > 20 for all j such that vjio < R.

There exists hg > 0, 09 €]0,1/2[ and constants C; > 0 such that for any h €)0, hy|, the following
hold true:

i) The spectrum of Ty, is a subset of [—1+ 0o, 1], 1 is a simple eigenvalue of Ty, and Spec(T}) N
[1 — do, 1] is discrete. Moreover,

Spec (1 ;LQTh)ﬂ]O, R| C Uj>1lvj — B,v; + Bl;
(4.54)

1-1T;
jjSpec( e h) Nv; —B,vj+ p] =m; Vv; < R,

and for any 0 < X\ < Soh™2, the number of eigenvalues of Ty, in [1 — h2\, 1] (with multiplicity)
is bounded by Cy (1 + \)/2,

it) The spectral gap g(h) satisfies
lim h~2g(h) = 1, (4.55)

h—0t

and the following estimate holds true for all integer n:

dy _
T (2, dy) — ——2 < Cge () 4.56
xesgg | T3 (, dy) ol (On ) |7v < Cae (4.56)

The rest of this section is devoted to the proof of Theorem 4.6.
Let pp(z,dy) be given by (4.32) and pup(f)(x) = fONE f(y)pn(z,dy). Thanks to the positivity

of up(x,dy), using the Markov property of T}JLVI and Lipschitz-continuity of the boundary, we get
for some ¢, > 0, independant of A > 0, small enough

. _ T —
|pnllpoe Lo <1 — inf /0 coh™Nong <c1hy> dy <1—&. (4.57)
N,e

wGONye
Since by (4.32) puy, is self-adjoint on L?(Oy ), we also get
lpnllpr o <1 = dg, (4.58)

and by interpolation it follows that ||usl/z2 2 < 1 — . In particular the essential spectrum of
TM is contained in [0,1 — &)] so that gess(Th) C [0,1 — 28] with 26p = 1 — (1 — 65)"/M. Thus
Spec(Ty) N [1 — do, 1] is discrete. Let us verify that, decreasing dp > 0, we may also assume

Spec(Ty) C [—1 + do, 1]. (4.59)

Thanks to the Markov property of Té\/l , to prove this, it suffices to find M € 2N + 1 such that
L[ )+ ) 1w dy)do = bl (4.60)
ON,( ON,e
for any u € L?(2). Thanks to the proof of Proposition 4.4, there exists M € 2N + 1 such that

_ vy
/O . /O . (w(@) + u(y))” Ty (z, dy)de > coh™ /O o, (u(z) + u(y))? ona (Clh> dzdy.
(4.61)
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Hence, (4.59) follows from (4.61) and (2.7).
Following the strategy of Section 2 we put Oy . in a large box B =] — A/2, A/2[V? and, thanks

to Proposition 4.1, there is an extension map E : L?(Oy ) — L?*(B) which is also bounded from
H'(On,) into H'(B). Define

Epn(u) = <(1 — TF)a, u>L2 (4.62)

(On,e)’

and define &, as in Section 2. Moreover, the identities (2.12) and (2.13) remain true with obvious
modifications.

Lemma 4.7. There exist Cy, ho > 0 such that the following holds true for any h €]0, ho] and any
u € L?(On,):
& (E(u)) < Cy (5}17]\/[(11,) + hQHU,”%g) . (4.63)

Proof. Thanks to Lemma 2.2 we have

_ €T —
En(E(u)) < Ch (/ (u(z) — u(y))? coh NNy <hy> dydx + h2||U|L2((9N,E)> . (4.64)
ON,EXON,E €1

Combined with (4.32), this shows that

En (E(u)) < Co (/O o (u(z) = uly)* T (z, dy)dzx + hQIIUHB(oN,E)) : (4.65)

and the proof is complete. O

Lemma 4.8. For any 0 < \ < 6&y/h?, the number of eigenvalues of Ty, in [I — h?\, 1] (with
multiplicity) is bounded by C1(1+X)N¥/2. Moreover, any eigenfunction Tj,(u) = Au with X €]1—dg, 1]
satisfies the bound

ull o < Coh™N2u]| 2. (4.66)

Proof. Suppose that Tj,(u) = Au with A € [1 — &, 1], then T/Mu = MMy and thanks to (4.32), we
get

(e = Al = O(R~N2). (4.67)
The estimate (4.66) follows from (4.57). Let ((A, h) be the number of eigenvalues of TF in the
interval [1 — A%\, 1] for h?\ < &y. Thanks to Lemma 4.7, we can mimick the proof of Lemma 2.3
to get

Cu(Ah) < O+ AN, (4.68)

Then from (4.59), one has
GOVh) = G (““,;hw h) | (4.69)
Combining (4.68) and (4.69), we easily obtain the announced estimate. The proof of Lemma 4.8 is
complete. n

The rest of the proof of Theorem 4.6 follows the strategy of Sections 2 and 3. Using the spectral
decomposition (2.41), (2.42) we get easily the estimates (2.48) and (2.50), and it remains to estimate
Ty, . Following the proof of Lemma 2.4, we can find o > 0 small enough and C' > 0 such that the
foliowing Nash inequality holds with 1/D =2 —4/p > 0:

[ull257 < Ch=2 (Epar(w) + B2 ul22) lull}h°,  Vu € Ea. (4.70)
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From this inequality, we deduce that for k > h™2,
|ITEM || oo o0 < Ce™FMoM), (4.71)

and this implies for k > h™2, since the contributions of T. 2’“% , Tfﬁ/[ are negligible,

| TEM || oo oo < CekMa(h), (4.72)

As Tj, is bounded by 1 on L™ we can replace kM by n > h=2 in (4.72) and (4.56) is proved.
Assertion (4.55) is an obvious consequence of (4.54). The proof of (4.54) is the same as the one of
Theorem 1.2. Thus, the following lemma will end the proof of Theorem 4.6.

Lemma 4.9. Let § € C*(Op) be such that sup() N Lsing = 0 and 0,0r,., = 0. Then

(1—T3)0 = W2 Aln0 +7,  ||r]l2 = O(RY/?). (4.73)
Proof. Let § € C°°(On,) be such that sup() NTging = 0 and 9,,0|r,., = 0 and denote Qp = 1 —Tj,.
Then Qp, = Zle Q;n with

h_d
Qjnb(x) = vol(B1) /lej—y<hnk7éjl|xk—y>5 (0(z) — 0 (mj(z) +05(y))) dy. (4.74)
Let xo() = ldist(2,00y..)<2n- The same proof as in Section 3 shows that
o'
(1= x0)Qinf(x) = = 1?036(x) + O (1), (4.75)
so that
(1= x0)Qnb(x) = h*|A[N6(x) + Op2 (h?). (4.76)

We study xoQnf. As ||xoll2 = O(h'/?) it suffices to show that || xoQn8| L~ = O(h?). On the other
hand, by Taylor expansion we have

hxo(z) 2
XOijhe(x) = _VOI(Bl) /|Z<1 Hk;ﬁj1|:Ej+hzf:tk|>elxj+hz€QZ‘aj0(x)dz + Ope (h ) (477)
Hence, it suffices to show that
N
U(CL’) = X0($) Z/l . Hk#j]—\Ij-l—hz—xk\>elxj+hzeﬂz'aj9($)dz (478)
j=1"1% <

satisfies |[v||p~ = O(h). Since dist(sup(é),'sing) > 0, there exists disjoint compact sets F; C
{s(x) =0,R(z) =1}, and F; ; C {r(z) =0,S(z) = (¢,7)} such that

sup(xof) C Uy {z,dist(x, F}) < 4h} U, ; {x,dist(x, F; ;) < 4h}.

If © € sup(xof) is in {x,dist(z, F1) < 4h}, then the same parity arguments as in Section 3 show
that

o(x) = o() / 2 010()dz = O(h). (4.79)
|z|<1,x1+hzeQ
If x € sup(xof) is in {z,dist(z, F} 2) < 4h}, then
’U(:E) = XQ(.’E) /| . Z'(ale(x)1|zl+hz—zg|>e + 820(x)1|x2+hz—11|>6)dz (480)
z|<

and the result follows from (z1 — x2).(010 — 020)(x) = 0(h) for {xz,dist(x, F12) < 4h}, since 0,0
vanishes on the boundary |z; — x2| = e. The proof of Lemma 4.9 is complete. O
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