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omAbstra
t. A new probalisti
 approa
h to general relativisti
 kineti
 theory isproposed. The general relativisti
 Boltzmann equation is linked to a new Markovpro
ess in a 
ompletely intrinsi
 way. This treatment is then used to prove the
ausal 
hara
ter of the relativisti
 Boltzmann model.Keywords : General relativity, Boltzmann equation, probability, Markov pro
essAMS 
lassi�
ation s
heme numbers: Primary: 83C75, 60H10; Se
ondary: 60H301. Introdu
tionRelativisti
 transport arises in a large variety of 
ontexts; these in
lude not onlyastrophysi
s [1℄ and 
osmology [2℄, but also plasma physi
s [3℄ and heavy ion 
ollisions[4℄, and even 
ondensed matter physi
s [5, 6℄ where transport, allbeit non relativisti
,o

urs at bounded speed [5℄. There are three main types of models for relativisti
transport: the purely ma
ros
opi
, so-
alled hydrodynami
al models [7℄, the modelsbased kineti
 theory [8℄, and the sto
hasti
 models [9, 10℄. The purely ma
ros
opi
models have been developped sin
e the 1940's [11℄, but have serious limitations. Inparti
ular, traditional Landau-E
khart theories have been proven to be non-
ausal [12℄and strong arguments [13℄, both mathemati
al and physi
al, exist against the morere
ent ma
ros
opi
 theories based on extended thermodynami
s [14℄.As explained below, the main tool of relativisti
 kineti
 theory is a relativisti
generalization of Boltzmann famous transport equation. Various relativisti
Boltzmann equations have been proposed sin
e 1940. A systemati
 treatment has beenproposed only re
ently in [15, 16℄ (see also [17℄ for a relativisti
 generalization of theVlasov equation). The treatment proposed in [17℄ is 
ovariant, but not manifestly so.On the other hand, [15, 16℄ o�ers several equivalent, manifestly 
ovariant approa
hes,but fails to o�er a purely intrinsi
 presentation. The relativisti
 Boltzmann andBoltzmann-Vlasov models have long be assumed [13℄ to be 
ausal‡, but there is, tothe best of our knowledge, no formal proof of this assertion in the existing litterature.Physi
ally realisti
 sto
hasti
 models have been developed sin
e 1997 [18℄ andrelativisti
 sto
hasti
 pro
esses now 
onstitute a rapidly expanding �eld in bothmathemati
s and physi
s. Re
ent referen
es are e.g. [19, 20, 21, 22℄ and [23, 24, 25, 26℄,

‡ Contrary to the above traditional hydrodynami
al models dis
ussed above.
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 Boltzmann equation 2where the reader will �nd intrinsi
, 
ovariant and manifestly 
ovariant approa
hes torelativisti
 di�usions. All relativisti
 sto
hasti
 pro
esses studied so far are 
ausal.The aim of the present arti
le is threefold.(i) propose a 
lear, intrinsi
 presentation of the relativisti
 Boltzmann equation,(ii) use this intrinsi
 presentation to establish, for the �rst time, a 
lear link betweenthe two main bran
hes of relativisti
 transport models i.e. relativisti
 kineti
theory and relativisti
 sto
hasti
 pro
esses,(iii) use that link to o�er a simple proof that the relativisti
 Boltzmann is 
ausal.All results are presented in an arbitrary oriented and time-oriented spa
e-time.The material is organized as follows. Se
tion 2. o�ers a presentation of thephysi
al aspe
ts of relativisti
 kineti
 theory. Se
tion 3 sets up the geometri
altools while Se
tion 3 reviews the de�nition and properties of the relativisti
 one-parti
le distribution. Se
tion 4 presents an intrinsi
 probabilisti
 interpretation of therelativisti
 Boltzmann equation; the proof that this eqaution is 
ausal is also outlinedin this se
tion, all te
hni
al details being relegated to the Appendix.2. Physi
al aspe
ts of relativisti
 kineti
 theoryThe traditional Boltzmann equation [27, 28℄ aims at des
ribing the out-of-equilibriumdynami
s of a dilute gas of non relativisti
 and non quantum point parti
les. Thisequation is today best derived from the so-
alled BBGKY hierar
hy [29, 28℄. Supposethere are N parti
les in the gaz; a

ording to 
lassi
al me
hani
s, the evolution of thegaz is then 
ompletely determined by a system of 6N ordinary di�erential equations�xing the dynami
s of the parti
le positions and velo
ities. The probability of �nding,at a 
ertain time t, any k ≤ N parti
les at a 
ertain point of the k-dimensional phase-spa
e then admits a density with respe
t to the Lebesgue measure in this phase-spa
eand this density is obviously the produ
t of Dira
 distributions.This des
ription of the gaz is of 
ourse of little use be
ause N is very large. Itis also of little physi
al interest, be
ause the positions and velo
ities of the individualgaz parti
les 
annor be measured. What one observes are rather smoothed out oraveraged quantities. One ususally supposes that the averaged probability of �nding ata 
ertain time any k ≤ N parti
les at a 
ertain point of the k-dimensional phase spa
e,still admits, for all k, a density with respe
t to the Lebesgue measure in this phase-spa
e. It is then straightforward to dedu
e from the equations of 
lassi
al me
hani
s,a system of equations obeyed exa
tly by all these densities. This system 
onstituteswhat one 
alls the BBGKY hierar
hy.If only pair-intera
tions are taken into a

ount, the equation k of the hierar
hy isan integro- di�erential transport equation �xing the dynami
s of the k-parti
le densityin terms of the k + 1-parti
le density. The Boltzmann equation is dedu
ed from the
k = 1-equation of the BBGKY hierar
hy by taking into a

ount the high dilutionof the gaz and postulating that the two parti
le density is 
ompletely determined bythe one parti
le density, and by supposing all intera
tions between parti
les to be
lose range intera
tions whi
h 
an thus be assimilated to point 
ollisions. Note thatthis restri
tion does not pre
lude intera
tions of the parti
les with an `exterior' �eld,independent of the gas dynami
s.How mu
h of the above pi
ture 
an one generalize into a relativisti
 model oftransport? Unfortunately, not mu
h. Indeed, a 
onsistent relativisti
 des
ription of
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N intera
ting parti
les involves, not only the parti
le degrees of freedom (positions,velo
ities), but also the intera
tion �eld degrees of freedom. In other words, the`me
hani
al' equations are, in the relativisti
 regime, a set of di�erential equations,not for 6N , but for an in�nite number of degrees of freedom. Extending the aboveapproa
h to the relativisti
 realm would thus ne
essitate introdu
ing densities in anin�nite dimensional spa
e. Writing a relativisti
 equivalent of the BBGKY hierar
hythus seems a rather formidable task, and dealing with su
h a generalized hierar
hyappears even more daunting.The 
lassi
al Boltzmann equation however, taken by itself, 
an be generalizedto the relativisti
 regime; this is possible be
ause the Botzman equation 
onsidersonly one parti
le densities, whi
h admit a ni
e relativisti
 formulation, and treats allparti
le intera
tions as point 
ollisions.The relativisti
 Boltzman equation is then built in two steps. Step 1: it is possibleto introdu
e a natural geometri
al obje
t whi
h generalizes to the relativisti
 realm thestandard notion of one-parti
le density. This will be 
alled the relativisti
 one-parti
ledensity. Step 2: Consider a gaz of N non quantum but relativisti
 parti
les immersedin an `exterior' gravitational �eld, independent of the dynami
s of the gaz. Supposealso that all gaz parti
les intera
t only through 
ollisions and that the gaz parti
lesare free between their 
ollisions i.e. follow geodesi
s of the exterior gravitational �eld.It is then possible to write down fomally a relativisti
 Boltzman equation obeyed bythe relativisti
 distribution fun
tion. The left-hand side of this transport equation issimply the a
tion of the geodesi
 �ow on the relativisti
 one-parti
le density and theleft-hand side is a 
ollision term, the general form of whi
h is independent of the detailof the parti
le intera
tions.This arti
le makes 
lear the probabilisti
 
ontent of the relativisti
 Boltzmannequation by introdu
ing a well 
hosen random dynami
s and by showing that thedistribution fun
tion obeys Boltzmann equation if, and only if, it is the density of theinvariant measure of the random pro
ess. The probabilisti
 point of view also makesthe 
ausal 
hara
ter of the relativisti
 Boltzmann equation very 
lear.The use of probabilisti
 methods to investigate the 
lassi
al homogeneous non-relativisti
 Boltzmann equation is not new and dates ba
k to Ka
's suggestion [30℄,followed by M
Kean's work [31℄. The �rst breakthrough 
ame from Tanaka's work[32℄ who proved some exponential rate of 
onvergen
e to equilibrium for Maxwelliangases by using probabilisti
 tools. The enormous industry whi
h followed ([33℄, [34℄,[35℄, [36℄ et
.) 
ulminated re
ently with the results by Fournier et al. [37℄, [38℄ whoobtained some uniqueness results for some singular 
ollision kernels by probabilisti
methods based on 
ouplings. It is however, to the best of our knowledge, the �rsttime that a probabilisti
 view is given on the relativisti
 Boltzmann equation. Moregenerally, it has be
ome more and more 
lear that the study of random pro
esses withvalues in Lorentzian manifolds 
an bring interesting insights on di�erent questionsranging from the irreversibility problem in relativisti
 statisti
al me
hani
s [39℄ toplasma physi
s [40℄, [26℄, to the study of spa
etime singularities [22℄.3. Geometri
al settingLet (M, g) be a Lorentzian manifold, oriented and time-oriented. Denote by TM itstangent bundle, with generi
 point ϕ = (m, ṁ), and by T 1M the unit future-orientedbundle over M.
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 Boltzmann equation 4Denote by VolM the volume form on M asso
iated with the Lorentzian metri
 g(for whi
h VolM(e0, . . . , e3) = 1, if (e0, . . . , e3) is an orthonormal basis of M at somepoint). Identify the volume form and the volume measure VolM(dm). The tangentbundle TM inherits from the Lorentzian stru
ture of M a volume measure VolTM(dϕ)whi
h is the semi-dire
t produ
t of VolM by the Lebesgue measure Lebm(dṁ) in ea
h�ber TmM, normalized to assign measure 1 to any hyper
ube of TmM 
onstru
ted onan orthonormal basis:VolTM(dϕ) = Lebm(dṁ) ⊗VolM(dm), ϕ = (m, ṁ).At any point m ∈ M, the metri
 gm on TmM indu
es on ea
h hyperboloid T 1
mM aRiemannian metri
; denote by Vol1m(dṁ) its asso
iated volume measure, where dṁis understood here as a surfa
e element in T 1

mM. The volume measure VolT 1M isVolT 1M(dϕ) = Vol1m(dṁ) ⊗VolM(dm), ϕ = (m, ṁ).As is well-known, geodesi
 motion indu
es a dynami
s in TM whi
h leaves thebundle T 1M stable: freely falling parti
les have a velo
ity of 
onstant norm. Letdenote by H0 the ve
tor �eld on TM generating the geodesi
 motion. Given alo
al 
oordinate system x : U ⊂ M 7→ R4, any tangent ve
tor ṁ of TmM 
anuniquely be written ∑3
i=0 ṁ

i∂xi
, with the usual notations. The map (m, ṁ) ∈ TM 7→(

(xi)06i63, (ṁ
i)06i63

) de�nes a lo
al 
oordinate system on TM. In these 
oordinates,the geodesi
 ve
tor �eld H0 reads
3∑

i=0

(
ṁi ∂

∂xi
− Γk

ijṁ
iṁj ∂

∂ṁk

)
,where the Γ's are the Christo�el symbols of g.Given a spa
elike hypersurfa
e V, write T1V for {

(m, ṁ) ∈ T 1M ; m ∈ V
}. Thisbundle inherits from the Lorentzian metri
 a natural volume measure VolT1V whi
h isthe semi-dire
t produ
t of the Riemannian volume measure on V and the Riemannianmeasure in ea
h hyperboloid T 1

mM, for m ∈ V. Note that T1V is not the unit tangentbundle to (V, g).4. One parti
le distribution fun
tionFollow the random motion of a typi
al parti
le of a relativisti
 gas, in a spa
etime
(M, g); it des
ribes a random path ψs = (ms, ṁs) in T 1M, where§ s is a multiple ofthe proper time of the timelike path (ms). Without loss of generality, we 
an restri
tourselves to the 
ase where ṁs has unit norm and s is the proper time of the parti
le.The random path 
an be thought of as a su

ession of (potentially in�nitesimal)geodesi
 segments separated by points where random 
ollisions 
hange the velo
ity ofthe parti
le.Statisti
al physi
s [41, 13, 42, 15℄ suggests the following assumptions about thispro
ess.
• One 
an asso
iate to any spa
elike submanifold V a measure µT1V(dϕ) on the unittangent bundle T1V over V, to be understood as the distribution of a typi
al gasparti
le hitting V. The measure µT1V(dϕ) has a density fV(ϕ) with respe
t to thenatural volume measure VolT1V(dϕ) on T1V.

§ Sho
ks keep the norm of the velo
ity 
onstant.



General relativisti
 Boltzmann equation 5
• Given any point ϕ = (m, ṁ) ∈ T 1M, de�ne Vϕ as the set of spa
elikehypersurfa
es V of M 
ontaining m and orthogonal to ṁ at m. The value at
ϕ of the density fV does not depend on the arbitrary 
hoi
e of hypersurfa
e
V ∈ Vϕ, so fV(ϕ) is a well-de�ned s
alar; denote it by f(ϕ) = f(m, ṁ).

• At any pointm in spa
etime, the ve
tor �eld j(m) =
∫

ṁ∈T 1
m

M
ṁf(m, ṁ)Vol1m(dṁ)represents the parti
le 
urrent at point m. In parti
ular, given any spa
elike sub-manifold V with future unit normal ̟V(m) at m ∈ V, the 
omponent of j(m)normal to V at point m represents, for someone who 
onsiders V as 3D spa
e, the3D or spatial parti
le density n(m), de�ned with respe
t to the natural volumemeasure VolV(dm) indu
ed by the Lorentzian metri
 of V. Su
h an observer willalso 
onsider T1V as 6D phase-spa
e and will thus view g
(
ṁ,̟V(m)

)
f(m, ṁ)as the phase-spa
e parti
le density, de�ned with respe
t to the natural volumemeasure on T1V.The fun
tion f is usually 
alled the parti
le density in T1V, or one parti
ledistribution fun
tion of the gas. This density 
ompletely determines, through its�rst moment j, the parti
le 
ontent of the spa
etime. The stress-energy 
ontent isdetermined through the se
ond moments of f . Note that the zeroth moment of f hasno physi
al interpretation.5. Evolution equation for the one parti
le distribution fun
tionLet us asso
iate to the one parti
ule distribution fun
tion of the gas a Markov pro
essperforming geodesi
 motion in between sho
k times where it is hit by parti
les ofthe gas, resulting in a 
hange of its speed. Parametrize this pro
ess by the propertime of its traje
tories in M. The rate at whi
h the sho
ks happen is supposed todepend only on the one parti
le distribution fun
tion and on the 
hosen model forthe 
ollision me
hanism of pairs of parti
les. Given two parti
les at lo
ation m ∈ M,with velo
ity ṁ and ṁ′, denote by p and p′(∈ T 1M

) the out
ome of the 
ollision ofthe two parti
les 
orresponding to the s
attering angle θ ∈ S2. We denote 
lassi
allyby W (m ; ṁ, ṁ′; θ) the 
ollision kernel, whi
h represents the rate at whi
h the above
ollision holds; it has the symmetry property
W (m ; ṁ, ṁ′; θ) = W (m ; p, p′; θ), (1)for allm ∈ M and ṁ, ṁ′ ∈ TmM, usually refered to as the mi
ros
opi
 reversibility. Seee.g. the book [43℄ of Cer
ignani and Kremer for pre
ise models of 
ollision me
hanismsand 
ollision kernels; these pra
ti
ally important details are irrelevant for us in thiswork. We de�ne our Markov pro
ess by its generator:

(
Gh

)
(m, ṁ) =

(
H0h

)
(m, ṁ)

+

∫

TmM×S2

{
h(m, p) − h(m, ṁ)

}
W (m ; ṁ, ṁ′ ; θ) dθ f(m, ṁ′)Vol1m(dṁ′).(2)Re
all that the out
ome p of the 
ollision is a fun
tion of in
oming momentaṁ, ṁ′and the s
attering angle θ. Note that as the total rate of 
ollision

∫

TmM×S2

W (m ; ṁ, ṁ′ ; θ) dθ f(m, ṁ′)Volm(dṁ′)
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 Boltzmann equation 6might be in�nite, one would really need the sophisti
ated tools of sto
hasti
 
al
ulusto justify the above intuitive pi
ture of the motion as geodesi
 traje
tories in betweensho
k times, as these sho
ks times would not be dis
rete in 
ase the above integral isin�nite. This is not our purpose here, though.5.1. The relativisti
 Boltzmann equationOne 
an asso
iate to any ϕ = (m, ṁ) ∈ T 1M, the set Vϕ of spa
elike hypersurfa
es Vof M 
ontainingm and orthogonal to ṁ at m. Suppose now the hitting distribution bythe pro
ess of any spa
elike hypersurfa
e V has a density gV with respe
t to VolT1V.The value of the density gV at point ϕ will not depend on the arbitrary 
hoi
e ofhypersurfa
e V ∈ Vϕ. Indeed, gV(ϕ) is the limit of the ratio of the mean number ofparti
les hitting a neighbourhood U of ϕ in T1V by the volume of that neighbourhood,as it de
reases to {ϕ}. Given another V′ in Vϕ, we 
an map U to a neighbourhood U ′ of
ϕ in T

1
V

′ by a di�eomorphism arbitrarily 
lose to the identity sin
e V and V
′ have thesame tangent spa
e at m, provided U is small enough. The two limit ratios gV(ϕ) and

gV′(ϕ) will thus have the same value. So gV(ϕ) = g(ϕ) is a natural fun
tion (s
alar) onthe unit tangent bundle T 1M, named one parti
le distribution fun
tion of theMarkov pro
ess. The fun
tion g enjoys the following 
ru
ial analyti
al property,proved in Appendix.Proposition 1. We have: G∗g = 0.So the measure g(ϕ)VolT 1M(dϕ) is invariant for the random dynami
s, and theequation G∗g = 0 is a detailled balan
e equation. In a more 
on
rete way, proposition1 means that the integral
Z

T1M

g(ϕ)
n

(H0h)(ϕ)+

Z

TmM×S2

˘

h(m, p)−h(m, ṁ)
¯

W (m ; ṁ, ṁ
′ ; θ) dθ f(m, ṁ

′)Volm(dṁ
′)

oVolT1M(dϕ)(3)is null for any smooth fun
tions h with 
ompa
t support. We write here ϕ = (m, ṁ)for a generi
 element ϕ ∈ T 1M. The symmetry property (1) of the 
ollision kerneland an integration by parts‖ enable to re-write (3) under the form
∫

T 1M

(
−H0g + C(f, g)

)
(ϕ)h(ϕ)VolT 1M(dϕ) = 0,where

C
(
f, g

)
(ϕ) =

∫

T 1M

∫

S2

{
g(m, p)f(m, p′)−g(m, ṁ)f(m, ṁ′)

}
W (m ; ṁ, ṁ′; θ) dθVolm(dṁ′),that is H0g = C(f, g). Boltzmann's fundamental 
haos hypothesis is equivalent tosaying that the one parti
le distribution fun
tion of the gas and the one parti
ledistribution fun
tion of the Markov pro
ess 
oin
ide: g = f . Equation

H0f = C(f, f)is the usual form of the relativisti
 Boltzmann equation. Consult [44℄ for a totallydi�erent and axiomati
 presentation of the general relativisti
 Boltzmann equation.
‖ The ve
tor �eld H0 has an L2

`Vol
T1M

´-dual equal to −H0 as it preserves Liouville measure on
T

1M.
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hara
ter of the relativisti
 Boltzmann equationWe show in this se
tion how the introdu
tion of the above random dynami
s leadsto a 
lear understanding of the 
ausal 
hara
ter of the general relativisti
 Boltzmannequation, through proposition 1. We refer the reader to the works [45, 46, 47℄ and[48℄ of Dudynski and Ekiel-Jezewska for mathemati
al works on that question in thespe
ial relativisti
 
ase.Fix an open spa
elike hypersurfa
e V and denote by D+(V) its future domainof dependen
e: it is the set of points m of M su
h that any past-dire
ted tiemlikepath started from m hits V. This set is known to be globally hyperboli
, [49℄. Thenext proposition holds for all globally hyperboli
 spa
etimes although we state it for
D+(V).Proposition 2. One 
an asso
iate to any point m of D+(V) a positive 
onstant
T (m) su
h that any past dire
ted timelike path started from m, parametrized by itsproper time, hits V before time T (m).Proof � It su�
es to take for T (m) the length of a future-dire
ted maximal geodesi
from V to m, whose existen
e is guaranteed by the global hyperboli
ity of D+(V)� see e.g. prop. 2.33 in Senovilla's review [50℄, or 
onsult [51℄. �Consider the T 1M-valued Markov pro
ess (ψs)s>0 = (ms, ṁs)s>0 with generator

G∗h = −H0 h+ C(f, h);it has past-dire
ted timelike paths. Start it from a point (m, ṁ) ∈ T 1M with
m ∈ D+(V). Sin
e f is G∗-harmoni
 (by proposition 1), the random pro
ess(
f(ψs)

)
s>0

is a non-negative martingale. Denote by H the hitting time of T1V by
(ψs)s>0; it is almost-surely bounded above by T (m), by proposition 2. One 
an thusapply the optional stopping theorem and get

f(m, ṁ) = E(m,ṁ)

[
f(ψH)

]
.This identity proves the �rst part of the following statement. Write T1D+(V) for{

(m, ṁ) ∈ T 1M ; m ∈ D+(V)
}.Theorem 3. Let (M, g) be any Lorentzian manifold and V be a spa
elike hypersurfa
e.The one parti
le distribution fun
tion of a gas is a 
ausal fun
tion: its values on

T1D+(V) are determined by its values on T1V. The restri
tion of f to T1V is theminimal set of data needed to determine f on T1D+(V).Proof � The se
ond part of the statement dire
tly 
omes from the fa
t that thedistribution of ψH has support in the whole of T1
(
I−(m0) ∩ V

) for a pro
essstarted from the point ψ0 = (m0, ṁ0). �AppendixThe result of proposition 1 
omes from Kolmogorov's forward equation for thetransition semi-group of a general Markov pro
ess X ; we re
all it here.Denote by x a generi
 element of the state spa
e of the pro
ess and write
Pt(x, h) = Ex

[
h(Xt)

]
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 Boltzmann equation 8for the expe
tation of h(Xt) for a pro
ess started from x; write Pt(x, dy) for theasso
iated kernel on the state spa
e. Write, as above, G for the generator of thepro
ess. Kolmogorov's forward equation 
omes from the semi-group property of thekernels Pt(x, ·), en
oded in the Chapman-Kolmogorov equation
Pt+s(x, h) =

∫
Pt(y, h)Ps(x, dy), ∀ s, t > 0, x in the state spa
e,and reads (see e.g. Chap. 1 of [52℄)

d

dt
Pt(x, h) = Pt(x,Gh). (A.1)In a 
ontext where the kernels Pt(x, ·) are given by a density pt(x, y) with respe
t tosome referen
e measure dy, equation (A.1) re-writes

d

dt
pt(x, y) = G∗pt(x, y), (A.2)where G∗ a
ts on y and is the dual of G in L2(dy). Note however that there is no needof densities to make sense of equation (A.1).The result of proposition 1 is lo
al in M; it will 
ome as an appli
ation of equation(A.2) by reparametrizing lo
ally the traje
tories of the pro
ess by a time fun
tionde�ned lo
ally on M. The following lo
al 
onstru
tion will be used to that end.a) Normal variation of a spa
elike hypersurfa
e. Let V be a relatively 
ompa
tspa
elike hypersurfa
e of M. For m ∈ V and ε ∈ R small enough, de�ne Φε(m) asthe position at time ε of the geodesi
 started from m, leaving V orthogonally in thefuture dire
tion with a unit speed. Then there exists, as a 
onsequen
e of the lo
alinversion theorem, a positive 
onstant η and an open set U ⊂ M su
h that the map

Φ : (−η, η) × V → U , (ε,m) 7→ Φε(m), is a di�eomorphism. Let us further suppose ηand V small enough for U to be strongly 
ausal. Writing Vε for Φε(V), the map Φ0 isthe identity on V, and ∂εΦε(m) ∈ T 1
Φε(m)M is orthogonal to TΦε(m)Vε. The family ofspa
elike hypersurfa
es {Vε}ε∈(−η,η) is 
alled the normal variation of V. The followingrelated notation will be useful.Notations. We de�ne a ve
tor �eld ̟ on U as follows. Given a point m ∈ Vε, denoteby ̟(m) the future unit timelike ve
tor orthogonal to TmVε; set ̟(ϕ) := ̟(m), for

ϕ = (m, ṁ).
• γ = γ(ϕ) := g

(
̟(ϕ), ṁ

) will be a fun
tion of ϕ = (m, ṁ) in the tangent bundleof U .
• The ∗TVε-operation will stand for taking the L

2(VolTVε
)-dual and the ∗-operationfor taking the L2(VolT 1M)-dual.

• For 
larity, all obje
ts de�ned on V or TV will have a hat on them: ϕ̂, Ĝ, ψ̂ε...de�ned below.
• Last, Hε will denote the hitting proper time of TVε ⊂ T 1M.b) Reparametrization of the traje
tories of the pro
ess. Given a point ϕof T 1M take a relatively 
ompa
t spa
elike hypersurfa
e V 
ontaining m and dothe pre
eding 
onstru
tion. To prove that G∗g = 0 at ϕ we only need to 
onsiderwhat happens near ϕ. Let us then work in the tangent bundle of U , where we 
an
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 Boltzmann equation 9use the parameter ε as a time parameter rather than using the proper time of therandom traje
tories. That is, 
onsider the re-parametrized pro
ess {ψHε
}ε∈(−η,η); ithas generator γ −1 G. De
ompose this operator as follows

∀ϕ = Φε(ϕ̂) ∈ Vε,
Gf

γ
(ϕ) = (̟f)(ϕ) + Ĝ(f ◦ φε) (ϕ̂) = (̟f)(ϕ) +

(
Gf

)
(ϕ), (A.3)where Ĝ is an operator on TV, and where, as a 
onsequen
e, G a
ts only on TVε. Now,de�ne the TV-valued pro
ess {

ψ̂ε

}
ε∈(−η,η)

:=
{
Φ−1

ε (ψHε
)
}

ε∈(−η,η)
and denote by ℓ̂εits time-dependent generator.
) Proof of proposition 1. Without loss of generality, one 
an assume that ρ̂0 has asmooth density with respe
t to VolTV and denote by ρ̂ε the density of the distributionof ψ̂ε with respe
t to VolTV. By Kolmogorov's forward equation, it satis�es theequation

∂ερ̂ε = ℓ̂∗TV

ε ρ̂ε,for all ε ∈ (−η, η). The operator ℓ̂∗TV
ε stands here for the L

2(VolTV)-dual of ℓ̂ε. Letus now denote by Vol(ε)
TV

the pull-ba
k on TV by φε of the measure VolTVε
on TVε,and denote by Gε its density with respe
t to VolTV. Then ϕ̂ε has a density µ̂ε =

ρ̂ε

Gεwith respe
t to Vol(ε)
TV

; it satis�es the equation
∂εµ̂ε +

∂εGε

Gε

µ̂ε = ℓ̂∗TV; ε
ε µ̂ε. (A.4)We have written here ℓ̂∗TV; ε

ε g for bℓ∗TV

ε
(Gεg)
Gε

. Denote by µε the density of ψHε
withrespe
t to VolTVε

, and 
onsider µ and G as fun
tions of ε and ϕ ∈ TVε, that is,
onsider them as fun
tions de�ned on the tangent bundle of U . By its very de�nition,the fun
tion µ and the one parti
le distribution fun
tion of the pro
ess are linkedthrough the relation
µ(ϕ) = γ g(ϕ), (A.5)dis
ussed in the third point of se
tion 4. Equation (A.4) 
an be written in terms of µas

̟µ+
̟G

G
µ = G

∗TVε

µ. (A.6)The operator G has been introdu
ed in equation (A.3). It is useful at that stage toremark that we have
G
∗TVε

= G
∗as a 
onsequen
e of the 
hange of variable formula, and sin
e we have a normalvariation of V. The following lemma is needed to make the �nal step.Lemma. We have for any smooth fun
tion f

̟∗f +̟f +
̟G

G
f = 0.
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onsequen
e of the 
hange of variable formula and the fa
tthat we have a normal variation of V. Write T 1U for the future unit tangentbundle over U and take h a smooth fun
tion over T 1U with 
ompa
t support.
∫

T 1U

(̟∗f) (ϕ)h(ϕ)VolT 1M(dϕ) =

∫

T 1U

f(ϕ) (̟h)(ϕ)VolT 1M(dϕ)

=

∫

(−η,η)

∫

TV

f(ε, ϕ̂) (∂εh)(ε, ϕ̂)Gε(ϕ̂)VolTV(dϕ̂) dε

= −

∫

(−η,η)×TV

(∂εf)(ε, ϕ̂)h(ε, ϕ̂)Gε(ϕ̂)VolTV(dϕ̂) dε

−

∫

(−η,η)×TV

(fh)(ε, ϕ̂) ∂εGε(ϕ̂)VolTV(dϕ̂) dε

= −

∫

T 1U

(
̟f +

̟G

G

)
(ϕ)h(ϕ)VolT 1M(dϕ).

(A.7)
�As a 
onsequen
e of this lemma we 
an use the de
omposition given in equation (A.3)to write equation (A.6) as G∗

(
µ
γ
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