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Abstract

A systematic approximation to the linear equations for small-amplitude surface
waves in an elastic half space, interacting with a residually-stressed thin film of dif-
ferent material bonded to its plane boundary, is developed in powers of the film
thickness, assuming the latter to be small compared to the wavelength of the distur-
bance. The theory is illustrated by calculating asymptotic expansions of the wave
speeds for Love and Rayleigh waves valid to second order in the dimensionless film
thickness for a transversely isotropic film bonded to an isotropic substrate.

1 Introduction

We are concerned in this work with the problem of the acoustic interaction between an elas-

tic half-space and a thin film of a different material attached to its surface. In particular,

we seek an alternative to the classical approach of solving the exact differential equations

in the film and the continuity conditions at the film/substrate interface and instead seek

an approximate two-dimensional model for the film that can be used to obtain systematic

approximations for small thickness. The same objective motivated the early fundamental

works of Achenbach & Keshava (1967) and Tiersten (1969), in which the film is modelled
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as an elastic plate acted upon by a distributed force supplied by the substrate. In these

works the model for the film is based on classical ideas in plate theory (e.g., Landau & Lif-

schitz, 1986) and accordingly suffers from the ambiguities inherent in theories of this kind.

Indeed, open questions about the relationship between such theories and three-dimensional

elasticity have furnished the impetus for ongoing research (see, for example, Pichugin &

Rogerson, 2002; Kaplunov et al., 2006; Paroni, 2006; Steigmann, 2007). Efforts to address

these issues, or, more accurately, to side-step them, have been based in the present con-

text on models in which the film is regarded as an elastic boundary with essentially zero

thickness, as in the classical theory of capillary surfaces. Murdoch’s work (1976), in which

the elastic boundary is regarded as a pre-stressed membrane, typifies this approach. That

of Ogden & Steigmann (2002) seeks to extend it by accounting for the flexural stiffness of

the film in addition to its extensional stiffness.

An alternative approach, discussed recently by Lembo & Podio-Guidugli (2007), is

to impose constraints of the Kirchhoff-Love type on the through-thickness variation of

the three-dimensional displacement field and to use the associated reactive stresses to en-

hance the accuracy of the three-dimensional stress field generated by the resulting two-

dimensional model. While this approach has met with success, our view is that the

thickness-wise variation of the displacement field should emerge as a prediction of a theory

for thin bodies rather than being imposed at the outset. Indeed, the present approach

yields predictions of precisely this kind (cf. equations (3.17), (5.11), (5.20) and (5.21)

below) that are not of the form typically imposed in constrained theories. In this respect

our approach is similar to that of Ciarlet (2000). A further drawback of the approach

based on constraints is that while it is clearly intended for application to thin bodies, there

is no a priori estimate of the range of thicknesses, if any, over which the constraints are

appropriate.

The approach followed here is based on a systematic small-thickness approximation of
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the exact three-dimensional mechanical energy density of the film material in which the

thickness arises explicitly. This approximation may be truncated at any desired level. The

approximate equations of motion emerge from the stationarity of the associated action in-

tegral. This method was introduced by Steigmann (2007) for nonlinear elasticity. Here it is

applied in the setting of linear elasticity to derive equations of motion for the film/substrate

interface directly. Conventionally, such models furnish equations for the midsurface of the

considered thin body. Membrane effects are associated with the order h problem, where

h is the film thickness, and corrections, associated with bending effects, typically emerge

at order h3 if the midsurface is a plane of symmetry of the material properties. Here we

derive equations for the film/substrate interface instead of the film midsurface. Correc-

tions to the membrane approximation now emerge at order h2 and include bending effects

in a non-standard manner. The form of the order h2 correction is the primary concern

of the present work. Higher-order corrections may be derived by following the described

procedure.

Vapour deposition of material onto substrates may be expected to yield films that are

transversely isotropic in their solid phases with the isotropic plane being parallel to the

film/substrate interface. In the setting of linear elasticity, this assumption accommodates

fiber symmetry or hexagonal crystal symmetry and allows for residual stress in the film.

Accordingly, we develop the theory for transversely isotropic films interacting with isotropic

substrates. Section 2 contains prerequisite material on transversely isotropic linearly elastic

materials with residual stress. Fundamental theory for linear elasticity with residual stress

is developed in Man & Carlson (1994). In Section 3, we outline the procedure used to

generate systematic estimates of the film energy in powers of the thickness. This is used

together with Hamilton’s principle in Section 4 to derive the approximate equations of

motion for the interface between arbitrary linearly elastic films and substrates. The model

is specialized to transversely isotropic films and isotropic substrates in Section 5 and used
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in Section 6 to analyze the propagation of surface waves.

Standard notation is used, with bold face representing vectors and tensors and sub-

scripts denoting their components with respect to standard orthogonal axes. Latin sub-

scripts take values in {1, 2, 3} while Greek subscripts take values in {1, 2}. The latter

are associated with coordinates in the interface and in-plane vector and tensor compo-

nents. A dot between bold symbols is used to denote the standard inner product for

either vectors or second-order tensors. In particular, if A and B are second-order tensors,

then A · B = tr(ABT), where tr is the trace and the superscript T is used to denote

the transpose. The linear operator Sym delivers the symmetric part of its second-order

tensor argument. The notation ⊗ identifies the standard tensor product of vectors. If C
is a fourth-order tensor, then C[A] is the second-order tensor with components CijklAkl.

Finally, we use the symbols Div and Grad to denote the three-dimensional divergence and

gradient operators, while div and ∇ are reserved for their two-dimensional counterparts.

Thus, for example, DivA = Aij,jei and divA = Aiα,αei, where {ei} is an orthonormal basis

and subscripts preceded by commas are used to denote partial derivatives with respect to

coordinates. Time derivatives are denoted by a subscript t.

2 Three-dimensional strain-energy function for a trans-

versely isotropic solid with residual stress

To apply linear elasticity theory we require an expression for the strain energy of the

bulk material of which the film is made, valid to quadratic order in the three-dimensional

displacement gradient H. Let U(H) be the required strain-energy function, and let Ū(E)

be the strain-energy function expressed in terms of the Lagrange strain

E = 1
2
(H + HT + HTH). (2.1)
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Let f(τ) = U (H(τ)), where H(τ) = τH0, with H0 fixed, is the parametric representation

of a straight line in displacement-gradient space. To ensure kinematic admissibility we

require that det(I+ τH0) > 0, where I is the three-dimensional identity, this being assured

for all H0 if τ is sufficiently small. Further, the expression for U(H) need only apply in

an open ball containing the origin. Since the latter is a convex set, the use of straight-line

paths to derive U(H) entails no loss of generality.

We have f(τ) = Ū (E(τ)), where E(τ) is the (curved) image of the straight line in

strain space. Thus,

f(τ) = τ ḟ(0) + 1
2
τ 2f̈(0) + o(τ 2), (2.2)

apart from an unimportant constant, where a superposed dot represents a derivative with

respect to τ ,

ḟ(0) = SR · Ė, f̈(0) = Ė · C[Ė] + SR · Ë, (2.3)

wherein

Ė = SymH0, Ë = HT
0 H0 (2.4)

are the derivatives of E(τ) at τ = 0, SR is the (symmetric) residual second Piola-Kirchhoff

stress at zero strain, and C is the classical fourth-order tensor of elastic moduli associated

with the undeformed material. The latter possesses the minor symmetries

A · C[B] = AT · C[B], A · C[B] = A · C[BT] (2.5)

and the major symmetry

A · C[B] = B · C[A] (2.6)

for all second-order tensors A,B. Accordingly, (2.2) furnishes the quadratic-order energy

U(H) = SR ·H + 1
2
(HSR ·H + H · C[H]). (2.7)

This expression is consistent with that obtained by Hoger (1995), who notes that the

linear term may be discarded if the residual stress is required to be self-equilibrating in the
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sense that DivSR vanishes in the interior of the body and SRn vanishes on its boundary

(with exterior unit normal n). That this is so follows easily from the fact that H = Du, the

gradient of the displacement field u, yielding SR ·H = Div(SRu)−u ·DivSR = Div(SRu);

the volume integral of this term is expressible as the surface integral of u · SRn over the

boundary, which vanishes by virtue of the restriction imposed thereon. In the present

work we do not impose equilibrium of the residual stress in the film in the exact three-

dimensional sense and thus retain the linear term in (2.7). Rather, we impose equilibrium

in a certain approximate sense to be described. This furnishes restrictions on the residual

stress that are compatible with our model.

The model derived in Sections 3 and 4 below requires the derivative UH. To obtain it

we use (2.7) to write

UH · Ḣ = U̇ = (SR + HSR + C[H]) · Ḣ, (2.8)

where we have invoked the symmetry of SR and the major symmetry of C. Thus,

UH = SR + HSR + C[H]. (2.9)

In the classical theory without residual stress the energy reduces to 1
2
H · C[H], and, in

that setting, is usually assumed to be a positive definite function of ε = SymH; the minor

symmetries of C imply that the energy vanishes if H is skew. Here we assume that the

weaker condition of strong ellipticity is satisfied, i.e.

a⊗ b · C[a⊗ b] > 0 for all a⊗ b 6= 0. (2.10)

It is easy to show that the symmetric part of a⊗ b vanishes only if a ⊗ b vanishes, so

that (2.10) is meaningful. Then, since C and SR are independent, (2.10) also holds in the

presence of residual stress.

In the case of transverse isotropy relative to the undeformed state of the body, the
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components of C relative to an orthonormal basis {ei} are (Spencer, 1984)

Cijkl = λδijδkl + µT (δikδjl + δilδjk) + α(δijmkml + mimjδkl)

+ (µL − µT )(mimkδjl + mimlδjk + mjmkδil + mjmlδik) + βmimjmkml, (2.11)

where δij is the Kronecker delta, α, β, λ, µT and µL are material constants, and the unit

vector m, with components mi, is the axis of transverse isotropy. For example,mi = δi3 if

the basis is chosen such that e3 = m. Spencer (1984) shows that µT is the shear modulus for

shearing in planes transverse to m, whereas µL is the shear modulus for shearing parallel to

m. The remaining material constants in (2.11) may be interpreted in terms of extensional

moduli and Poisson ratios (Spencer, 1984).

The general form of the residual stress may be derived by enumerating the strain

invariants for transverse isotropy that are linear in the (infinitesimal) strain. These are

I · ε and m⊗m · ε, as given in Spencer (1984), and they are unchanged if H is substituted

for ε. Comparison with the linear term in (2.7) then furnishes

SR = ST (I−m⊗m) + SLm⊗m, (2.12)

where ST is the residual stress in the isotropic plane and SL is the residual uniaxial stress

along m.

The strong-ellipticity inequality (2.10) is equivalent to the positive definiteness of the

acoustic tensor Γ(b) with components

Γik = Cijklbjbl, (2.13)

where b is an arbitrary unit vector. For bi = mi = δi3 we have

Γik = Ci3k3 = µLδik + (ϕ− µL)δi3δk3, (2.14)

where

ϕ = λ + 4µL − 2µT + 2α + β. (2.15)
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Strong ellipticity thus requires that

µL > 0, ϕ > 0. (2.16)

For bi = δi1 we obtain

Γik = Ci1k1 = (λ + 2µT )δi1δk1 + µT δi2δk2 + µLδi3δk3, (2.17)

and so it is further necessary that

µT > 0, λ + 2µT > 0, (2.18)

these results also being obtained in the case bi = δi2. Isotropy is recovered by setting

α = β = 0 and µL = µT . Both sets of inequalities then reduce to the classical necessary

and sufficient conditions

µ > 0, λ + 2µ > 0. (2.19)

Necessary and sufficient conditions for strong ellipticity to hold in the case of transverse

isotropy are (2.16) and (2.18) together with

|λ + α + µL| < µL +
√

ϕ(λ + 2µT ); (2.20)

see, for example, Payton (1983) and Merodio & Ogden (2003). For ease of reference we

note the connections

c11 = λ + 2µT , c33 = ϕ, c12 = λ, c13 = λ + α, c44 = µL

with the standard Voigt notation.

3 Small-thickness estimate of the film energy

We require estimates for the strain energy and kinetic energy of the film valid for small

thickness. In particular, we seek a model that can be used to derive systematic corrections
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to membrane models of thin films (Murdoch, 1976). To this end we regard the film as

a material body with a reference configuration generated by the parallel translation of a

simply-connected plane region Ω (the film/substrate interface) in the direction orthogonal

to Ω. The film occupies the volume κf = Ω̄ × [0, h], where Ω̄ = Ω ∪ ∂Ω, ∂Ω being the

closed curve bounding Ω, and h is the (uniform) thickness. Let l be another length scale

such as the wavelength of a surface wave. We assume that ε := h/l ¿ 1. The material of

the film is assumed to have uniform properties. Position in the three-dimensional reference

placement of the film is given by

x = ξ + ςm, (3.1)

where ξ ∈ Ω, m is the (fixed) unit normal to Ω, and ς ∈ [0, h]. We take the origin of the

position x to be on Ω. The projection

1 = I−m⊗m (3.2)

is the (two-dimensional) identity on the translation (vector) space Ω′ of Ω, and may be

used to expand the displacement gradient H̃ = H̃I in the form

H̃ = H + a⊗m, (3.3)

where

H = H̃1, a = H̃m. (3.4)

Here we use the notation H̃ to denote the three-dimensional displacement gradient of the

previous section and reserve the symbol H for its action on Ω′. Use of dũ = H̃dx with

û(ξ, ς, t) = ũ(ξ + ςm, t) and dξ ∈ Ω′, where ũ is the three-dimensional displacement field,

yields the alternative representation

(H̃1)dξ + H̃mdς = dû = (∇û)dξ + û′dς, (3.5)
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where ∇ is the (two-dimensional) gradient with respect to ξ at fixed ς and the prime is

used to denote the partial derivative with respect to ς at fixed ξ. It follows that

H = ∇û, a = û′. (3.6)

The total strain energy of the film in a given motion is

∫

κf

U
(
H̃(x, t)

)
dv =

∫

Ω

∫ h

0

U
(
Ĥ(ξ, ς, t)

)
dςda, (3.7)

where Ĥ(ξ, ς, t) = H̃(ξ + ςm, t). We write the through-thickness integral in the form

I(h) =

∫ h

0

G(ς)dς, (3.8)

where G( · ) = U
(
Ĥ(ξ, · , t)

)
. Then, by the Leibniz rule and Taylor’s theorem,

I(h) = hG0 + 1
2
h2G′

0 + O(h3), (3.9)

where the zero subscript identifies function values at ς = 0 and where, by the chain rule,

G0 = U(Ĥ0), G′
0 = UH̃(Ĥ0) · Ĥ′

0. (3.10)

Now, from (3.3),

Ĥ = H + a⊗m, Ĥ′ = A + b⊗m (3.11)

with

A = H′, b = a′. (3.12)

Use of these with (3.6) and the symmetry of mixed partial derivatives furnishes

A = (∇û)′ = ∇a. (3.13)

We thus obtain

H0 = ∇(û0), A0 = ∇(a0), a0 = û′0, b0 = a′0, (3.14)
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in which û0, a0 and b0 are independent functions of ξ and t.

Henceforth we suppress the zero subscript and write the total strain energy as
∫

κf

U(H̃)dv =

∫

Ω

W (a,b,H,A)da + O(h3), (3.15)

where

W = hU(H + a⊗m) + 1
2
h2UH̃(H + a⊗m) · (A + b⊗m) (3.16)

is the strain energy through order O(h2) per unit area of Ω, u(ξ, t) (= û0) is the displace-

ment of the film/substrate interface, and a(ξ, t),b(ξ, t) are director fields defined on Ω.

These are the coefficient vectors in the expansion

ũ(ξ, ς, t) = u(ξ, t) + ςa(ξ, t) + 1
2
ς2b(ξ, t) + O(ς3). (3.17)

In the same way we use a formula like (3.9) to write the total kinetic energy as
∫

κf

Tdv =

∫

Ω

Kda + O(h3), (3.18)

where

2T = ρût · ût (3.19)

and, in the case of uniform density,

2K = ρ(hut · ut + h2ut · at). (3.20)

The total mechanical energy in a fixed volume κf of the film is then given by
∫

κf

(U + T )dv =

∫

Ω

(W + K)da + O(h3). (3.21)

The estimates (3.15), (3.18) and (3.21) are meaningful provided that h is small against

any other length scale. In the present work the film/substrate combination is a half-space

that supports a propagating surface disturbance whose wavelength l (the reciprocal of

the wavenumber k) furnishes the only available length scale to which h can be compared.

Accordingly, the validity of the foregoing estimates is contingent on satisfaction of the

strong inequality ε ¿ 1, where ε = hk.

11



4 Equations of motion and energy flux

To obtain the equations of motion for the film/substrate combination we proceed as in

Hilgers (1997) to use Hamilton’s principle (Achenbach, 1973) together with the foregoing

expressions for the elastic and kinetic energies. The required equations are recovered by

rendering the associated action integral stationary. The latter is given by

A =

∫ t2

t1

dt

[∫

κs

(Ts − Us)dv +

∫

κf

(T − U )dv

]
, (4.1)

where [t1, t2] is an assigned time interval, Ts and Us are the substrate kinetic and elastic

energy densities, and κs is the volume occupied by the substrate in its reference configu-

ration. The volume κ = κs ∪ κf of the film/substrate combination need not be the total

volume of the film and substrate, assumed here to be a half-space of unbounded extent

with the film situated on top of it. Rather, κ is taken to be the support of the variation

of the displacement field, the latter being assumed to vanish identically in time in the

region exterior to κ. These variations are further assumed to vanish identically in time on

∂κs \Ω and on ∂Ω× [0, h], and to be arbitrary in the interior of κ and on the upper surface

∂κ+
f = Ω × {h} of the thin film. Under these restrictions the stationarity of the action

integral yields equations of motion for the film/substrate combination but does not supply

edge conditions. The latter are not required in this work. Variations are further supposed

to vanish at the instants t1 and t2.

Using (3.15) and (3.18) we estimate the action to be

A = A + O(h3), (4.2)

where

A =

∫ t2

t1

dt

[∫

κs

(Ts − Us)dv +

∫

Ω

(K −W )da

]
. (4.3)

The stationarity of A thus furnishes equations of motion modulo terms of order h3. Using
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superposed dots to denote variations, we have

∫ t2

t1

dt

[∫

κs

(Ṫs − U̇s)dv +

∫

Ω

(K̇ − Ẇ )da

]
= 0, (4.4)

where

Ṫs = ρs[(wt · ẇ)t − ẇ ·wtt], U̇s = σ ·Dẇ, (4.5)

K̇ = ρ{[(hut + 1
2
h2at) · u̇]t − u̇ · (hutt + 1

2
h2att) + 1

2
h2[(ut · ȧ)t − ȧ · utt]}, (4.6)

and

Ẇ = WH · ∇u̇ + WA · ∇ȧ + Wa · ȧ + Wb · ḃ. (4.7)

Here w is the displacement field in the substrate, Dw is the substrate displacement gradi-

ent, ρs is the substrate density, and σ is the (symmetric) substrate stress. We assume that

the substrate is free of residual stress and is bonded to the film in the sense that w|Ω = u.

Invoking the stated restrictions on the variations, assuming a degree of smoothness suf-

ficient to justify interchanging the order of integration, and using the Green-Stokes and

divergence theorems, we reduce (4.4) to

∫ t2

t1

dt

{∫

κs

ẇ · (Divσ − ρswtt)dv +

∫

Ω

u̇ · [divWH − σm− ρ(hutt + 1
2
h2att)]da

}

+

∫ t2

t1

dt

∫

Ω

[
ȧ · (divWA −Wa − 1

2
ρh2utt)− ḃ ·Wb

]
da = 0, (4.8)

where we have used the fact that m is the exterior unit normal to κs on Ω. On using

ẇ|Ω = u̇ and the mutual independence of the variations u̇, ȧ, ḃ, this yields the equation of

motion

Divσ = ρswtt (4.9)

in the substrate, together with

divWH − σm = ρ(hutt + 1
2
h2att), divWA −Wa = 1

2
ρh2utt, Wb = 0 (4.10)
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on the film/substrate interface. In the course of deriving (4.10) we have also used the fact

that u̇ and ȧ vanish on ∂Ω. This in turn follows from the restriction ˙̂u = 0, which holds

identically on ∂Ω× [0, h].

To render these equations explicit we combine (2.9) with (3.16) to write

W = hU(H + a⊗m) + 1
2
h2{SR + (H + a⊗m)SR + C[H + a⊗m]} · (A + b⊗m). (4.11)

Using the symmetries of SR and C, we obtain

Ẇ = {SR + (H + a⊗m)SR + C[H + a⊗m]} · [h(Ḣ + ȧ⊗m) + 1
2
h2(Ȧ + ḃ⊗m)]

+1
2
h2{(A + b⊗m)SR + C[A + b⊗m]} · (Ḣ + ȧ⊗m). (4.12)

Comparison with (4.7) then yields

Wb = 1
2
h2{SR + (H + a⊗m)SR + C[H + a⊗m]}m, (4.13)

WA = 1
2
h2{SR + (H + a⊗m)SR + C[H + a⊗m]}1, (4.14)

Wa = h{SR +(H+a⊗m)SR +C[H+a⊗m]}m+ 1
2
h2{(A+b⊗m)SR +C[A+b⊗m]}m,

(4.15)

and

WH = h{SR+(H+a⊗m)SR+C[H+a⊗m]}1+ 1
2
h2{(A+b⊗m)SR+C[A+b⊗m]}1. (4.16)

We require the undeformed material to be in equilibrium and thus impose the appro-

priate specialization of (4.10) in the absence of deformation. This yields the restrictions

SRm = 0, div(SR1) = 0 (4.17)

on the residual stress in the film at the film/substrate interface. With these satisfied,

equations (4.10) reduce to

(C[H+a⊗m])m = 0, div({HSR +C[H+a⊗m]}1) = {C[A+b⊗m]}m+ρutt (4.18)
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and

1
2
h2div({ASR +C[A+b⊗m]}1)+hdiv({HSR +C[H+a⊗m]}1)−σm = ρ(hutt +

1
2
h2att).

(4.19)

In Section 5 we use the equations (4.18) to eliminate a and b in favour of the derivatives

of u; the results are then substituted into (4.19) in order to formulate a problem for

determining the displacement of the interface.

Remark: Equations (4.17)1 and (4.18)1 imply that the film is in a state of plane stress.

In classical treatments as summarized in, for example, Landau & Lifschitz (1986), plane

stress is imposed a priori in the course of constructing the energy functional for a thin

plate from three-dimensional elasticity theory. In that setting the condition approximately

satisfies the exact zero-traction conditions imposed on the lateral surfaces of the plate.

The resulting energy functional purports to be valid for all geometrically possible config-

urations (subject to the restrictions inherent in the underlying three-dimensional theory),

and yields the classical plate-bending equation as a consequence of the stationarity of the

energy functional so constructed. Herein lies a logical defect, however. The a priori satis-

faction of the restriction on lateral traction entails the incorporation of a natural boundary

condition into the energy functional, whether or not the latter is stationary. This is not

consistent with conventional variational theory, according to which such conditions emerge

as consequences of the stationarity of the energy rather than being imposed at the outset.

In contrast, the present treatment, which yields plane stress as a necessary condition for

the stationarity of the action integral, restores logical consistency with the programme of

conventional variational theory.

The energetic interaction between film and substrate may be determined from the

equations of motion. To this end we integrate the time derivative Wt over a simply-

connected part Ω of the interface and use an expression like (4.7) in which variations are
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replaced by time derivatives. The Green-Stokes theorem then yields

∫

Ω

Wtda =

∫

∂Ω

(ut ·WHν + at ·WAν)ds

+

∫

Ω

[Wb · bt + (Wa − divWA) · at − divWH · ut]da, (4.20)

where ν is the outward unit normal to ∂Ω in the plane of Ω. We use (4.10) to reduce this

to ∫

Ω

(Et + divE)da =

∫

Ω

Es ·mda, (4.21)

where E = W + K is the mechanical energy density of the film,

E = −(WH)Tut − (WA)Tat (4.22)

is the energy flux in the film, and

Es = −σwt (4.23)

is the energy flux in the substrate. The arbitrariness of Ω may be used to extract the local

energy equation

Et + divE = Es ·m. (4.24)

Similarly, the substrate energy flux satisfies

(Es)t + DivEs = 0, (4.25)

where Es = Us + Ts is the mechanical energy density of the substrate. From (4.24) it is

evident that energy is supplied to the film through the component of substrate energy flux

in the direction orthogonal to the interface.

5 Transversely isotropic film interacting with an isotropic

substrate

We assume the substrate to be uniform, isotropic and free of residual stress, so that

σ = λstr(Dw)I + µs[Dw + (Dw)T], (5.1)
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where λs and µs are the associated Lamé constants. These are assumed to satisfy the

ellipticity conditions (2.19), i.e.

µs > 0, λs + 2µs > 0, (5.2)

and (4.9) reduces to the well-known Navier equation

(λs + µs)Grad(Divw) + µs∆w = ρswtt, (5.3)

where ∆ is the Laplacian. The interaction term in (4.19) is given by

σm = [λswα,α + (λs + 2µs)w3,3]m + µs(wα,3 + w3,α)eα. (5.4)

This is to be evaluated on the interfacial plane x3 = 0, while equations (5.1)–(5.3) hold in

the half-space x3 < 0.

For transversely isotropic films we conclude from (4.17) that the residual stress in the

film satisfies

SR = S1, ∇S = 0, (5.5)

where S = ST and SL = 0. For an isotropic film we have SL = ST and the residual stress

vanishes, while here the residual stress is a uniform two-dimensional isotropic tension or

compression in the plane of the interface and is assumed to be specified.

The plane-stress condition (4.18)1 is equivalent to

Ci3kαHkα + Ci3k3ak = 0. (5.6)

The strong-ellipticity conditions (2.16) imply that this yields a in terms of the interfacial

displacement gradient H = ∇u. To see this we use (2.11) to deduce that

Ci3kα = (λ + α)miδkα + µLδiαmk (5.7)

and thus reduce (5.6) to

(λ + α)(divv)m + µL∇w = −µLa‖ − ϕam, (5.8)
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where

v = 1u, w = u ·m (5.9)

are the tangential and normal interface displacements, and where

a‖ = 1a, a = a ·m (5.10)

are the corresponding components of the director a. These are easily obtained from (5.8)

and furnish

a = −∇w − (λ̄ + ᾱ)(divv)m, (5.11)

where λ̄ = λ/ϕ, ᾱ = α/ϕ.

Remark: The expansion (3.17) gives

û = v − ς∇w + [w − ς(λ̄ + ᾱ)(divv)]m + o(ς). (5.12)

This agrees with classical Kirchhoff-Love kinematics (Landau & Lifschitz, 1986) apart

from the term involving divv, which represents a transverse thickness strain of the film in

response to in-plane areal strain. We assume that

λ + α > 0 (5.13)

so that areal dilation or contraction is accompanied by thinning or thickening of the film,

respectively. Note that this inequality does not conflict with (2.20).

Regarding (4.18)2, we proceed as in the foregoing to obtain

{C[A + b⊗m]}m = (λ + α)(diva‖)m + µL∇a + µLb‖ + ϕbm, (5.14)

where b‖ and b are defined as in (5.10) with a replaced by the director b. We also require

{C[H + a⊗m]}1, where

H + a⊗m = ∇v − (λ̄ + ᾱ)(divv)m⊗m + m⊗∇w −∇w ⊗m. (5.15)
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The minor symmetry of C yields

{C[H + a⊗m]}1 = [Ciγαβvα,β − (λ̄ + ᾱ)(divv)Ciγ33]ei ⊗ eγ, (5.16)

where

Ciγ33 = (λ + α)δiγ, Ciγαβ = λδiγδαβ + µT (δiαδγβ + δiβδγα). (5.17)

Accordingly, with some effort we derive

div({C[H + a⊗m]}1) = ϕ[λ̄ + µ̄T − (λ̄ + ᾱ)2]∇(divv) + µT ∆v, (5.18)

where ∆ is now the two-dimensional Laplacian and µ̄T = µT /ϕ. Further, (3.6) and (5.5)

combine to give HSR1 = S∇u and

div(HSR1) = S(∆v + ∆w m). (5.19)

These results are substituted into (4.18)2, which is then solved to obtain

µLb‖ = (µT + S)∆v + ϕ[λ̄ + µ̄T − (λ̄ + ᾱ)(λ̄ + ᾱ− µ̄L)]∇(divv)− ρvtt, (5.20)

where µ̄L = µL/ϕ, and

ϕb = (λ + α + S)∆w − ρwtt. (5.21)

The strong-ellipticity conditions (2.16) then furnish b uniquely.

It remains to substitute (5.11), (5.20) and (5.21) into (4.19) to derive the final equations

of motion for the interface displacement field. We accomplish this in several steps. First,

we use A = ∇a and (5.11) to write

A = −∇(∇w) + m⊗∇a (5.22)

and

C[A + b⊗m] = −C[∇(∇w)] + C[m⊗∇a] + C[b⊗m], (5.23)
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where

C[∇(∇w)] = Cijαβw,αβei ⊗ ej, C[m⊗∇a] = Cij3βa,βei ⊗ ej, C[b⊗m] = Cijk3bkei ⊗ ej.

(5.24)

Thus,

div({C[A + b⊗m]}1) = (−Ciγαβw,αβγ + Ciγ3βa,βγ + Ciγk3bk,γ)ei. (5.25)

We use (5.17)1,2 and

Ciγ3β = µLmiδγβ (5.26)

to reduce this to

div({C[A + b⊗m]}1) = −(λ + 2µT )∇(∆w) + (λ + α)∇b + µL(∆a + divb‖)m. (5.27)

Further, a calculation like that leading to (5.19) results in

div(ASR1) = S[(∆a)m−∇(∆w)]. (5.28)

Substitution of (5.18), (5.19), (5.27) and (5.28) into (4.19) and use of div(∆v) = div[∇(divv)] =

∆(divv) leads to the final equations of motion for the interface displacement, namely

1
2
h2[(λ̄ + ᾱ)(λ + α + S)− (λ + 2µT + S)]∇(∆w)

+h{(S + µT )∆v + ϕ[λ̄ + µ̄T − (λ̄ + ᾱ)2]∇(divv)} − 1(σm)

= 1
2
h2ρ(λ̄ + ᾱ− 1)∇wtt + hρvtt (5.29)

and

1
2
h2[S + µT − (λ̄ + ᾱ)(λ + α + S)]∆(divv) + hS∆w

−m · σm = 1
2
h2ρ(1− λ̄− ᾱ)(divvtt) + hρwtt. (5.30)

For the case of vanishing residual stress and with the O(h2) terms neglected, these

equations are consistent with equation (4.6) of Fu (2007), which is valid for materials

having general symmetry. Further papers relevant to this subject are those by Cai & Fu

(2000) and Every & Shuvalov (2002).
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6 Surface waves

We are concerned with the acoustic interaction of the film and substrate. Accordingly, we

study harmonic surface waves whose amplitudes decay with depth in the substrate. We

seek solutions to the associated dispersion relations. Love waves are treated first, followed

by consideration of Rayleigh waves. The special forms of the residual stress and material

symmetry considered lead to uncoupling of the two kinds of waves. In each case the

substrate is taken to occupy the region x3 < 0 and the waves propagate in the x1 direction.

6.1 Love waves

Love waves have the form

wi = δi2F (x1, x3, t), F (x1, x3, t) = A exp(ηkx3) exp[ik(x1 − ct)], (6.1)

where η and k are positive constants, c is the wavespeed and A is a constant. The induced

deformation of the film/substrate interface is

w = 0, vα = δα2F (ξ1, 0, t), (6.2)

where we have used ξα = xα. From (2.6) and (6.1) the interaction term is calculated as

σm = µsηkF (ξ1, 0, t)e2. (6.3)

In the substrate, equation (5.3) is satisfied provided that (Achenbach, 1973; Murdoch,

1976)

η =
√

1− s2, s ≡ c/cs < 1, (6.4)

where

cs =
√

µs/ρs (6.5)

is the transverse wavespeed in the substrate.
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According to (6.2)2, we have divv = 0 identically at the interface. With (6.2), we find

that (5.30) is trivially satisfied and that (5.29) reduces to

h(S + µT )∆v − σm = hρvtt, (6.6)

while all of the order h2 terms are zero. This is satisfied if

η = hk

(
rs2 − S + µT

µs

)
(6.7)

modulo terms of order h3, with

1 > s >

√
|S + µT |

rµs

, (6.8)

where we have set ρ/ρs = r. Eliminating η between (6.4) and (6.7) yields the dispersion

relation
√

1− s2 = ε

(
rs2 − S + µT

µs

)
, (6.9)

where ε = hk. For the case of zero pre-stress this agrees with the result obtained by Mur-

doch (1976), who assumed the interface to be an elastic boundary of vanishing thickness.

Accordingly he did not use the length scale h, but correlation with his result is nevertheless

achieved by identifying h with the length scale used in that work. The theory used here

to obtain this relation purports to be valid only if ε ¿ 1, so that 1− s2 = O(ε2). Thus, we

assume that s2 = 1− ε2C2 + o(ε2), solve for C, and obtain

s ∼ 1− 1
2
ε2

(
r − S + µT

µs

)2

(6.10)

to leading order.

The exact dispersion relation for an isotropic film of thickness h, without initial stress,

is well known (see Achenbach, 1973, equation (6.51)). For small ε and S = 0 it agrees

precisely with (6.9) at leading order, with deviations from (6.9) occurring at order ε3; this

is consistent with the foregoing findings based on the present approximate model, according

to which the order h2 terms vanish identically.
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6.2 Rayleigh waves

Rayleigh waves have the form

w1 = A1 exp(ηkx3) exp[ik(x1−ct)], w2 = 0, w3 = A3 exp(ηkx3) exp[ik(x1−ct)], (6.11)

where k is again the (positive) wavenumber and c the wavespeed, A1 and A3 are constants

and η is to be determined. Substitution of (6.11) into the equation of motion (5.3) yields

a quadratic equation for η2 and a connection between A1 and A3. The relevant (positive)

solutions for η are given by

η = η(1) ≡
√

1− ζ, η = η(2) ≡
√

1− ζ ′, (6.12)

where we have defined

ζ = ρsc
2/µs, ζ ′ = µsζ/(λs + 2µs). (6.13)

The associated connections

iη(1)A
(1)
3 = A

(1)
1 , iA

(2)
3 = η(2)A

(2)
1 (6.14)

follow, where the superscript labels refer to the two solutions. The resulting general solu-

tions for w1 and w3 that have the appropriate decay properties as x3 → −∞ are

w1 = {A(1)
1 exp(kη(1)x3) + A

(2)
1 exp(kη(2)x3)} exp[ik(x1 − ct)], (6.15)

w3 = {A(1)
3 exp(kη(1)x3) + A

(2)
3 exp(kη(2)x3)} exp[ik(x1 − ct)], (6.16)

with (6.12)–(6.14).

The interaction terms in (5.4) are then calculated as

1(σm) = µsk{[η(1)A
(1)
1 + η(2)A

(2)
1 + i(A

(1)
3 + A

(2)
3 )]} exp[ik(x1 − ct)]e1, (6.17)

m · σm = k[iλs(A
(1)
1 + A

(2)
1 ) + (λs + 2µs)(η

(1)A
(1)
3 + η(2)A

(2)
3 )] exp[ik(x1 − ct)],(6.18)
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and the induced displacements on the interface are

v1 = w1|x3=0 = (A
(1)
1 + A

(2)
1 ) exp[ik(x1 − ct)], (6.19)

w = w3|x3=0 = (A
(1)
3 + A

(2)
3 ) exp[ik(x1 − ct)]. (6.20)

Using (6.12)–(6.14) and (6.17)–(6.20) in the interface equations (5.29) and (5.30), we

obtain, after some manipulations, the following pair of equations for A
(1)
3 and A

(2)
3 , correct

to order ε2:

{−µs(2− ζ) + εη(1)(ρc2 −B) + 1
2
ε2[ρc2(λ̄ + ᾱ− 1)− C]}A(1)

3

+ {−2µsη
(2) + ε(ρc2 −B) + 1

2
ε2η(2)[ρc2(λ̄ + ᾱ− 1)− C]}A(2)

3 = 0, (6.21)

{−2µsη
(1) + ε(ρc2 − S) + 1

2
ε2η(1)[ρc2(λ̄ + ᾱ− 1) + D]}A(1)

3

+ {−µs(2− ζ) + εη(2)(ρc2 − S) + 1
2
ε2[ρc2(λ̄ + ᾱ− 1) + D]}A(2)

3 = 0. (6.22)

To avoid lengthy expressions in (6.21) and (6.22) we have introduced the notations

B = S + µT + ϕ[λ̄ + µ̄T − (λ̄ + ᾱ)2], (6.23)

C = (λ̄ + ᾱ)(λ + α + S)− (λ + 2µT + S), (6.24)

D = S + µT − (λ̄ + ᾱ)(λ + α + S). (6.25)

The secular equation, i.e. the equation that determines c, is obtained by setting to

zero the determinant of coefficients in equations (6.21) and (6.22). This yields, after some

tedious calculations,

I + εJ + ε2K + o(ε2) = 0, (6.26)

where

I = (2− ζ)2 − 4η(1)η(2), J = rζ[η(1)(ζ − B̄) + η(2)(ζ − S̄)] (6.27)

and

K = r2(ζ − B̄)(ζ − S̄)[1 + η(1)η(2)] + r[ζ(λ̄ + ᾱ− 1)− C̄][η(1)η(2) + 1
2
(ζ − 2)]

+r[ζ(λ̄ + ᾱ− 1) + D̄][η(1)η(2) + 1
2
(ζ − 2)], (6.28)
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in which

r = ρ/ρs, B̄ = ρsB/ρµs, C̄ = ρsC/ρµs, D̄ = ρsD/ρµs, S̄ = ρsS/ρµs. (6.29)

To solve (6.26) we assume that ζ admits the asymptotic expansion

ζ = ζ0 + εζ1 + ε2ζ2 + o(ε2). (6.30)

This induces the associated expansions

I = I0+εI1+ε2I2+o(ε2), J = J0+εJ1+ε2J2+o(ε2), K = K0+εK1+ε2K2+o(ε2), (6.31)

which reduce (6.26) to

I0 + ε(I1 + J0) + ε2(I2 + J1 + K0) + o(ε2) = 0, (6.32)

where I0, J0, K0 are given by (6.27) and (6.28) with ζ replaced by ζ0,

I1 = 2(ζ0 − 2)ζ1 + 2
√

1− ζ0

√
1− ζ ′0

(
ζ1

1− ζ0

+
ζ ′1

1− ζ ′0

)
, (6.33)

J1 = rζ0

{√
1− ζ0

(
1− 1

2

ζ0 − B̄

1− ζ0

)
ζ1 +

√
1− ζ ′0

(
ζ1 − 1

2

ζ0 − S̄

1− ζ ′0
ζ ′1

)}

+rζ1

[√
1− ζ0(ζ0 − B̄) +

√
1− ζ ′0(ζ0 − S̄)

]
, (6.34)

and

I2 = 2(ζ0 − 2)ζ2 + 2
√

1− ζ0

√
1− ζ ′0

(
ζ2

1− ζ0

+
ζ ′2

1− ζ ′0

)

+ζ2
1 +

1

2

√
1− ζ0

√
1− ζ ′0

(
ζ1

1− ζ0

− ζ ′1
1− ζ ′0

)2

, (6.35)

with

ζ ′i = µsζi/(λs + 2µs), i = 0, 1, 2. (6.36)

These results follow from the expansions

η(1) =
√

1− ζ0

{
1− ε

2

ζ1

1− ζ0

− ε2

2

[
ζ2

1− ζ0

+
1

4

(
ζ1

1− ζ0

)2
]}

+ o(ε2) (6.37)
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and

η(2) =
√

1− ζ ′0

{
1− ε

2

ζ ′1
1− ζ ′0

− ε2

2

[
ζ ′2

1− ζ ′0
+

1

4

(
ζ ′1

1− ζ ′0

)2
]}

+ o(ε2), (6.38)

which are derived from (6.12) and (6.30).

For (6.32) to represent an asymptotic expansion of (6.26), it is necessary and sufficient

that

I0 = 0, I1 = −J0, I2 = −K0 − J1. (6.39)

The first of these yields the standard equation for the Rayleigh wave speed (see, for example,

Achenbach, 1973), namely

(2− ζ0)
2 = 4

√
1− ζ0

√
1− ζ ′0. (6.40)

This implies that ζ0 6= 1 and ζ ′0 6= 1, thus ensuring that equations (6.33)–(6.38) are mean-

ingful. From (6.33) and (6.36) it is evident that the second of equations (6.39) furnishes

a linear equation for the first-order correction ζ1 in terms of the Rayleigh wave speed.

Substituting the result into (6.34) and the third of equations (6.39) and using (6.35), we

finally obtain a linear equation for the second-order correction ζ2. The solutions to these

equations are entirely straightforward and therefore omitted. The interested reader may

compare the results thus obtained with equation (3.20) of Fu (2007) and equation (11) of

Shuvalov and Every (2002).
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