
HAL Id: hal-00771722
https://hal.science/hal-00771722v1

Submitted on 9 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Computational Trade-Off of Inexact Proximal
Methods (short version)

Pierre Machart, Luca Baldassarre, Sandrine Anthoine

To cite this version:
Pierre Machart, Luca Baldassarre, Sandrine Anthoine. Optimal Computational Trade-Off of Inexact
Proximal Methods (short version). Multi-Trade-offs in Machine Learning (NIPS), Dec 2012, Lake
Tahoe, United States. �hal-00771722�

https://hal.science/hal-00771722v1
https://hal.archives-ouvertes.fr


Optimal Computational Trade-Off of Inexact

Proximal Methods

Pierre Machart
LIF, LSIS, CNRS, Aix-Marseille University
pierre.machart@lif.univ-mrs.fr

Sandrine Anthoine
LATP, CNRS, Aix-Marseille University
anthoine@cmi.univ-mrs.fr

Luca Baldassarre
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Abstract

In this paper, we investigate the trade-off between convergence rate and com-
putational cost when minimizing a composite functional with proximal-gradient
methods, which are popular optimisation tools in machine learning. We consider
the case when the proximity operator is approximated via an iterative procedure,
which yields algorithms with two nested loops. We show that the strategy mini-
mizing the computational cost to reach a desired accuracy in finite time is to keep
the number of inner iterations constant, which differs from the strategy indicated
by a convergence rate analysis.

1 Introduction

Designing learning procedures which ensure good generalization properties is a central and recurring
problem in Machine Learning. When dealing with small-scale problems, this issue is mainly covered
by the traditional trade-off between approximation (i.e. considering the use of predictors that are
complex enough to handle sophisticated prediction tasks) and estimation (i.e. considering the use of
predictors that are simple enough not to overfit on the training data). However, when dealing with
large-scale problems, the amount of available data can make it impossible to precisely solve for
the optimal trade-off between approximation and estimation. Building on that observation, [3] has
highlighted that optimization should be taken into account as a third crucial component, in addition
to approximation and estimation, leading to more complex (multiple) trade-offs.

Meanwhile, the vast literature in optimization provides us with iterative algorithms to solve a broad
class of problems. Over the last decades, constant efforts have been made to analyse the properties
of the provided algorithms, noticeably their convergence properties. For instance, [6] has studied
the complexity of various problems and given upper bounds on the maximal rates of convergence
that optimization algorithms can achieve, for a given class of problems. Following this work, many
efforts have been put into building algorithms with so-called optimal convergence rates.

In fact, this quest for optimal rates of convergence is quite relevant when one needs to solve problems
(such as (1)) with an arbitrarily high precision (i.e. small-scale problems). However, dealing with the
aforementioned multiple trade-off in a finite amount of computation time urges machine learners to
consider solving problems with a lower precision and pay closer attention to the computational cost
of the optimization procedures. The present paper precisely aims at providing an analysis of inexact
proximal-gradient algorithms that takes their computational costs into account. We derive a strategy
that directly minimizes the computational cost of the algorithm, under the constraint that problem
(1) is approximated with some desired accuracy. We show that this new strategy is fundamentally
different from those that achieve optimal convergence rates, as described in [7, 8].

1



2 Setting

Recent advances in machine learning and signal processing have led to more involved optimisation
problems, while abundance of data calls for more efficient optimization algorithms. First-order
methods are now extensively employed to tackle these issues and, among them, proximal-gradient
algorithms [2] become increasingly popular. They solve very general convex non-smooth problems:

min
x

f(x) := g(x) + h(x), (1)

where g : Rn → R is convex and smooth with a L-Lipschitz continuous gradient and h : Rn → R

is lower semi-continuous proper convex. Let us denote by x∗ the minimizer of problem (1).

Proximal-gradient algorithms consist in generating a sequence {xk}, where

xk = proxh/L
[

xk−1 − 1
L∇g(xk−1)

]

, with proxh/L(z) = argmin
x

L
2 ‖x− z‖2 + h(x).

Classically, the proximity operator proxh/L is computed exactly. The sequence {xk} then converges

to the solution of problem (1). However, in many situations no closed-form solution is known and
one can only provide an approximation of the proximal point. Let us denote by ǫk an upper bound
on the error induced in the proximal objective function by this approximation, at the k-th iteration:

L

2
‖xk − z‖2 + h(xk) ≤ ǫk +min

x

{

L

2
‖x− z‖2 + h(x)

}

. (2)

The authors of [7] go beyond the study of the convergence of the inexact proximal method: they
establish its rate of convergence.

Proposition 1 (Proximal-gradient method (Proposition 1 in [7])). For all k ≥ 1,

f(xk)− f(x∗) ≤ L

2k



‖x0 − x∗‖+ 2

k
∑

i=1

√

2ǫi
L

+

√

√

√

√

k
∑

i=1

2ǫi
L





2

. (3)

The approximation of the proximity operator yields two additional terms: the last two ones in (3).
When the ǫi’s are set to 0 (i.e. the proximity operator is computed exactly), one obtains the usual
bound of the exact proximal method. These additional terms are summable if {ǫk} converges at least

as fast as O
(

1
k(2+δ)

)

, for any δ > 0. One direct consequence is that the optimal convergence rate in

the error-free setting is still achievable, with such conditions on the {ǫk}’s. However, [7] empirically
notices that imposing too fast a decrease rate on {ǫk} is computationally counter-productive, as the
precision required on the proximal approximation becomes computationally demanding. In other
words, there is a subtle trade-off between the number of iterations needed to reach a certain solution
and the cost of those iterations. This is the object of study of the present paper.

3 Defining the Problem

The main contribution of this paper is to define a computationally optimal way of setting the trade-off
between the number of iterations and their cost. We consider the case where the proximity operator is
approximated via an iterative procedure. The global algorithm thus consists in an iterative proximal
method, where at each (outer-)iteration, one performs (inner-)iterations.

As stated earlier, our goal is to take into account the complexity of the global cost of inexact proximal
methods. Using iterative procedures to estimate the proximity operator at each step, it is possible
to formally express this cost. Let us assume that each inner-iteration has a constant computational
cost Cin and that, in addition to the cost induced by the inner-iterations, each outer-iteration has a
constant computational cost Cout. Let k be the number of outer iterations and li denote the number
of inner iterations performed at the i-th iteration of the outer-loop. It immediately follows that the
global cost of the algorithm is:

Cglob(k, {li}ki=1) = Cin

k
∑

i=1

li + kCout, (4)
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and the question we are interested in is to minimize this cost. In order to formulate our problem as
a minimization of this cost, subject to some guarantees on the global precision of the solution, we
now need to relate the number of inner iterations to the precision of the proximal point estimation.

Classical methods to approximate the proximity operator achieve sublinear rates of the form O
(

1
kα

)

(α = 1
2 for sub-gradient or stochastic gradient descent; α = 1 for gradient and proximal descent

or α = 2 for accelerated descent/proximal schemes). Let Ai be a positive constant. The error ǫi
defined in (2) is thus bounded by:

ǫi =
Ai

lαi
, (5)

Plugging (5) into (3), we can get the following bound:

f (xk)− f(x∗) ≤ L

2k

(

‖x0 − x∗‖+ 3
k
∑

i=1

√

2Ai

Llαi

)2

=: B(k, {li}ki=1).

This bound highlights the aforementioned trade-off. To achieve a fixed global error ρ = f(xk) −
f(x∗), there is a natural trade-off that needs to be set by the user, between the number k of outer-
iterations and the numbers of inner-iterations {li}ki=1, which can be seen as hyper-parameters of the
global algorithm. As mentioned earlier, and witnessed in [7] the choice of those parameters will
have a crucial impact on the computational efficiency (see equation (4)) of the algorithm.

Our aim to “optimally” set the hyper-parameters (k and {li}ki=1) may be conveyed by the following
optimization problem. Given an accuracy ρ, we want to minimize the global cost Cglob of the
algorithm, under the constraint that our bound on the error B is smaller than ρ:

min
k∈N,{li}k

i=1∈Nk

Cin

k
∑

i=1

li + kCout s.t. B(k, {li}ki=1) ≤ ρ. (6)

The rest of the paper is devoted to this optimisation problem.

4 Results

Problem (6) is an integer optimization problem as the variables of interest are numbers of (inner and
outer) iterations. As such, this is a complex (NP-hard) problem and one cannot find a closed form
for the integer solution, but if we relax our problem in li to a continuous one:

min
k∈N,{li}k

i=1∈[1,∞)k
Cin

k
∑

i=1

li + kCout s.t. B(k, {li}ki=1) ≤ ρ, (7)

It is actually possible to find an analytic expression of the optimal {li}ki=1 and to numerically find
the optimal k:

Proposition 2. Let C(k) =
√
L

3
√
2A

(

√

2kρ
L − ‖x0 − x∗‖

)

. If ρ < 6
√
2LA‖x0 − x∗‖, the solution

of problem (6) is:

∀ i, l∗i =

(

C(k∗)

k∗

)− 2
α

, with k∗ = argmin
k∈N∗

kCin

(C(k)

k

)− 2
α

+ kCout. (8)

Sketch of proof. First note that:

min
k,{li}k

i=1

Cin

k
∑

i=1

li + kCout = min
k

min
{li}k

i=1

Cin

k
∑

i=1

li + kCout.

We can solve problem (6) by first solving, for any k, the minimization problem over {li}ki=1. This
is done using the standard Karush-Kuhn-Tucker approach [4]. Plugging the analytic expression of
those optimal {l∗i }ki=1 into our functional, we get our problem in k.

In [5], we provide similar results for other widely used versions of proximal methods (e.g. acceler-
ated version [2]) as well as numerical experiments.
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5 Discussion and Conclusion

Our theoretical result urges to use a constant number of inner iterations. Coincidentally, many actual
efficient implementations of such two nested algorithms, in [1] or in packages like SLEP1 or PQN2,
use these constant number schemes. However, the theoretical grounds for such an implementation
choice were not explicit. Our result can give some deeper understanding on why and how those
practical implementations perform well. They also help acknowledging that the computation gain
comes at the cost of an intrinsic limitation to the precision of the obtained solution.

The original motivation of this study is to show how, in the inexact proximal methods setting, opti-
mization strategies that are the most computationally efficient, given some desired accuracy ρ, are
fundamentally different from those that achieve optimal convergence rates.

The computationally-optimal strategy imposes constant number of inner iterations. Given our
parametrisation, Eq. (5), this also means that the errors ǫi on the proximal computation remains
constant. On the opposite, the optimal convergence rates can only be achieved for sequences of ǫi
decreasing strictly faster than 1/i2. Obviously, the optimal convergence rates strategies also yield a
bound on the minimal number of outer iterations needed to reach precision ρ by inverting the bound
(3). However, this strategy is provably less efficient (computationally-wise) than the optimal one we
have derived.

In fact, the pivotal difference between “optimal convergence rates” and “computationally optimal”
strategies lies in the fact that the former ones arise from an asymptotic analysis while the latter arise
from a finite-time analysis. While the former ensures that the optimization procedure will converge
to the optimum of the problem (with optimal rates in the worst case), the latter only ensures that
after k∗ iterations, the solution found by the algorithm is not further than ρ from the optimum.

To conclude, we analysed the computational cost of proximal-gradient methods when the proximity
operator is computed numerically. Building upon the results in [7], we proved that the optimiza-
tion strategies, using a constant number of inner iterations, significantly impact the computational
efficiency, at the cost of obtaining only a suboptimal solution.

Finally, although we focused on inexact proximal-gradient methods, the present work was inspired
by the paper “The Trade-offs of Large-Scale Learning” [3]. Bottou and Bousquet studied the trade-
offs between computational accuracy and statistical performance of machine learning methods and
advocate for sacrificing the rate of convergence of optimization algorithms in favour of lighter com-
putational costs. At a higher-level, future work naturally includes finding other situations where
such trade-offs appear and analyse them using a similar methodology.
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