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We have investigated the depinning of the contact line on superhydrophobic surfaces with
anisotropic periodic textures. By direct observation of the contact line conformation, we show
that the mobility is mediated by kink defects. Full 3D simulations of the shape of the liquid sur-
face near the solid confirm that kinks account for the measured wetting properties. This behavior,
which is similar to the Peierls-Nabarro mechanism for dislocations, may open perspectives for the
optimization of wetting hysteresis by design.

In the quest for water repellent surfaces, the benefit
of surface textures has been emphasized for decades [1–
5]. When a droplet is suspended on surface textures, the
actual area of contact between the liquid and the solid is
reduced. The ratio of the actual area of contact to the
total area is the solid fraction φ < 1. It is tempting to
assume a proportional reduction of the work of adhesion
of the liquid w: this is the Cassie theory [6] which predicts
the well known rule of mixture: w/γ ≡ (1 + cos θ) =
φ(1+cos θ0) where θ is the contact angle on the textured
surface, θ0 the contact angle on the flat surface and γ
the surface energy of the liquid. This thermodynamic
approach, which emulates the standard derivation of the
Young equation [7], simply proceeds by areal averaging
of the surface energies.

One obvious limitation of the Cassie theory is that it
predicts only one contact angle. However, the contact
angle for a wetting liquid (advancing) is usually quite
different from the contact angle for dewetting (receding).
Contrasted advancing and receding contact angles result
in a sticky surface, which defeats the claim to water re-
pellency. Strong emphasis has recently been laid on this
contact angle hysteresis, and the failure of the Cassie
equation in this respect has been highlighted [8]. Indeed
the Cassie theory assumes that the contact line statis-
tically explores all configurations on the heterogeneous
surface. However at the scale of the texture, the defor-
mation energy of the liquid surface is considerably larger

FIG. 1: schematics of a contact line receding: a) as a straight
segment on a rectangular array; b) as a kink. The sequence of
lines 1,2 and 3 suggests the kinematics of depinning for each
configuration.

than the thermal energy [7]. Large heterogeneities induce
pinning, instabilities and hysteresis. This is a generic be-
havior, which is found not only in wetting [9], but also
in many other systems ranging from fracture [10] to spin
density waves [11].

Several methods have been developed to circumvent
this shortcoming of the Cassie theory. Thresholds for
line instabilities can be approximated by averaging over
the perimeter of the contact line [12–14]. One of the
most successful methods is the differential area theory
proposed by Choi et al. [13] where energy extrema are
estimated for specific configurations of the contact line.
They indeed correctly predict the scaling of the receding
contact angle with lattice parameter for square arrays.

However there remains some conceptual difficulties:
energy averages over the contact line depend on the con-
figuration of the line at instability, and this configuration
is not predicted by the theory. As a result, most often, for
periodic surfaces, we consider a macroscopically straight
segment of the (locally wavy) contact line (Fig. 1 a). As-
suming such a straight contact line, the differential area
theory predicts that the receding contact angles should
be different along inequivalent rows. However Dorrer
and Rühe [15] have measured the wetting properties of
anisotropic surfaces: they found very limited anisotropy
for the receding contact angle. On surfaces textured with
stripes, which are even more anisotropic, Choi et al. [13]
also evidenced isotropic receding contact angles. To ex-
plain this result, they implicitly discard the straight line
assumption: they show that the local motion of the con-
tact line takes place along the stripes, even when the line
macroscopically moves in the normal direction. This case
highlights the limitation of the differential area method:
for stripes the relevant conformation is relatively easy to
guess, but for less symmetric surfaces, the theory does
not provide the line conformation at instability and effi-
cient prediction of contact angles is still elusive.

In the present experiments we have generalized the
stripe geometry proposed by Choi et al. [13] following
Dorrer and Rühe [15]. We have systematically character-
ized the motion of the contact line on rectangular post ar-
rays (Fig. 1) as a function of lattice parameters: we have
measured receding contact angles for lines propagating in
the x and y directions and we have monitored the prop-
agation mechanism through direct observations. The re-
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FIG. 2: Measured receding contact angles for various lattice
parameters, plotted as normalized work of adhesion as a func-
tion of solid fraction. The two directions x and y are shown.
Contact angles calculated from full 3D simulations of depin-
ning are also shown, for w0 = 1.45 (see text).

sults demonstrate that the kinematics is determined by
the motion of kinks in the contact line (Fig. 1 b), in
contrast to the straight line assumption. Numerical sim-
ulations confirm the impact of the kinks on contact line
dynamics and quantitatively support our conclusion.

Hybrid silica layers were spin-coated on glass sub-
strates using a sol-gel process, and the surface textures
were imprinted with elastomeric stamps as described pre-
viously [16]. The surfaces exhibit rectangular post arrays
with constant post size (diameter 12.5 µm±1.0, height
11 µm). The lattice parameter Lx was kept constant
at 20 µm while Ly was varied between 20 and 70 µm
(Fig. 1). The wetting properties of the hybrid silica mate-
rial were characterized: for the flat surface advancing and
receding contact angles are respectively θ0,adv = 119±3◦

and θ0,rec = 89 ± 3◦.
The contact angle measurements were carried out with

a DSA100 goniometer (Krüss, Germany) in dynamic
mode (drop volume oscillating between 6 and 12 µl) and
the data processed with the ImageJ plugin. The surface
was rotated by 90◦ to measure both x and y directions.
We find that the receding contact angles (Fig. 2) decrease
with solid fraction. The dependance with the lattice pa-
rameter Ly is very similar to the behavior previously ob-
served for square lattices [17], and quite different from
the Cassie predictions [13, 16]. Our values are also fully
consistent with the findings of Dorrer and Rühe [15]: we
observe that wetting anisotropy is very limited for the
full range of lattice parameters explored. Even strongly
anisotropic surfaces result in nearly isotropic receding
contact angles.

To understand this behavior, we investigated the con-
formation of the contact line in detail during evaporation.
As with polymeric materials [18], the contact can easily
be monitored by optical microscopy through the trans-
parent substrate (Fig. 3 top; for a video see Supplemen-

a)

b)

FIG. 3: Direct visualization of the motion of the contact line
on a rectangular array with Lx = 20 µm and Ly = 50 µm: a)
full view of the contact area b) a sequence of depinning events,
showing the succession of kink motions. The rectangular box
in a) marks the location of sequence b.

tal material). A sequence of snapshots of the contact line
near the y edge of the contact area (Fig. 3 bottom) sum-
marizes our observations of the motion. Macroscopically
the contact line moves in the y direction. Microscopi-
cally what is seen is the quicker, jerky motion along x
of small perpendicular contact line segments joining two
dense rows. This local motion at the post lengthscale is
schematized in Fig. 1 b. These features are similar to the
”jogs” described by de Gennes [7] for stripes, and were
very clearly anticipated by Dorrer and Rühe [15]. We
think they can be more aptly called kinks in the context
of arrays, as further discussed below. The kinematics of
the kinks is especially visible when the front propagates
in the y direction, due to the larger kink width, but we
have found that kinks account for contact line motion
all around the drop, and on all the surfaces investigated
here.

As a next step we have simulated the depinning of the
contact line to evaluate the impact of kinks on: 1. the
anisotropy of the wetting properties; 2. the dependance
of the receding contact angle on solid fraction. Using the
powerful minimization algorithm Surface Evolver [19], we
calculated a minimal surface obeying the relevant bound-
ary conditions. For the straight line we simulated a pe-
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FIG. 4: Simulation of the depinning event for a contact line
with a kink. The equilibrium minimal surface is shown just
before depinning occurs. Inset: top view of geometry of the
surface.

riodic row. The unit cell consists of two posts: the con-
tact line sits on the first post, while the second post
is located further back. Only the front post turns out
to be active during depinning. For kinks we used a 6
post configuration (Fig. 4, inset) with two extensions at
the continuum level of description on the sides to avoid
spurious boundary condition effects. Once the geometry
of the textures (post diameter and lattice parameters)
and the work of adhesion of the liquid on the post sur-
face w0 = γ(1 + cos θ0,rec) are specified, we can accu-
rately calculate the contact line conformation, or more
exactly the full shape of the liquid surface near the solid.
A typical result for a receding contact line is shown in
Fig 4; note the close similarity with the direct observa-
tions with Scanning Electron Microscopy [20]. For quan-
titative evaluation of the wetting properties, we adjust
the contact angle θwall of the liquid on some arbitrary
upper interface, parallel to the solid and far above (typ-
ically 10 times the unit cell size) [21] (Fig 4). Gradually
increasing this contact angle increases the loading on the
contact line until dewetting is initiated on the most sensi-
tive post. The angle is increased further until the contact
line becomes unstable and the post is fully dewetted: this
event determines the macroscopic receding contact angle
θrec = π − θwall of the textured surfaces.

We have modeled a nominal surface with post diam-
eter 10 µm and θ0,rec=90◦ for a large range of lattice
parameters. The resulting receding contact angles are
plotted as a function of φ in Fig. 5. For the straight
line simulations (Fig. 1 a) we evidence strong anisotropy
as expected: if the line propagates in the y direction
the result is quite naturally independent of Ly. On the
other hand, if the line propagates in the x direction, the
result depends strongly on Ly and the work of adhesion
1+cos θrec decreases with φ as observed. The differential
area model [13] is also shown, and we note an excellent
agreement with the straight line simulations.

Following the previous reasoning on stripes, we would

FIG. 5: Computed receding contact angles plotted as effective
work of adhesion vs. solid fraction, with w0 = 1.0. Computed
values for the straight line are compared to results of the
differential area model and to computed values with a kink.

a) b)

FIG. 6: a) pillar loop with a pinned contact line, and b)
droplet just before (b, left) and just after (b, right) instability.
The contact angle at instability is lower than the contact angle
on the rectangular array because of the absence of kinks.

expect the receding contact angle for propagation along x
(the easier direction) to rule dewetting on these surface.
However, the simulations show that the receding contact
angle increases further – and the work of adhesion de-
creases – when a kink is introduced in the line (Fig. 5).
For larger solid fractions, in the experimentally accessi-
ble range, the threshold with a kink is about 2/3 lower
than the threshold for a straight line. In addition, we
find that with a kink, within numerical errors, the reced-
ing contact angle is the same in the x and the y direction
of propagation. These results are completely consistent
with our direct observations of the contact line which evi-
dence that contact line propagation proceeds through the
motion of kinks, not straight lines. Since the threshold
is the same in both directions, receding contact angles
do not depend upon the orientation of the contact line:
surface anisotropy is suppressed and the drop maintains
a quasi circular shape even on geometrically anisotropic
surfaces.

To further substantiate these predictions experimen-
tally, we have fabricated two surfaces with identical local
morphology but different topology. The first surface is
one of our usual rectangular arrays, with Lx=30 µm,
Ly=40 µm and pillar diameter 14 µm. On this surface
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a droplet develops a circular contact line with a distri-
bution of kinks similar to Fig. 3. The receding contact
angles were found to reach about 132◦. More precisely
the normalized effective work of adhesion 1+cos(θrec) =
0.32 ± 0.04 in the x direction and 0.34 ± 0.03 in the y
direction, consistent with the data in Fig. 2. The other
surface is textured with circular loops of pillars (Fig. 6,
a). The layout has been designed so as to maintain a lo-
cal geometry similar to the rectangular array, with nearly
identical spacings between pillars. However, the topology
of the circle can match the drop shape: when a drop is
deposited near the center of the loop, it self-centers dur-
ing evaporation. The contact line anneals itself until a
circular, kink free contact line is stabilized (Fig. 6, a).
This contact line is pinned (Fig. 6 b, left) and the con-
tact angle decreases with further evaporation, until at
about 121.5◦ (and an effective normalized work of adhe-
sion 1 + cos(θrec) = 0.48 ± 0.01) an instability rapidly
develops all around the droplet which pops in into the
next row (Fig. 6 b, right). The contrast between effec-
tive works of adhesion for the kink free contact line and
the contact line with kink lies quite close to the 2/3 ratio
predicted by the simulations.

In brief, kinks do control line motion on periodic su-
perhydrophobic surfaces: they reduce the threshold for
depinning of the contact line and produce isotropic wet-
ting properties. If the kinks are suppressed, as with pillar
loops, straight line jumps are observed, with a larger de-
pinning threshold. Turning back to the experiments by
Choi et al. [13] on striped surfaces, and especially on
spirals, we note that the transverse contact line span-
ning two consecutive rows (Fig. 5 d in their paper) – de
Gennes’ ”jog” [7] – is effectively a kink. It is no surprise
that it is found to play a central role for receding con-
tact lines; indeed, for stripes, at the continuum limit, the
threshold is expected to be nil [7], as observed experi-
mentally [13].

However we note that, starting from a reasonable value
θ0,rec = 90◦, the receding contact angles we evaluate for
a contact line with a kink (Fig. 5) do not fall on the data
(Fig. 2). In fact, a good fit to the kink model is only
obtained by increasing the work of adhesion of the liquid
from 1 to 1.45, a value which is equivalent to an effective
contact angle θ0,rec=63◦ on the flat surface (Fig. 2). We
do not have a definite explanation for this discrepancy,
but it has recently been demonstrated experimentally
that contact rupture between liquid and post is signif-
icantly affected by dynamic effects [20]. In particular the
dynamics controls the transition between pure dewetting
and liquid bridge rupture. Indeed in all the numerical
cases studied here, contact line depinning actually pro-
ceeds by dewetting from the post surface. This process is
characterized by a complex dynamics, involving confine-
ment both in the elongated meniscus and at the contact
line. This dissipation is bound to effectively increase the

work of adhesion.

To date, receding contact angles have been mod-
eled through the depinning of straight line segments
only [12, 13, 21]. However our results demonstrate that
it is the depinning of the kinks in the line which con-
trols the dynamics. It is well-known that suitable de-
fects may lower deformation thresholds: in the Peierls-
Nabarro mechanism [22, 23] for instance, dislocations set
the threshold for plastic yielding in cristalline materials.

Similarly a wide variety of systems ranging from mag-
netic domain walls to DNA chains can be viewed as elas-
tic chains coupled to a periodic lattice. The dynamics of
the chains is controlled by the kinks which emerge from
the competition between periodic lattice interaction and
elastic coupling between segments: this is the Frenkel-
Kontorova model [24]. A contact line moving on a peri-
odic array is simply another type of elastic chain coupled
to a lattice. The interaction with the lattice is mediated
by the liquid meniscus adherent to the post (Fig. 4). It
is affected by the shape of the post and also, if the post
is not circular, by its orientation relative to the contact
line. In the kink, the conformation of the line itself is
directed by the underlying lattice so that altogether, the
local geometry of the post array is expected to affect the
coupling of the chain to the lattice. Historically the plas-
tic deformation of cristalline materials has thoroughly
been understood once the preferential slip planes and di-
rections for dislocations have been rationalized in terms
of lattice symmetries [25]. Likewise we can expect that
with the kink concept, receding contact angles can be
rationalized in terms of symmetry of the post arrays.

In conclusion, we have evidenced that kinks in re-
ceding contact lines are the relevant elementary mech-
anism of motion on periodic superhydrophobic surfaces.
Simulations fully vindicate the role of the kinks in the
quasi-static motion of the contact line: they account
for both wetting isotropy and reduction of the depin-
ning threshold. Contact lines are yet another example of
Frenkel-Kontorova chains and based on the abundant lit-
erature [24] we expect that the kink concept can lead to a
rationalization of the dependance of receding contact an-
gles on underlying surface geometry. As a next step the
dissipative processes should also be taken into account
including fluid viscosity both at the meniscus scale and
at smaller lengthscales near the contact line.
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