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INDEX OF SINGULARITIES OF REAL VECTOR FIELDS ON SINGULAR HYPERSURFACES

Gómez-Mont, Seade and Verjovsky introduced an index, now called GSV-index, generalizing the Poincaré-Hopf index to complex vector fields tangent to singular hypersurfaces. The GSV-index extends to the real case.

This is a survey paper on the joint research with Gómez-Mont and Giraldo about calculating the GSV-index Ind V±,0 (X) of a real vector field X tangent to a singular hypersurface V = f -1 (0). The index Ind V±,0 (X) is calculated as a combination of several terms. Each term is given as a signature of some bilinear form on a local algebra associated to f and X. Main ingredients in the proof are Gómez-Mont's formula for calculating the GSV-index on singular complex hypersurfaces and the formula of Eisenbud, Levine and Khimshiashvili for calculating the Poincaré-Hopf index of a singularity of a real vector field in R n+1 .

Introduction

This paper is a survey of the joint work with Xavier Gómez-Mont and Luis Giraldo spread over some 15 years. We give a formula for calculating the index of singularities of real vector fields on singular hypersurfaces. Some partial results are published in [START_REF] Giraldo | Pavao Computation of topological numbers via linear algebra: hypersurfaces, vector fields and vector fields on hypersurfaces[END_REF], [START_REF] Gómez-Mont | The index of a vector field tangent to a hypersurface and the signature of the relative Jacobian determinant[END_REF], [START_REF] Gomes-Mont | The index of a vector field tangent to an odddimensional hypersurface, and the signature of the relative Hessian[END_REF], [START_REF] Giraldo | Flags in zero dimensional complete intersection algebras and indices of real vector fields[END_REF].

In [START_REF] Gómez-Mont | The index of a holomorphic flow with an isolated singularity[END_REF], Gómez-Mont, Seade and Verjovsky studied vector fields tangent to a complex hypersurface with isolated singularity. They introduced a notion of index, now called GSV-index at a common singularity of the vector field and the hypersurface (see also [START_REF] Bonatti | The index of holomorphic vector fields on singular varieties. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF]). It is a kind of relative version of the Poincaré-Hopf index at a singularity. A natural question is how can one calculate this index. Complex case was studied first. It was solved by Gómez-Mont in his seminal paper [START_REF] Gómez-Mont | Xavier An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity[END_REF]. Gómez-Mont's formula expresses the GSV index via dimensions of certain local algebras. The GSV index can be generalized to the real case. More precisely, depending on the side of the singular hypersurface, there are two GSV indices. Real case, is more difficult than the complex case 1 since in the real case a simple singularity can carry the index +1 or -1, whereas in the complex case all simple singularities count as +1.

In the absolute real case Eisenbud, Levine and Khimshiashvili expressed the Poincaré-Hopf index of a vector field in terms of the signature of a bilinear form.

Our result in the relative real case expresses the GSV-index of a real vector field on a singular variety as a sum of certain terms. Each term is a signature of a non-degenerate bilinear form on some local algebra.

Our proof has two essential ingredients: on one hand Gomez-Mónt's result in the singular complex case and on the other hand the Eisenbud, Levine, Khimshiashvili's result in the real absolute case.

1.1. Real absolute case. Let us recall first the definition of the Poincaré-Hopf index of a singularity of a real vector field in R n+1 . Let

X = n i=0 X i ∂ ∂x i (1) 
be a smooth vector field in R n+1 having an isolated singularity at the origin X 0 = 0. One can identify the vector field X with a mapping X : (R n+1 , 0) → (R n+1 , 0). Taking a small sphere S n around the origin, the vector field X induces a map N = X ||X|| : S n → S n , where S n is the unitary sphere in R n+1 . The Poincaré-Hopf index Ind 0 (X) of the vector field X at the origin is defined as the degree of N. That is, Ind(X, 0) is the number of pre-images of generic points taken with orientation.

Example 1. Let X be the vector field X(x, y) = x ∂ ∂x +y ∂ ∂y in R 2 having a node at the origin and let Y be the vector field Y (x, y) = x ∂ ∂x -y ∂ ∂x having a saddle at the origin. Then Ind 0 (X) = 1 and Ind 0 (Y ) = -1.

1.2. Complex absolute case. Consider the complex n-dimensional space C n , with complex coordinates x 1 , . . . , x n and a complex vector field X of the form X = n i=0 X i ∂ ∂x i . We can identify C n with R 2n . With this identification a holomorphic vector field on C n becomes a smooth real vector field on R 2n and one can apply the previous definition of the Poincaré-Hopf index Ind 0 (X) to a singularity of a holomorphic vector field. Note that not every smooth real vector field on R 2n comes from a holomorphic vector field on C n . By holomorphy, a holomorphic vector field seen as a map preserves orientation. Hence the index of a singularity of a holomorphic vector field is necessarily positive.

Example 2. Let n = 1 and let X = x ∂ ∂x and Y = x 2 ∂ ∂x be vector fields in C. Then Ind 0 (X) = 1 and Ind 0 (Y ) = 2.

In the complex case, the Poincaré-Hopf index is simply the multiplicity. One counts how many points are hidden at the singularity at the origin.

2. Definition of the GSV-index in the complex and real case 2.1. Smooth points. Let now f : (R n+1 , p) → (R, 0) be a germ of an analytic function. Then V = f -1 (0) is a germ of a hypersurface at p. We say that a vector field defined in a neighborhood of p ∈ V is a vector field tangent to V , if there exists an analytic function h such that

X(f ) = f h. (2) 
The function h is sometimes called the cofactor of X. Assume first that p ∈ V is a regular point of f . Then the variety V is smooth in a neighborhood of p. Let x = (x 1 , . . . , x n ) be a chart of V in a neighborhood of p. We assume moreover that the orientation of ∇f, ∂ ∂x 1 , . . . , ∂ ∂xn is positive. The chart x = (x 1 , . . . , x n ) transports the vector field X to R n . One then applies the usual definition of the Poincaré-Hopf index. Thus we define the relative Poincaré-Hopf index Ind V,p (X) of a vector field tangent to a hypersurface, relative to the surface. It is easy to verify that the definition is independent of the choices.

If

f : (C n+1 , p) → (C, 0) is a germ of holomorphic function instead, p ∈ C n+1 is a regular point of f , V = f -1 (f (p)) ⊂ C n+1 is a com- plex hypersurface,
and X a holomorphic vector field tangent to V , one transports as previously the vector field to C n and defines the relative Poincaré-Hopf index Ind V,p (X) in the complex case. Note that in the relative complex case, just as in the absolute complex case, the relative index is always positive. 2.2. Singular points, GSV-index in the complex case. Let as previously, f : (C n+1 , 0) → (C, 0) be a germ of a holomorphic function. Assume now that p ∈ C n+1 is an isolated singularity of f . Then V = f -1 (0) ⊂ C n+1 is a complex hypersurface with isolated singularity at p. Let X be a holomorphic vector field defined in a neighborhood of p ∈ C n+1 tangent to V . That is, relation (2) holds. In [START_REF] Gómez-Mont | The index of a holomorphic flow with an isolated singularity[END_REF], Gómez-Mont, Seade and Verjovsky defined what is now called the GSV-index of a vector field tangent to a singular variety at the singularity Ind V,0 (X).

In order to formulate the definition, let us first recall that the holomorphic function f : (C n+1 , 0) → (C, 0) having an isolated singularity at the origin defines a Milnor fibration: f : B \ {0} → C * , where B ⊂ C n+1 is a small ball around the origin. Denote V ε = f -1 (ε). For ε = 0 small, close enough to zero, all fibers V ε ∩ B are isotopic. Note that the vector field X is not necessarily tangent to the fibers V ε ∩ B, for ε = 0. We modify X slightly, giving a C ∞ vector field X ε tangent to a fiber V ε ∩ B, for ε = 0 close to zero. We assume moreover that the restriction of the vector field X ε on ∂(V ε ∩ B) is isotopic to the restriction of the vector field X to ∂(V ∩ B) see [START_REF] Pugh | A generalized Poincaré index formula[END_REF] and [START_REF] Bonatti | The index of holomorphic vector fields on singular varieties. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF].

The GSV-index can be defined by the formula Ind V,0 (X) =

p i (ε)∈Vε∩B Ind Vε,p i (ε) (X ε ). ( 3 
)
It follows from the Poincaré-Hopf theorem that the definition is independent of all choices. Indeed, the Poincaré-Hopf theorem says that the right-hand side of (3) is the Euler characteristic χ(V ε ∩ B) up to some correction term given by the behavior of any vector field X ε on ∂(V ε ∩ B). Note that by the Milnor fibration theorem all regular fibers V ε ∩ B, ε = 0, have the same Euler characteristic. Moreover, the behavior of any vector field in X ε on ∂(V ε ∩B) is the same as the behavior of X on ∂(V ∩ B). Hence the correction term is independent of the choices.

For an equivalent topological definition using residues see Suwa [START_REF] Suwa | GSV-indices as residues[END_REF].

Proposition 1.

[1] Up to a constant K(V ) independent of the vector field X, the GSV-index Ind V,0 (X) is characterized by the two following conditions:

(i): At smooth points p ∈ V , the GSV-index coincides with the relative Poincaré-Hopf index Ind V,p (X). (ii): The GSV-index satisfies the law of conservation of number:

For any holomorphic vector field X ′ tangent to V sufficiently close to X the following law of conservation of number holds:

Ind V,0 (X) = p i ∈V Ind V,p i (ε) (X ′ ). ( 4 
)
Here p i are singularities of X ′ belonging to V , which are close to 0.

The constant can be determined by calculating the GSV-index Ind V,0 (X), for any vector field tangent to V .

2.3.

GSV-index in the real case. Let now f : (R n+1 , 0) → (R, 0) be a germ of a real analytic function. In this case, there is no Milnor fibration, or more precisely there are two Milnor fibrations: one for strictly positive small values of ε and one for small strictly negative values of ε. The Euler characteristic of all fibers V ε ∩ B, for ε small of the same sign are the same, but can be different for ε positive or ε negative. (Think of f : R 3 → R given by f (x, y, z) = x 2 + y 2 -z 2 .) As in the complex case, in the real case one now defines the GSV-index. More precisely, one defines two GSV indices Ind V ± ,0 (X), taking V ε , for ε positive or negative respectively.

Calculating the GSV-index on complex hypersurfaces

A formula for calculating the GSV-index in the complex case was given by Gómez-Mont in [START_REF] Gómez-Mont | Xavier An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity[END_REF]. Let us first define the principal ingredients. Let O C n+1 ,0 be the algebra of germs of holomorphic functions at the origin. Let f ∈ O C n+1 ,0 be given, with f (0) = 0. Let f i = ∂f ∂z i , i = 0, . . . , n, be the partial derivatives of f . Assume that 0 is an isolated singularity of f . This means that the algebra

A C = O C n+1 ,0 (f 0 , . . . , f n ) (5) 
is finite dimensional. Here O C n+1,0 is the algebra of germs at 0 of holomorphic functions. The dimension µ = dim(A C ) is the Milnor number of the singularity. Let X be a germ of holomorphic vector field at 0 ∈ C n+1 given by [START_REF] Bonatti | The index of holomorphic vector fields on singular varieties. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF]. Assume that 0 is an isolated singularity of X. This means that the algebra

B C = O C n+1 ,0 (X 0 , . . . , X n ) (6) is finite dimensional. Its dimension dim(B C
) is the Poincaré-Hopf index Ind 0 (X) of the vector field X in the ambient space. Let V = f -1 (0) be the hypersurface defined by f and assume that X is tangent to V . That is, (2) holds for some holomorphic function h.

Theorem 1. [6]

The GSV-index of a holomorphic vector field X tangent to a complex hypersurface V at an isolated singularity 0 is given by.

Ind V,0 (X) = dim B C (f ) -dim A C (f ) , if (n+1) even, dim B C -dim B C (h) + dim A C (f ) , if (n+1) odd. (7) 
We give the idea of proof of Theorem 1. As recalled in Proposition 1, the GSV index is defined up to a constant by condition (i) and (ii) in Proposition 1. In [START_REF] Gómez-Mont | Xavier An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity[END_REF] Gómez-Mont considers the Koszul complex :

0 → Ω n-1 V,0 →Ω n-1 V,0 → • • • → Ω 1 V,0 → O V,0 → 0, (8) 
where

Ω i V,0 = Ω C n+1 ,0 f Ω C n+1 ,0 + df ∧ Ω C i-1 n+1,0 . ( 9 
)
is the space of relatively exact forms on V and the arrows in ( 8) are given by contraction of forms by the vector field X. Gómez-Mont defines the homological index Ind hom V,0 as the Euler characteristic of the complex (8):

Ind hom V,0 = n-1 i=0 (-1) i dim H i (K) ( 10 
)
where H i (K), i = 0, . . . , n -1, are the i-th homology groups of the Koszul complex [START_REF] Giraldo | Pavao Computation of topological numbers via linear algebra: hypersurfaces, vector fields and vector fields on hypersurfaces[END_REF]. It is easy to see that at smooth points the homological index coincides with the relative Poincaré-Hopf index. In [START_REF] Giraldo | A law of conservation of number for local Euler characteristic[END_REF], Giraldo and Gómez-Mont show that the homological index verifies the law of conservation (ii) of Proposition 1. Hence, the homological index coincides with the GSV-index up to a constant K(V ). The homological index has the advantage that it can be calculated using projective resolutions of a double complex. The horizontal complexes in the double complex are obtained as a mapping cone induced by multiplication by the cofactor h in (2) in the Koszul complex in the ambient space. Vertical complexes are obtained as the mapping cone induced by multiplication by f in the de Rham complex in the ambient space. To show that the homological index Ind hom V,0 coincides with the GSV-index Ind V,0 , it is sufficient for each f to calculate both indices on a vector field X associated to f . If the dimension of the ambient space (n + 1) is even, a natural candidate is the Hamiltonian vector field

X f = (n+1)/2 i=1 [f 2i ∂ ∂x 2i-1 -f 2i-1 ∂ ∂x 2i ]. (11) 
If (n + 1) is odd, Gómez-Mont uses the vector field

Y f = f ∂ ∂x 0 (n+1)/2 i=1 [f 2i ∂ ∂x 2i-1 -f 2i-1 ∂ ∂x 2i ] ( 12 
)
in generic coordinates x i .

Calculating the Poincaré-Hopf index of vector fields in R n+1

When studying the Poincaré-Hopf index in the real case, one has to take into account orientation and not just multiplicity. This is done using some bilinear forms. We recall in this section the results of Eisenbud, Levine [START_REF] Eisenbud | An algebraic formula for the degree of a C ∞ map germ[END_REF] and Khimshiashvili [START_REF] Himšiašvili | The local degree of a smooth mapping. (Russian) Sakharth. SSR Mecn[END_REF] who solve this problem for real vector fields in the ambient space R n+1 . This, in addition to Gómez-Mont's formula for calculating the GSV-index on complex hypersurfaces, are the two main ingredients in our study.

Let

B = A R n+1 ,0 (X 0 , . . . , X n ) , (13) 
where A R n+1 ,0 is the algebra of germs at 0 of analytic functions in R n+1 . Let X, given by ( 1), be a germ of analytic vector field with an algebraically isolated singularity. That is, the singularity when considered over the complex domain remains isolated. Then the algebra B is finite dimensional. Let J = det( ∂X i ∂x j ) ∈ A R n+1 ,0 be the Jacobian of the map defined by the vector field X. It can be shown that the class [J] ∈ B of J in B is non-zero. In [START_REF] Eisenbud | An algebraic formula for the degree of a C ∞ map germ[END_REF] and [START_REF] Himšiašvili | The local degree of a smooth mapping. (Russian) Sakharth. SSR Mecn[END_REF] Eisenbud, Levine and Khimshiashvili define a nondegenerate bilinear form < , > B,J as follows.

B × B • -→B L -→R. ( 14 
)
Here the first arrow is simply multiplication in the algebra B and L is any linear mapping such that L([J]) > 0. Of course, the bilinear form depends on the choice of L. However its signature sgn(B, J) = sgn(< , > B,J ) does not. More precisely Eisenbud, Levine, Khimshiashvili show Theorem 2. Let X be a germ at 0 of a real analytic vector field on R n+1 having an algebraically isolated singularity at the origin. Then the Poincaré-Hopf index Ind R n+1 ,0 (X) of the vector filed X at the origin is given by Ind R n+1 ,0 (X) = sgn(B, J).

In order to prove the theorem, one has to prove that the signature sgn(B, J) coincides with the Poincaré-Hopf index for simple singularities and verifies the law of conservation of number. The first claim is easily verified. The key-point of the proof of the law of conservation of number is the claim that the bilinear form < , > B,J is nondegenerate.

Once one knows that the form is nondegenerate, the law of conservation of number will follow. Indeed, let X ′ be a small real deformation of the vector field X. As the bilinear form is nondegenerate, its signature does not change by a small deformation. The local algebra B will decompose into a multilocal algebra B(X ′ ) of the same dimension concentrated in some real point and complex conjugated pairs of points. One verifies that the contribution to the signature of the pairs of complex conjugated points is zero. From the preservation of signature, there follows the law of conservation of number once one knows that the bilinear form is nondegenerate.

The nondegeneracy of the form < , > B,J is a more general feature. It follows from the fact that J generates the socle of the algebra B. By definition a socle in an algebra is the minimal nonzero ideal of the algebra.

In general, let B be a real algebra. Assume that the socle of B is one-dimensional generated by J ∈ B. We can define a bilinear form < , > B,J as above. Following the proof of Eisenbud-Levine in [START_REF] Eisenbud | An algebraic formula for the degree of a C ∞ map germ[END_REF] one verifies that the form < , > B,J is nondegenerate. Its signature does not depend on the choice of the linear map L such that L(J) > 0.

Example 3. Consider for instance B =

A R 2 ,0 (x 2 ,y 3 ) . Then the socle is onedimensional generated by J = xy 2 . The bilinear form < , > B,J is a nondegenerate form on the six dimensional space B.

If B = A R 2 ,0
(x 2 ,xy 2 ,y 3 ) , then the socle is generated by xy and y 2 . It is not one-dimensional and one cannot define a nondegenerate bilinear form as above.

Bilinear Forms on Local Algebras

Let B = A R n+1 ,0
(X 0 ,...,X n ) be a finite dimensional complete intersection algebra. This assures that its socle is one-dimensional generated by the Jacobian J = det( ∂X i ∂x j ). In [START_REF] Gómez-Mont | The index of a vector field tangent to a hypersurface and the signature of the relative Jacobian determinant[END_REF], we observed that the Eisenbud-Levine, Khimshiashvili signature generalizes. Let h ∈ B be arbitrary. Denote Ann(h) = {g ∈ B : gh = 0} the annihilator ideal of h. For B as above, the algebra B Ann(h) has a one-dimensional socle generated by the element

J h ∈ B Ann(h) .
The assumption that (J) is minimal guarantees that J can be divided by h. We define the bilinear form < , > B,h,J on B Ann(h) by < b, b ′ > B,h,J = L(bb ′ h), where L : B → R is a linear mapping such that L(J) > 0. In other words < b, b ′ > B,h,J = L h (bb ′ ), where L h ( J h ) > 0 is a linear mapping. Note that in general the element J h is not well defined in B. However, the ambiguity is lifted in the quotient space B Ann(h) .

We put sgn(B, h, J) = sgn < , > B,h,J = sgn( B Ann(h) , J h ). ( 16)

5.1. Signatures associated to a singular point of a hypersurface. Let now f : (R n+1 , 0) → (R, 0) be a germ of analytic function having an algebraically isolated singularity at the origin. Let

f i = ∂ ∂x i
be the partial derivatives of f . Consider the local algebra A = A R n+1 ,0

(f 0 ,...,fn) . It is a finite complete intersection algebra. Its socle is one-dimensional generated by the Hessian Hess(f ) = det( ∂ 2 f ∂x i ∂x j ). Define a flag of ideals in A

K m = Ann A (f ) ∩ (f m-1 ), m ≥ 1. ( 17 
) Note that 0 ⊂ K ℓ+1 ⊂ • • • ⊂ K 1 ⊂ K 0 = A. (18) Define a family of bilinear forms < , > f,m : K m × K m → R by < a, a ′ > f,m =< a f m-1 , a ′ >, m = 0, . . . , ℓ + 1, (19) 
where < , > A,Hess(f ) is the bilinear form defined in [START_REF] Himšiašvili | The local degree of a smooth mapping. (Russian) Sakharth. SSR Mecn[END_REF] for some linear map L with L(Hess(f )) > 0. In particular < a, a ′ > f,0 =< f a, a ′ > A,Hess(f ) . The form < , > f,0 degenerates on Ann A (f ), but on K 0 /K 1 defines a nondegenerate form. We have < a, a ′ > f,1 =< a, a ′ > A,Hess(f ) . This form degenerates on K 2 = Ann A (f ) ∩ (f ) etc. In [START_REF] Giraldo | Flags in zero dimensional complete intersection algebras and indices of real vector fields[END_REF], we define

σ i = sgn < , > f,i , i = 0 . . . , ℓ.
(20) The signatures σ i are intrinsically associated to the singularity 0 of f .

Main Result

The following theorem resumes our results [START_REF] Gómez-Mont | The index of a vector field tangent to a hypersurface and the signature of the relative Jacobian determinant[END_REF], [START_REF] Gomes-Mont | The index of a vector field tangent to an odddimensional hypersurface, and the signature of the relative Hessian[END_REF], [START_REF] Giraldo | Pavao Computation of topological numbers via linear algebra: hypersurfaces, vector fields and vector fields on hypersurfaces[END_REF], [START_REF] Giraldo | Flags in zero dimensional complete intersection algebras and indices of real vector fields[END_REF] about the calculation of the GSV-index of singularities of real vector fields on hypersurfaces: Theorem 3. Let f : (R n+1 , 0) → (R, 0) be a germ of analytic function with algebraically isolated singularity at the origin. Let X be an analytic vector field in R n+1 having an algebraically isolated singularity at the origin. Assume that X is tangent to V = f -1 (0). That is X(f ) = hf , for some analytic function h. Then (i): if (n + 1) is even,

Ind V + ,0 (X) = Ind V -,0 (X) = sgn(B, h(X), J(X))-sgn(A, h(X), Hess(f )). ( 21 
) (ii): if (n + 1) is odd, Ind V ± ,0 (X) = sgn(B, h(X), J(X)) + sgn(A, Hess(f )) + K ± , (22) 
where

K + = i≥1 σ i , K -= i≥1 (-1) i σ i . ( 23 
)

Proof of the Main theorem

We give here the main ingredients of the proof of Theorem 3. The GSV-index is determined by three properties:

(i): Value at smooth points (ii): The law of conservation of number (iii): Constants K ± depending only on the orientation (side) V ± of the variety V = f -1 (0) and not on the vector field. One verifies easily that at smooth points of V , the formula is valid. Indeed, from the tangency condition there follows (f ) ⊂ Ann(h). In smooth points the converse is also true. Hence Ann(h) = (f ). Next, working in a local chart at smooth points one shows that sgn < , > B,h,J gives the relative Poincaré-Hopf index of the vector field. Then, one has to show that our formulas ( 21) and ( 22) verify the law of conservation of number. Some parts are easier in the even case and some other are easier in the odd case. 7.1. (n + 1) odd case. The law of conservation of number is easy for (n + 1) odd. Indeed, in this case the complex index, up to a constant depending only of f , is dim Theorem 1). On the other hand on B Ann(h) there is the non-degenerate form < , > B,h,J . Make a small deformation X ′ of X, tangent to V . The corresponding local algebra B or rather its complexification decomposes into a multilocal algebra concentrated in several points corresponding to singular points of X ′ . The dimension of the multilocal algebra is equal to the sum of the dimensions at points in which it is concentrated. On the other hand, by Theorem 1 of Gomez-Mont, the dimension dim B C (X ′ ) Ann(h) verifies the law of conservation of number. Hence, the dimension of the multilocal algebra obtained after deformation X ′ of X is equal to the dimension of the local algebra dim B C Ann(h) before the deformation. This permits to extend continuously the bilinear form < , > h,J from the algebra B Ann(h) to its deformation. By nondegeneracy of the form < , > h,J , its signature is unchanged by a small deformation. This gives the law of conservation of number for the signature of < , > h,J when adding the signatures for all (real or complex) singular points of X ′ appearing after deformation. Note that from the tangency condition (2), it follows that (f ) ⊂ Ann(h), so only points in V = f -1 (0) can contribute to the signature sgn < , > B(X ′ ),h,J after deformation. At the end, let us note that complex zeros of X ′ come in pairs. One verifies that the contribution to the signature of each pair is equal to zero. Hence only real singular points of X ′ belonging to V contribute. The law of conservation of number (in the real case) for the formula sgn(B, h, J) follows.

B C -dim B C (h) = dim B C Ann(h) (see
The final step in proving the formula in the case (n + 1) odd is to adjust the constant sgn(A, Hess(f )) + K ± . This is difficult in the odd case. We will come back to it in subsection 7.4. 7.2. (n + 1) even case. In the (n + 1) even case Theorem 1 says that in the complex case, up to a constant, the index is given by dim B C (f ) . There is no natural bilinear form on B C (f ) . We consider a non-degenerate bilinear form on B C Ann(h) . We stratify the space of bilinear vector fields by the dimension of the ideal (h) in the algebra A. The signature sgn(h(X), J(X)) verifies the law of conservation of number in restriction to each stratum. We show that when changing the stratum the jump in sgn(B, h, J) is equal to the jump in sgn(A, h, Hess(f )). The two jumps hence compensate in the index formula (21). In order to show the equality of the jumps it is sufficient to study the place where all strata meet i.e. the stratum of highest codimension. One has the highest codimension for the Hamiltonian vector field X f given by [START_REF] Gomes-Mont | The index of a vector field tangent to an odddimensional hypersurface, and the signature of the relative Hessian[END_REF], when h = 0. Note that in this case the two algebras A and B coincide and J(X) = Hess(f ).

In this case it is very easy to determine the constant (independent of the vector field) adjusting the signature formula with index. For that purpose, one studies the Hamiltonian vector field X f . Note that the Hamiltonian vector field X f is tangent to all fibers V ε = f -1 (ε). Moreover, it has the same behavior on the boundary V ε ∩ B, for ε = 0 as on V ∩ B. The Hamiltonian vector field X f has no zeros on V ε = f -1 (ε), for ε = 0. Hence Ind V ± (X f ) = 0. On the other hand sgn(B, h(X), J(X)) -sgn(A, h, Hess) = 0, as A = B and J = Hess. It follows that no correction term has to be added to sgn(B, h(X), J(X))sgn(A, h, Hess) in order to obtain the formula for Ind V ± ,0 (X). 7.3. Why is Ind V + ,0 (X) = Ind V -,0 (X) in the (n + 1) even case and not in the odd case? We explain here why Ind V + ,0 (X) = Ind V -,0 (X) in the (n + 1) even case and not in the odd case. Note first that the index of a vector field in the ambient space is an even function if the dimension (n + 1) of the ambient space is even and is an odd function if (n + 1) is odd. We next use Morse theory. Consider the vector field ∇f. By Morse theory, the Euler characteristic χ verifes:

χ(V + ) = 1 + Ind(∇f ) χ(V -) = 1 + Ind(-∇f ). ( 24 
)
Here χ(V + ) is the Euler characteristic of V ε ∩ B, for ε > 0 small. The value χ(V -) is defined analogously. If (n + 1) is even, then Ind(∇f ) = Ind(-∇f ), so χ(V + ) = χ(V -) and Ind V + ,0 (X) = -Ind V -,0 (X).

If (n + 1) is odd, then Ind(-∇f ) = -Ind(∇f ), so χ(V + ) -1 = -(χ(V -) -1) and Ind V -,0 (X) = 2 -Ind V + ,0 (X). 7.4. Adjusting the constant K in the (n + 1) odd case. In order to complete the sketch of proof of the main theorem, we have to explain how do we calculate the constant K ± appearing in the (n + 1) odd case (22).

As shown previously, the two signature terms in ( 22) calculate the GSV-index up to a constant independent of the vector field. In order to determine the constant, for each V = f -1 (0), one has to take a vector field tangent to V , having an algebraically isolated singularity at the origin. Contrary to the situation in the (n + 1) even case, in the odd case, there is no such natural vector field. As in [START_REF] Gómez-Mont | Xavier An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity[END_REF], we use the family of vector fields

X t = (f -t) ∂ ∂x 0 (n+1)/2 i=1 [f 2i ∂ ∂x 2i-1 -f 2i-1 ∂ ∂x 2i ] (25) in generic coordinates. The local algebra is B = B(X 0 ) = A R n+1 ,0 (f,f 1 ,f 2 ,...,fn) . Note that X t is tangent to V t = f -1 (t), for any t. More precisely, X t (f ) = f 0 f , so h = f 0 is the cofactor of X t . Hence, by definition Ind V + (X, 0) = pt∈Vt∩B Ind Vt,pt (X t ). (26) 
But, these indices are calculated using the multilocal algebra B t and the relative Jacobian J(Xt) f 0 . That is, the index is given by the signature of the bilinear form < , > Bt , for t = 0 small. For the index Ind V + ,0 (X 0 ), we have to take it positive and for Ind V -,0 (X 0 ) it is negative. The problem is that this form degenerates on Ann Bt (f 0 ), for t = 0.

We prove in [START_REF] Giraldo | Flags in zero dimensional complete intersection algebras and indices of real vector fields[END_REF] a general result for algebras A = A(f ) and B = B(X) associated to a vector field X tangent to V = f -1 (0) i.e. verifying (2): Lemma 1. There exists a natural isomorphism between the algebras Ann B (h) and Ann A (f ).

Proof. The isomorphism is given by the mapping g → k if gh = f k.

Lemma 1 permits to transport all higher order signature vanishing in Ann B 0 to a natural algebra A. We apply it to our vector field X t . When looking at the signature of the form < , > Bt , we have one part which does not degenerate. It is the part in B Ann B (f 0 ) . The bilinear form < , > Bt degenerates at different orders on different parts of Ann Bt (f 0 ). By Lemma 1, we transport the bilinear form < , > Bt to a bilinear form in the coordinate independent algebra Ann A (f ). Note that in B t , we have f = t, so degeneration of < , > Bt at different orders of t corresponds to multiplication by f in the algebra Ann A (f ). For more details see [START_REF] Giraldo | Flags in zero dimensional complete intersection algebras and indices of real vector fields[END_REF].

8. Open problems 8.1. Geometric interpretation of the signatures σ i . Filtration of contributions to the Euler characteristic of the generic fiber. In Theorem 3 appear higher order signatures σ i defined in (20). These signatures are associated to the singularity f alone. We would like to give a geometric interpretation of these numbers. We believe that they correspond to parts of the Euler characteristic of the generic fiber, filtered by the speed of arrival at the singular fiber.

Let us be more precise. In [START_REF] Teissier | Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces[END_REF] Teissier studies polar varieties in the complex case. He considers a germ of a function f : (C 2 , 0) → (C, 0) having an isolated critical point at the origin. He considers a Morsification f s = f -sx 0 of f in generic coordinates (x 0 , . . . , x n ). Its critical points are given by

f 0 -s = f 1 = • • • = f n = 0.
(27) Let Γ be the curve given by f 1 = • • • = f n = 0. The curve Γ is called polar curve. In general it has several branches Γ = ∪ ℓ q=1 Γ q . By Morsification, the critical point 0 of f decomposes in several critical points arriving along the polar curve to the origin. For each value of s = 0, the critical points of f s belong to f -1 0 (s) ∩ Γ. Each critical point corresponds to a vanishing cycle contributing to H n (V t 0 ). In [START_REF] Teissier | Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces[END_REF], Teissier observed that, after Morsification, critical points arrive at different speed at the origin. More precisely, each component Γ q of the polar curve Γ is parametrized as x 0 (t q ) = t mq q + • • • . . . . . . . . . x n (t q ) = λ n t kq,n q

+ • • • (28)
where m q ≤ k q,i . In [START_REF] Teissier | Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces[END_REF], Teissier calculates the exponent m q . One can use x 0 (or the corresponding critical value) as a measure for the speed of approach of a critical point in the Morsification. One can filter the n-th group of homology of the generic fiber H n (f -1 (t)) i.e. the space of vanishing cycles, by the speed of arrival of the corresponding critical points. We believe that this filtration is given by the filtration [START_REF] Teissier | Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces[END_REF] or rather its complex counterpart. The dimensions

0 = dim A K 0 ≤ dim A K 1 ≤ dim A K ℓ+1 ≤ dim A (29)
would measure the dimension of the space of vanishing cycles arriving at a certain minimal speed.

The signatures σ i would be the real counterpart. The signature σ 0 is a signature of a bilinear form on A. It measures the Euler characteristic χ(V t ). We believe that the signatures σ i that we introduced measure the filtered part of the Euler characteristic of the generic fiber χ(V t ), the filtration being done by taking only the part of the topology of the fiber arriving at a certain minimal speed. We hope to be able to address this problem in a continuation of our research. 8.2. Generalization to higher codimension. In [START_REF] Graf Von Bothmer | Xavier An algebraic formula for the index of a vector field on an isolated complete intersection singularity[END_REF] Bothmer, Ebeling and Gómez-Mont generalized Gómez-Mont's formula (Theorem 1) to a formula for the index of a vector field on an isolated complete intersection singularity in the complex case. A natural problem would be to extend the result to the real case. Here, as in our Theorem 3, one would certainly have to define some bilinear forms on the spaces studied in [START_REF] Graf Von Bothmer | Xavier An algebraic formula for the index of a vector field on an isolated complete intersection singularity[END_REF].