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The low temperature phase diagram of an assembly of Bose particles, interacting via a simple
soft disk potential, is studied numerically by means of Monte Carlo simulations. At sufficiently
high densities, the system features a cluster crystal phase, as observed in its classical coun-
terpart. In the low temperature limit, and in a relatively wide region of parameter space, the
quantum cluster crystal undergoes a transition to a supersolid phase, displaying both a finite
superfluid fraction and crystalline order. We argue that soft-core Bosons ought be regarded
as a “minimal model” of continuous-space supersolidity. With the aim of elucidating the in-
terplay between superfluid response and solid order, we compute the excitation spectrum of
the system. A comparison of that of the insulating cluster crystal with that of the supersolid,
shows that the latter features an additional acoustic mode.

Keywords: Supersolidity, Cluster Solid, Bose Gas

1. Introduction

The elusive supersolid phase of matter has intrigued condensed matter and many-
body physicists for over half a century. The observation in 2004 by Kim and Chan
[1] of non-classical rotational inertia in a crystal of 4He rekindled the interest in such
a phase of experimenters and theorists alike. Solid 4He is universally believed to be
the most likely candidate to display a supersolid phase, among naturally occurring
condensed matter systems. At the time of this writing, however, the controversy
over whether the anomaly observed by Kim and Chan indeed signals the transition
of the system to a supersolid phase, has not yet been resolved [2]. Besides the
feebleness of the observed superfluid response, as well its puzzling dependence on
details of the measuring apparatus, it seems as if a significant source of ambiguity
in the interpretation of existing data stems from the currently generally limited
understanding of the supersolid phase.

In order to achieve greater insight, it would be beneficial to identify a theoretical
many-body system whose supersolid properties could be established unambigu-
ously, by means of rigorous calculations. That would allow one to characterize the
phase not only through its most obvious qualities (namely superflow and crystalline
order), but also some, like dynamical responses, that could be probed by different
experiments than those carried out until now. Presumably, that would not only
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help resolve the controversy over solid helium, but also facilitate the detection of
supersolid phases in other systems.

Recently, Cinti et al. [3] investigated by Monte Carlo simulations a two-
dimensional model of bosons interacting via a purely repulsive pair-wise potential,
featuring a dipolar 1/r3 long-range tail but saturating to a constant finite value
at short distance. This particular form of potential might be engineered in cold
atomic systems, through a mechanism known as Rydberg blockade [4]. Such a sys-
tem displays for sufficiently high density a crystal phase, i.e., one in which each
lattice site is occupied by a number of particles K larger than one. In turn, such
a crystal can turn superfluid at low enough temperature, phase coherence being
established by quantum-mechanical tunnelling of particles across adjacent lattice
sites.

Bounded pair potentials have been employed in classical systems as well, to
describe the effective interactions between macromolecules. In that context too,
it was found that a certain class of bounded repulsive pair potentials give rise,
for sufficiently high density and low temperature, to multiple-occupancy crystal
phases [5]. In particular, a criterion is known for the quantitative prediction of
clustering, based on the form of the inter-particle potential [6]. We refer henceforth
to the bunch of particles at each lattice site, as “cluster” or “droplet”, and to the
resulting phase as “cluster crystal” (“cluster supersolid” when appropriate).

The possible relevance of the long-range tail of the interaction, in stabilizing the
supersolid phase, was recently studied [7] by considering a strictly short-range, soft
disk type inter-particle potential,

v(r) =
{

D if r ≤ a
0 if r > a

(1)

where D is the potential barrier that two particles have to overcome in order to
overlap (independent of the extent of the overlap), and a is the disk radius. The
similarity between the phase diagram obtained with this simple interaction [7]
and that found in the presence of a dipolar (or faster-decaying) tail [3], points to
the fundamental irrelevance of the long-range tail of the potential. The soft-disk
system can thus be considered a “minimal” underlying model for the presence
of supersolidity in the continuum. As such, it is a worthwhile subject for further
investigation for the reasons mentioned above, namely as a toy model embodying
basic properties of the supersolid phase.

With this aim, in this work we carry out a numerical study of several key prop-
erties of the soft disk model and its supersolid phase. Specifically, we compute the
momentum distribution, the potential felt by a test particle (related to tunnelling
of particles between different clusters), and the superfluid fraction. We also explore
the evolution of the statistics of cycles of permutation of identical particles across
the supersolid transition, and compare the excitation spectra of the supersolid and
the insulating crystals.

The paper is organized as follows: in the next section we introduce the nota-
tion and briefly describe the computational methodology, devoting the rest of the
manuscript to the presentation of the results.
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Figure 1. Qualitative low temperature phase diagram for high and low D as a function of µ. The panels
show typical spatial configuration of the world lines resulting from simulations at low T , referring to the
various phases. Results shown in the upper and the lower part of the figure correspond to simulations with
D = 60 and D = 3, respectively.

2. Model and methodology

We consider a system of Bose particles of spin zero in two dimensions. The Hamil-
tonian of the system is

H = −1
2

N∑
i=1

52
i + D

∑
i>j

Θ(1− rij), (2)

where rij is the distance between particles i and j, all lengths are expressed in units
of the soft-core diameter a, while all energies are expressed in units of ε◦ = ~2/ma2.
The parameter D ≡ V/ε◦ can also be expressed as (a/ξ)2, where ξ is the quantum-
mechanical penetration length of a potential barrier of height V . In the limit ξ → 0
the model (2) reduces to the hard-sphere gas.

Path Integral Monte Carlo simulations of the system described by (2), enclosed
in a cell with periodic boundary conditions of sides (Lx, Ly) , have been performed
by means of the Continuous-space Worm Algorithm in the grand canonical ensem-
ble (i.e. at fixed temperature T , area A and chemical potential µ). Because this
methodology is by now well-established, and is thoroughly described elsewhere, we
omit here technical details, and refer the interested reader to the original references
[8, 9]. We denote by N the average number of particle, by Nc the number of clus-
ters contained in the simulation cell and by l the lattice parameter. We express the
density ρ in terms of the dimensionless parameter rs = 1/

√
ρa2. The presence of a

global superfluid response, extending to the whole system, is assessed numerically
through the winding number estimator [10] of the superfluid fraction ρs.

3. Results

In Figure 1 we summarize the main features of the phase diagram obtained in Ref.
[7]. In the T = 0 limit, it is possible to identify two qualitatively different behaviors
of the system in the strongly interacting (high D) and weakly interacting (low D)
regimes. In the former case (D = 60 in Figure 1), for low values of the density the
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Figure 2. Potential felt by a test particle averaged over many configurations along the cristallographic
direction [1, 0] passing trough the lattice sites, for two different heights of the interparticle potential. The
minima of the potential correspond to the positions of the clusters, where the disk density is higher. The
barrier between neighbouring lattice sites is increased for higher values of D, progressively supressing
tunnelling probability.

system is a superfluid gas, essentially behaving like an hard-disk fluid. This phase
undergoes solidification into a triangular crystal on increasing µ. For sufficiently
large values of D, the number of particles per cluster (unit cell) is K = 1. However,
on further increasing the chemical potential, particles bunch into clusters which
organize in a solid preserving the triangular structure. This phenomenon is classical
in nature, being related to the energy cost associated to particles being at a distance
less than the soft core diameter.

For lower values of D, the system can be kept superfluid up to a much higher
density (rs < 1, meaning that particles easily overlap). Above a certain µ the system
crystallizes directly into a cluster crystal with K > 1, the exact value depending on
D. Moreover, even though density modulations appear in the system, the superfluid
fraction in the system is not fully suppressed. This is the aforementioned cluster
supersolid phase. This phenomenon is underlain by long cycles of exchanges of
particles permutations between neighbouring clusters, eventually leading to the
superfluidity of the system as a whole.

Upon further increase of the density, ρs is progressively suppressed by the rising
potential barrier between neighbouring lattice sites, which is associated with tun-
nelling probability. This eventually destroys phase coherence in the system, which
goes into a normal (i.e. non superfluid) cluster phase. The same effect of tunnelling
suppression can be obtained also by increasing D at constant rs, instead of µ, as
can be seen in Figure 2, where the averaged potential felt by a “test” particle is
plotted along the cristallographic direction [1, 0] passing trough the lattice sites.
Note that the potential has minima in correspondence of the clusters. Higher po-
tential barriers lead to increasingly compact clusters, i.e. particles pile up on a
smaller spatial region (compare, e.g., the spread of the world lines in the two right
panels of Figure 1). The pattern illustrated in Figure 2 suggests a correpondence
with a soft-core Hubbard model, although in the present case the triangular lattice
is self-assembled and not superimposed.

Finally, contraction of the world lines with ensuing demotion of tunnelling oc-
curs when the temperature is increased. This is reflected in the distribution of
the lengths of permutation cycles, shown in Figure 3, main panel. At low tem-
peratures long permutation cycles can take place, involving particles pertaining
to different clusters. At higher temperatures permutation cycles longer than the
number of particles K inside a single droplet, i.e. longer than 6 or 7 in Figure 3, are
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Figure 3. Average number of permutation cycles as a function of the permutation length for various
temperatures (main panel), for D = 5, µ = 45, rs = 0.522. The average number of particles per droplet is
between 6 and 7 in these simulations, therefore the number of permutation cycles longer than this value
drops at all temperatures. However at low T permutation cycles involving a large number of droplets
become possible: this allows for dissipation-less flow in the system. In the inset the superfluid fraction ρs

as a function of the temperature is shown, for two different system sizes, containing Nc = 16 or Nc = 30
cristalline sites.

progressively impaired. On the other hand shorter permutation cycles still occur,
indicating that individual clusters remain superfluid even at temperatures where
global phase coherence is lost. Long permutation cycles have a direct bearing on
the superfluid fraction, shown in the inset of Figure 3 a function of the temper-
ature for various system sizes. Data are consistent with a superfluid transition in
the Kosterlitz-Thouless universality class, [11] as expected for a two-dimensional
system.

The finite superfluid response is accompanied by a strong signature in the mo-
mentum distribution n(k), shown in Figure 4. Even though Bose condensation is
suppressed in two dimensions at finite temperature, in the supersolid phase the
calculated momentum distribution features a pronounced peak at k = 0, as well as
a smaller peak at k = 2π/l. Neither is found in the insulating crystal. The former
represents the integral of the occupation number of low-momentum states, corre-
sponding to a slow power-low decay of the one-body density matrix (OBDM). The
latter describes a substantial real-space modulation of the OBDM with the period-
icity of the triangular lattice. While modulations in the OBDM are expected also
in the insulating case [12], they are too small to be detected within the statistical
precision of this calculation.

It is interesting to consider the limit on the superfluid fraction induced by density
modulations, as pointed out by Leggett [13]. The bound reads as [14]:

ρs ≤ min
ϕ(r)

(
1

ρV v2
0

∫
ρ(r) | vs(r) |2 dx

)
vs(r) =

(
~
m

)
5ϕ(r)

ϕ(r + (n Lx, n′ Ly)) = ϕ(r) + 2πn′′

(3)

where ϕ(r) is a phase function, ρ and v0 are the average value over the simulation
cell of ρ(r) and vs(r) respectively, and n, n′ and n′′ are integers. This essentially
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Figure 4. Momentum distribution n(k) for D = 5, rs = 0.522, µ = 45 in the supersolid phase (T = 0.2,
red disks) and in the insulating cluster solid (T = 4, blue circles). The peaks at k = 0 and k = 1 (in units
of 2π/l) are due to (quasi)condensation and strong modulation of the OBDM with the lattice periodicity,
respectively.
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Figure 5. Similarity of the density profiles ρ(r)/ρ for soft disks in the supersolid phase (D=5, T=0.1,

µ=45,ρs = 0.25 ± 0.01), and for solid 4He near melting (ρ = 0.0765Å−1, T = 1K). These density profiles
are obtained along the crystallographic direction [1, 0] passing trough a lattice site. r is in units of the
lattice parameter.

states that if the system is uniform the superfluid fraction can be one, while if
density modulations are present its value must be necessarily lower. Although the
Leggett bound is very loose in strongly correlated systems such as solid 4He or
parahydrogen [14], it could provide an argument to explain why soft disks are
supersolid under appropriate conditions while two-dimensional solid 4He is never,
should their density profiles look different. In order to verify this possibility we
compared (Figure 5) the density profile of the supersolid soft disk system for D=5,
T=0.1, µ=45, ρs = 0.25 ± 0.01 with the one of solid 4He in two dimensions at
low temperature slightly above the melting density (ρ = 0.0765Å−1, T = 1K).
Actually the two density profiles are remarkably similar, and the Leggett bound
gives ρs ≤ 0.39 for the soft disk and ρs ≤ 0.37 for Helium. This shows that, within
the constraint of Eq. 3 imposed by one-body properties, many-body effects have
even qualitative effects on the superfluid response. In particular, the difference
between hard- and soft-core systems is entirely encoded in two-body (and possibly
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Figure 6. S(k, ω) obtained with the described inversion procedure, for k = (0.25, 0) in units of reciprocal
lattice spacing. Data are obtained for two values of D=3 and D=5 at rs = 0.421, for T = 0.5. In the former
condition the system is supersolid, in the latter is a normal cluster solid.

higher) correlations. Indeed the pair distribution function of supersolid soft disks
is peaked at contact [7], as opposed to the correlation hole induced by hard-core
repulsion in Helium.

We finally discuss the dynamic structure factor S(k, ω) of the system, which is
related to the elementary excitations such as phonons in the solid and rotons in the
superfluid. It is not obvious in advance if the supersolid has a dominant mode of
mixed character or distinct branches. The worm algoritm is a path integral Monte
Carlo approach, and therefore one cannot have access to real time dynamics of
the system. Instead the imaginary-time density-density correlation function can be
computed

F (k, t) =
Tr(ρ−ke−tHρke−(β−t)H)

NZ
ρk =

∑
j<N

eik·rj (4)

Z being the trace over the density matrix of the system. The F (k, t) is related to
S(k, ω) by an inverse Laplace transform:

F (k, t) =
∫

dωe−tωS(k, ω) (5)

The numerical inversion of a Laplace transform is a classical ill-conditioned prob-
lem. To cope with this problem, various approaches have been developed, among
which the Maximum Entropy (ME) method is probably the most used[15]. Here
we resort instead to the Genetic Inversion via Falsification of Theories (GIFT)[16]
approach, which offers a better resolution in the reconstructed spectra. For exam-
ple, when applied to superfluid 4He, GIFT is able to correctly separate the sharp
quasi–particle excitations from the multiphonon branch, with appropriate spectral
weights[16], whereas ME merges both structures[17, 18].

A typical result of the GIFT inversion procedure is reported in Figure 6, for
k = (0.25, 0) in units of reciprocal lattice spacing and for two different interaction
stengths D at the same density rs = 0.421 and temperature T = 0.5. For D = 5
(solid line) the system is in the insulating cluster solid phase, and the spectral
weight is concentrated in a single phononic peak. For D = 3 the system is in the
supersolid phase, with a significant superfluid fraction (ρs = 0.30 ± 0.01). The
phononic peak is seen to shift to lower energies with respect to the insulating
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phase because the system is softer (see Figure 2). More interestingly, the spectrum
displays a second peak with lower energy. Preliminary data on the dispersion of
these spectral features suggests that both modes are acoustic. We thus conclude
that a supersolid can sustain two distinct long-wavelength excitations, respectively
related to the lattice dynamics and to the superfluid response.
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[7]S. Saccani, S. Moroni ,M. Boninsegni, Phys. Rev. B 83, 092506 (2011).
[8]M. Boninsegni, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006).
[9]M. Boninsegni, N. Prokof’ev, and B. Svistunov, Phys. Rev. E 74, 036701 (2006).

[10]E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987).
[11]J. M. Kosterlitz and D. J. Thouless, Prog. Low Temp. Phys. 7, 371 (1978).
[12]E. Vitali, M. Rossi, F. Tramonto, D. E. Galli, and L. Reatto, Phys. Rev. B 77, 180505 (2008)
[13]A Leggett, Phys. Rev. Lett. 25, 1543 (1970).
[14]D. E. Galli, L. Reatto, W. M. Saslow, Phys. Rev. B 76, 052503 (2007).
[15]J. E. Gubernatis and M. Jarrell, Phys. Rep. 269, 135 (1996).
[16]E. Vitali, M. Rossi, L. Reatto, and D. E. Galli, Phys. Rev. B 82, 174510 (2010).
[17]M. Boninsegni and D. M. Ceperley, J. Low Temp. Phys. 104, 339 (1996).
[18]S. Baroni and S. Moroni, Phys. Rev. Lett. 82, 4745 (1999).

Page 8 of 8

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


