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RESEARCH ARTICLE

Stability of solid phases in the dipolar hard sphere system

D. Levesque∗ and J. -J. Weis†

Université de Paris-Sud, Laboratoire de Physique Théorique, UMR8627,

Bâtiment 210, 91405 Orsay Cedex, France
(Received 00 Month 200x; final version received 00 Month 200x)

Free energy differences between solid phases of dipolar hard spheres are estimated by Monte
Carlo simulation using a nonequilibrium work method. These calculations allow to determine
which of the considered phases has the minimum free energy. The phase diagram which we
obtain is confirmed by simulations in the isothermal-isobaric ensemble over a wide region of
the density and temperature domain.

Keywords: solid phases; dipolar hard spheres; Monte-Carlo simulations; nonequilibrium
work method

1. Introduction

We are very pleased to contribute to this special issue in honour of Professor
Luciano Reatto and, on this occasion, to remind us of our fruitful collaboration.

The dipolar hard sphere (DHS) system presents a variety of fluid and solid states
which have been actively studied in the literature [1]. The low density states, at
small dipole moments are similar to those in simple monatomic fluids. At moderate
densities and large dipole moments, in the fluid state, the DHS associate into
linear chains of variable lengths [2–4]. Much endeavour has been devoted as to
whether there could be liquid-vapour type coexistence between the low density fluid
phase and the one of linear aggregates without, though, being able to provide an
unambiguous conclusion about the existence of such a coexistence and the location
of its critical point [5–7]. At densities typical of the liquid state and large dipole
moments simulation results established the existence of a polarized phase for finite
size systems with periodic boundary conditions [8–10]. The existence of such a
phase in the thermodynamic limit has, however, been questioned on the basis of
theoretical arguments [11, 12]. Nonetheless, the dense fluid phases, polarized or
not, coexist with solid phases whose symmetry has, to a large extent, still to be
established. The aim of the present work is to contribute to the determination of
the diagram of the solid phases and to estimate their stability as a function of
density and dipole moment, i.e. temperature in the present case.

Available studies at zero or finite temperatures demonstrated the existence of a
variety of solid phases for dipolar particles of spherical shape [13–17]. At low dipole
moments there will be no polarization and the stable lattices should, a priori, be
similar to those found for spherically symmetric particles interacting by a van der
Waals type pair potential. These lattices are of a body-centred cubic (bcc) type
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at high temperature and face-centred cubic (fcc) or hexagonal close-packed
(hcp) at low temperature [18]. For sufficiently high dipole moments such that the
solid phase is polarized, the unit cell of the lattice can be modified. If, for instance,
there is a polarization along the z-axis the cell edge of the bcc lattice can decrease
in this direction and the bcc lattice transforms into a body-centred tetragonal
(bct) lattice. If, in addition, the lattice parameters change along the x and y axes
but the unit cell remains tetragonal the bcc lattice turns into a base-centred
orthorhombic (bco) lattice. Similarly, fcc or hcp lattices can modify under the
influence of polarization.

The number of possible lattices in the solid phase, taking into account the dipolar
interaction and excluded volume effects, can obviously be quite large. In the present
study only tetragonal lattice cells, bcc, fcc, bct, bco and also hcp will be considered.
The relative stabilities of the corresponding phases will be established by Monte
Carlo (MC) simulation.

A frequently used method to estimate free energy differences between phases is
thermodynamic integration [19]. This method assumes that the free energy differ-
ence can be calculated along a sequence of equilibrium states connecting a reference
state of known free energy to the equilibrium state of the solid phase under con-
sideration. This procedure requires that no phase transition is crossed when going
from the initial reference state to the final equilibrium state. The possibility of
the existence of first order phase transitions between solid phases as well as the
absence of a convenient reference system for systems with rotational degrees of
freedom determined us to discard this method in the present study.

Monte Carlo simulations in the isobaric ensemble [19] are in principle suitable
for determining solid phase diagrams. With an adequate choice of particle number,
MC sampling of the size and the shape of the simulation volume possibly can drive
the system to evolve e.g., from a bcc to a fcc phase or conversely, depending on
their relative stability at the density and temperature considered. The principal
limitation of this method is that despite a favourable free energy difference, MC
sampling over an accessible amount of computation time may succeed the system
to evolve only from an unstable phase to a mechanically more stable phase but not
to the phase of minimum free energy. Due to this limitation we supplemented the
simulations in the isobaric ensemble with an estimate of the free energy difference
of the solid phases based on the Jarzynsky equality [20], also referred to as the
nonequilibrium work (NEW) method in the literature. The latter allows to calculate
the difference between two equilibrium states from the work which is spent when
going from one state to the other. This calculation, contrary to those based on
thermodynamic integration or determination of the mean work, does not require
reversible transformations. However, for given temperature (or dipole moment)
and density, the Jarzynski equality does not allow to access the minimum free
energy of the solid phase. Indeed, the free energy difference is evaluated between a
given initial equilibrium state and final states which are specified transformations
of this initial state. The calculated free energies allow only to estimate the relative
stability of the chosen final states. When these final states are similar to the solid
phases spontaneously obtained in the isobaric ensemble simulations, it is possible
to distinguish which among them is the state of lowest free energy.

The article is organized as follows. Section 2 gives details of the simulation meth-
ods and the use of the Jarzynski equality. Section 3 presents the simulation results
in the isobaric ensemble and for the free energy differences. In Section 4 a tentative
solid phase diagram of the DHS system is given in the density range ρ∗ = ρσ3

= 1.06 - 1.26 and dipole moments µ∗ = µ/
√

kBTσ3 = 1, 2 and 3 where σ and
µ are the diameter and dipole moment of the spheres and T the temperature. A
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summary of the main results is given in the conclusion.

2. Simulation method and free energy calculation.

The simulations in the isobaric ensemble are performed at fixed temperature and
pressure, with the standard sampling algorithm alternating trial displacements of
the particles and trial variations of the size and shape of the volume containing
the system of N hard spheres with periodic boundary conditions. Shape variations
are such that the simulation cell remains tetragonal. Having fixed N , the pressure
and dipole moment and chosen an initial lattice and volume, the MC sampling
will drive this state to one with lower free energy. From the analysis of the pair
distribution functions g(r) and the average dimensions of the simulation volume in
the final equilibrium state one can determine the symmetry of the lattice.

Isobaric-isothermal (NpT) MC were performed for dipole moments µ∗ = 1, 2 and
3 by applying a uniform pressure p to an initial system having bcc, bct, fcc or hcp
structure. By varying p/kBT from 2 to 35 a density range ρ∗ = 1.06−1.27 is covered.
The number of particles was 1024, 1280, 864 and 1440 for the bcc, bct, fcc and hcp
lattices, respectively. For each state the initial orientations of the dipole moments
were chosen to be random and the total energy of the system was calculated by
means of an Ewald sum [21]. An attempted volume change is achieved by varying
the three box dimensions separately according to L′

α = Lα

(

1+∆α(0.5−λα)
)

where
the λα (α = x, y, z) are random numbers in the interval [0, 1], maintaining the
simulation cell orthogonal. The values of ∆α were adjusted to have an acceptance
ratio for the volume changes of about 0.3-0.4.

Ideally one would expect that whatever the initial lattice structure of the system,
the MC procedure would drive it to the configuration of lowest free energy (within
the constraint of an orthogonal cell). It turned out that for most states considered
the initial compact lattices, hcp and fcc, remained stable and did not transform
to the lattice structure identified by the NEW method described below as being
of lowest free energy. As will be stated below the transformation of an initial hcp
structure to e. g. a bcc or bco structure requires relative displacements of alternate
basal planes but such moves had not been implemented in the MC sampling. Start-
ing from an initial fcc lattice, which remains quite stable and becomes polarized for
µ∗ > 1, the dipole arrangement most oftenly obtained consists of domains of lattice
planes in which the dipole moments all point in the same direction (on average).
The direction is tilted by 45◦ with respect to the average total polarization vector
(e.g. along x axis). While the tilt angle is the same for all domains, the average
orientations of the dipole moment projections onto the yz plane (perpendicular to
the polarization) are located along the plane diagonals, and vary from one domain
to the other by a rotation of 90◦. Figure 1 gives a view of this dipole arrangement
projected on the xy plane. Such a structure had already been evidenced in previous
canonical (NVT) MC simulations [13]. On the other hand, when the initial state
was chosen to be a bcc or bct lattice the system generally evolved to a state com-
patible with that of lowest free energy as obtained by the NEW method. Examples
will be given below.

The Jarzynski equality [20]

< e−W/kBT >= e−(FF −FI)/kBT = e−∆F/kBT (1)

enables to calculate the free energy difference ∆F between equilibrium states I and
F of a system by evaluating the average of e−W/kBT along a set of paths, i.e. a set
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of configurations relating the states I and F . W is the work done on the system in
the transition I to F along one such path. As repeatedly proven and discussed in
the literature, paths from I to F can be configurations obtained from hamiltonian
dynamics [20, 22, 23] or from a Markov process satisfying detailed balance [24, 25].
It is the last category of paths which has been used in the present work. More
specifically, the initial state of a path is a system of N hard spheres at density
ρ∗I = ρIσ

3 and dipole moment µ∗ located on a bcc lattice of volume V with periodic
boundary conditions defined by the three vectors a, b and c corresponding to the
columns of the matrix hI

αβ with det(hI
αβ) = V . The system in this initial state is

transformed into a state of same volume V specified by the matrix hF
αβ. The matrix

hF
αβ is such that the shape of the volume V corresponds to N hard spheres located

on a fcc, bct, bco or hcp lattice at density ρ∗F = ρ∗I . This transformation is achieved
by a succession of matrices hi

αβ (i = 0, 1, ... , n) with h0
αβ = hI

αβ , hn
αβ = hF

αβ and

hi
αβ = hi−1

αβ + δ hi
αβ . The small random variations δ hi

αβ are given by

δ hi
αβ = (λi − λi−1)(h

F
αβ − hI

αβ) (2)

where the variables λi (0 < i < n) are a sequence of n increasing random numbers
in the interval [0, 1] with λ0 = 0 and λn = 1.0. A sequence of δ hi

αβ specifies the

path of a transformation from I to F and satisfies the constraint
∑

i=1,..,n δ hi
αβ =

hF
αβ − hI

αβ . The work W done along a path is calculated as the sum of the works

wi corresponding to each variation δ hi
αβ

W =
∑

i=1,..,n

wi =
∑

i=1,..,n

∫

V
dr

∑

α,β

τ i
αβ(r) ηi

αβ (3)

where τ i
αβ(r) is the tensor of constraint at position r of the system when the

configuration of the N spheres changes volume according to the variation from
hi

αβ to hi+1
αβ and ηi

αβ is the deformation induced by this variation [26]. In the DHS

system, the contribution of the dipolar interaction τ i,dd
αβ (r) is

τ i,dd
αβ (r) =

1

2

∑

l=1,N

δ(r − ri
l)

∑

k(6=l)=1,N

ri
l,αF i

l,k,β (4)

where F i
l,k,β is the β component of the dipole-dipole force acting between the

spheres l et k. The contribution of the hard core potential is obtained from the
expression of the tensor of constaints derived by Allen [27, 28]. The deformation
ηi

αβ corresponds to the change in positions of the spheres entailed by the variation

of the volume, i.e. for sphere l : ri+1
l,α − ri

l,α =
∑

γ,β hi+1
αγ h̄i

γβ ri
l,β − ri

l,α, with h̄i
αβ the

inverse matrix of hi
αβ . It is identical at each point of the volume and given by

ηi
αβ =

1

2

(

∑

γ

δhi
αγ h̄i

γβ +
∑

γ

δhi
βγ h̄i

γα +
∑

ν

(
∑

γ

δhi
αγ h̄i

γν

∑

γ

δhi
νγ h̄i

γβ)
)

. (5)

The Jarzynski equality and Jensen’s inequality [29] imply the inequality < W > ≥

∆F where < W > is the average W calculated for the ensemble of transformations
from I to F . The average value, < W

′

>, of the work W
′

necessary to make the
inverse transformation F to I, satisfies the inequality − < W

′

> ≤ ∆F . These two
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inequalities giving upper and lower bounds for ∆F , can be used to estimate ∆F
in a solid-solid phase transition [30].

The matrices hI
αβ and hF

αβ specifying the initial and final states of the transforma-

tions from the bcc lattice to the bct, bco or fcc lattices are such that if rI
1, r

I
2, ..., r

I
N

are the lattice positions of the spheres on the bcc lattice, rF
1 , rF

2 , ..., rF
N obtained

from rF
l,α =

∑

β,γ hF
αγ h̄I

γβrI
l,β, will be those of the spheres on the bct, bco or fcc lat-

tices. In these cases the transformations from hI
αβ to hF

αβ can be made continuously,
the volume V maintaining its parallelepipedic shape. The transformation from the
bcc to the hcp lattice is also continuous but a relative shift of neighbouring planes,
e. g. those perpendicular to the z-direction has to be supplemented with the volume
change. The initial volume of the bcc lattice is chosen monoclinic and this shape is
conserved in the evolution towards the hcp lattice. The lattice positions of the final
hcp lattice are related to those of the bcc lattice by rF

l,α =
∑

β,γ hF
αγ h̄I

γβrI
l,β + g δα2.

The displacement g along the y direction generates the succession ...ABAB... of
[001] planes characteristic of the hcp lattice. The value of g is alternatively equal to
0 (plane A) or b/3 (plane B) where b is the smallest distance along y between two
spheres of a [001] plane of the final hcp lattice [31]. At each stage of the evolution
of the volume a small random displacement δ gi is applied to the atoms in B planes
subject to the constraint

∑

i=1,2,...,n δ gi = b/3. These displacements contribute to

the values of wi taking into account, in Eq. (3), that the ηi
αβ differ depending on

whether the spheres are located in A or B planes.
The calculation of W along the path from I to F comprises three stages. The first

one consists in a simulation in the canonical ensemble to equilibrate the N spheres
on the bcc lattice at the chosen values of ρ∗ et µ∗. The second stage starts with the
change of the matrix from h0 to h1. This trial move is either accepted or rejected if
there is overlap of the spheres. In the latter case canonical sampling is continued,
a new trial transition from 0 to 1 is attempted and the process repeated until
acceptance of the transition; w1 is then calculated. This procedure is continued
until the transition n − 1 to n. The third stage is a simulation in the canonical
ensemble at the volume defined by hn

αβ = hF
αβ to calculate the pair correlation

functions in the final state F . This allows to check that the correlation functions
are in agreement with those expected in the bct, bco, fcc or hcp phase for the DHS
system at chosen ρ∗ and µ∗.

The random variations δhi
αβ are of the order (hF

αβ −hI
αβ)/n. To obtain an accep-

tance ratio of about 50% for the transitions i to i + 1, n must be of the order of
104 at the considered solid phase densities, canonical sampling between transition
attempts being ∼ 5 MC trial moves per sphere. The numerical estimate of the
hard core contribution to ταβ(r) has been verified for µ∗ = 0 by calculating ∆F
between dense fluid states of hard spheres for which the free energy is known. The
Ewald summation method has been applied for the calculation of the energy and
τdd
αβ(r) [32]. The values of N are 1024 for the calculation of the transitions from

bcc to bct or bco, 1200 for those from bcc to hcp and 1372 for those from bcc to
fcc.

3. Results

In all calculations of ∆F , the initial configuration was a bcc lattice of spheres
completely polarized along the z axis (polarization 1). In the density region 1.06 ≤

ρ∗ ≤ 1.26, at µ∗ = 1, the equilibrium state associated with this initial configuration
has zero polarization. At µ∗ = 2 and 3, it has a polarization between 0.75 and 0.87.
These equilibrium states are the reference states used to estimate ∆F relative to
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the other solid phases. For each chosen thermodynamic state the average value
of e−W/kBT has been calculated for 16 paths between the reference bcc state and
the final state of symmetry bct, bco, fcc or hcp. Each path is defined by an initial
equilibrium bcc configuration and a succession of different random variations δhi

αβ .
This number of different paths turned out to be sufficient because the values of W
have a low statistical variance if amplitude and orientation of the polarizations are
similar in the final states. The statement has been verified by calculating, at µ∗ = 3
and ρ∗ = 1.20, the values of W for 64 paths corresponding to a transition from
bcc to bct. To test the method a comparison has been made with results for the
phase diagram of the totally polarized hard sphere system [16, 17]. In agreement
with this study, the value of ∆F obtained from the Jarzynski equality shows that
among the phases bct, hcp and hcp compressed along z by about 10%, the phase
of bct symmetry is the most stable at µ∗ = 2 and ρ∗ = 1.20 and the compressed
phase of hcp symmetry the most stable at µ∗ = 3 and ρ∗ = 1.06.

In spite of the constraints imposed by the excluded volume effects and the homo-
geneity of the deformations ηαβ it is possible that the transition from the bcc phase
to another phase is accompanied by creation of defects. The contribution of these
possible defects to ∆F seems marginal. Indeed, as mentioned above, the variance
of the values of ∆F is small for states with close final polarizations. Moreover, the
pair correlation functions calculated in the final states are in excellent agreement
with those obtained in canonical simulations at fixed density at identical thermo-
dynamic states. An example of the agreement is given in Fig. 2 for the bcc-bct
transition at µ∗ = 3 and ρ∗ = 1.16. At given density the bct lattice parameters
are obtained from the bcc parameters by multiplying them by (3/2)1/6, (3/2)1/6

and (2/3)1/3 along x, y and z. For the bco lattices these factors are λ(3/2)1/6,
(3/2)1/6/λ and (2/3)1/3 along x, y and z with λ = 1.05, 1, 10, 1.15 and 1.20 in our
simulations.

For the states µ∗ = 1 and ρ∗ ≥ 1.20 at which the polarizations vanish both in
the initial and final states, the difference ∆F ∗ = ∆F/kBT is always positive with a
statistical error of the order of 0.1∆F ∗, indicating that bcc is the stable phase. This
result is confirmed by the NpT simulations as shown in Fig. 3a which compares the
pair distribution functions (p.d.f.) at ρ = 1.20 obtained in the isobaric ensemble,
starting from an initial bcc lattice, with that for the final state of the NEW method.
At densities ρ∗ ≤ 1.10 the bcc phase seems also to be the most stable phase but
the values of ∆F ∗ are small ∼ 0.1 with a statistical error of ≃ 0.03. In the domain
1.10 ≤ ρ∗ ≤ 1.20, the bco phase with λ ≃ 1.10 is marginally more stable than bcc,
∆F ∗ ≃ −0.1. Again the NpT calculation transforms the initial bcc lattice into a
state with p.d.f. in good agreement with that of the bco lattice with Ly/Lx = 1.10
identified by the NEW method as having the lowest free energy (cf. Fig. 3b).

When µ∗ increases the solid phases get polarized. At µ∗ = 2 and increasing
densities 1.06 ≤ ρ∗ < 1.20 the most stable phase changes from bct to bco with
values of λ between 1.05 and 1.15, the polarization being parallel to the z direction.
For these bct and bco phases ∆F ∗ is of the order −1.3 with a statistical error of
about 0.02∆F ∗. At ρ∗ ≥ 1.20, the variance of ∆F ∗ increases. As a matter of fact,
for approximately 15% of the bco final states, i. e. 2 to 4 out of 16, the polarization
is not along z but either along a diagonal of the parallelepipedic volume or a
diagonal of the xz or yz planes and ∆F ∗ is equal to ≃ −0.8. However, the states
polarized along z have the lowest free energy ∆F ∗ ∼ −1.1 and their equilibrium
p.d.f’s are in close agreement with those obtained from NpT simulations (cf. Fig.
3c).

If the final states are fcc or hcp, at µ∗ = 2, ∆F ∗ varies from ∼ 0.3 for ρ∗ = 1.06 to
∼ −0.5 for ρ∗ = 1.20 then gets positive again ∼ 0.5 for ρ∗ = 1.26. As for the bcc and
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bco phases, the final states are generally polarized along z but other polarization
states exist as well where the orientation lies in a lattice plane. Moreover, for the
fcc lattice, there exists polarized states, where, as described above in Section II,
the average orientation of dipole moments can differ from one domain of lattice
planes to the other, while having the same tilt angle with respect to z. However
the different polarization states of the fcc and hcp phases all have a free energy
which is higher by ∼ 1 compared to the bct or bco phases.

The bct and bco phases with λ < 1.15 have nearly identical stability at µ∗ = 3
and ρ∗ ≤ 1.20, differences in ∆F ∗ being close to the statistical error. The bco phase
is marginally more stable at ρ∗ = 1.26 with λ ≃ 1.10. The polarization of the bct
or bco phases of lowest free energy is parallel to z and equals ∼ 0.90 − 0.95. A
typical value of ∆F ∗ between bcc and bct or bcc and bco is ∼ −4.3. For the hcp or
fcc phases ∆F ∗ is larger by 1.5 for all polarizations of the final state. Comparison
of the p.d.f. at µ = 3 for ρ = 1.16 and ρ = 1.26 obtained either by NpT simulation
or NEW method are shown in Figs. 4a and 4b, respectively.

The lattices associated with the most stable phases of the final states have been
called, somewhat improperly, with reference to the perfect lattices of hard spheres
with volume compatible with the periodic boundary conditions defined by the
matrices hF

αβ . It is noteworthy that such an appellation is approximate. Upon
increase of µ∗ the local order of the hard spheres is strongly modified by the dipolar
interaction. Figures 5 and 6 are examples of the reorganization of the local order
at ρ∗ = 1.06 and 1.26. The correlation functions show that if at µ∗ = 1 or 2 the
order is close to that of hard spheres (µ∗ = 0), it differs significantly at µ∗ = 3.
This reorganization is made explicit in Fig. 6 for ρ∗ = 1.26. Although the positions
of the peaks corresponding to the most numerous neighbours are preserved, peaks
of other layers can overlap with these main peaks, or overlap between themselves;
occasionally new peaks can appear. These rearrangements result from the open
character of the local order in the bct and bco lattices; they are less important in
the compact lattices like fcc where they vanish for densities ρ∗ ≥ 1.20 (cf. Figs.
7 and 8). The partial delocalization of shells of neighbours thus does not allow
a complete characterization of the cristalline order from the sole pair correlation
functions. This is particularly clear for perfect bco lattices in which the number
of nearest neighbors in successive shells are 2, 8, 2, 2, 4, 4, 8, 4, ..., respectively.
At densities ρ∗ ∼ 1.20, the locations of the first and second shells and those of the
seventh and eighth shells differ only by ∼ 0.002σ so that these shells merge due to
the molecular motion.

When the final states are divided into states of different polarizations they will
have different local hard sphere order. These differences in structural arrangement
explain the difference in free energies of these final states. Thus, at µ∗ = 3.0
and ρ∗ = 1.26, the final states bct and bco, with polarization parallel to z have
∆F ∗ ∼ −4.0 whereas those with polarization along a diagonal of the volume have
a higher free energy ∆F ∗ ∼ −1.0. Fig. 9 shows the change of local order entailed
by these variations of free energy and polarization.

In the case where the probability distribution W is gaussian of width σW , it is
easy to show from the Jarzynski equality that [20]

∆F =< W > −
σ2

W

2kBT
. (6)

Our results are compatible with this equality provided the polarizations of the final
states are unique. When several states of polarization are possible, the distribution
of values W has several peaks, is not gaussian and the equality (6) is not valid
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anymore.

4. Discussion

The results for the free energy differences calculated from Eq.(1) are summarized
in Fig. 10 which shows the domains of stability of the bcc, bct and bco phases
with an approximate location of their limits as a function of µ∗ and ρ∗. Only
these phases are plotted since the NEW method results, as dicussed in
Sect. 3, indicate that for this domain of µ∗ and ρ∗ values, the fcc and
hcp phases are always unstable. They are in relative agreement with those
given by the simulations in the isobaric ensemble. The solid phases identified by
the NEW method as having the lowest free energy (among those considered) and
those obtained by the simulations in the NpT ensemble are in good agreement
for solid densities ρ∗ ≥ 1.16. In particular the local order obtained from the p.d.f.
are quasi identical. Additional NpT calculations in this density region at µ∗ = 1.5
and µ∗ = 2.5 also predict structures compatible with those obtained by the NEW
method simulations at µ∗ = 2 and µ∗ = 3. At the lower densities 1.06 ≤ ρ∗ ≤

1.10 such an agreement could not be found. For µ∗ = 2 or 3, although the free
energy calculations show that the bct phases or the bco phases with ratio Ly/Lx

close to 1.0 are the most stable, the NpT simulations do not evolve spontaneously
towards solid arrangements of this type. With different initial choices of the initial
configuration the NpT simulations stabilize in a variety of states manifesting the
possible existence of several metastable states close to the state of minimum free
energy. By comparison of the pair distribution functions, it appears that these
states obtained by the NpT simulations do not belong to the set of final states
considered in the NEW computations; therefore the relative values of their free
energy could not be estimated.

5. Conclusion

Use of the Jarzynski equality provides an alternative to the method of thermody-
namic integration for the estimate of free energy differences between equilibrium
thermodynamic states. The reliability of the calculation relies on the choice of the
paths selected to calculate the average in Eq. (1) [33–35]. As mentioned above, by
associating to the variation of hα,β the relaxation of the sphere configurations, it
is possible to prevent overlap of the hard cores to interrupt the transition from
one phase to the other. Moreover, if by construction of the transition path one has
V F = V I , the volumes V i differ from V F only by 0.05% thus avoiding creation of
defects. The choice of the paths seems justified by the facts that Eq. (6) is satisfied
and that, taking into account the relaxation of the intermediate configurations and
the number of values of n of order 10000 to 30000, the paths nearly satisfy the
equality valid only for reversible equilibrium paths

FF − FI =
∑

i=1,n

∫

dr
∑

α,β

< τ i
αβ(r) >i ηi

α,β(r), (7)

where < ... >i denotes a canonical average at step i of a transition path.
As stated in the introduction the crossing through a first order phase

transition precludes that Eq. (7) can be a strict equality, contrary to the
Jarzynski equality. This illustrates again the relative advantages of the
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NEW and thermodynamic integration methods. Eq. (1) is always valid
and needs only an initial reference state. It requires though to perform
an average on a set of adequately chosen paths and, in the present work,
the rather time comsuming computation of the hard sphere tensor of
constraint. The thermodynamic integration method is simple to imple-
ment and uses only one path. However, to circumvent the first order
phase transition problem, especially for solid phases, it needs to use
multiple initial reference states the free energy of which must be known
analytically. Such initial states, well adapted to hard sphere systems
with rotational degrees of freedom, seem difficult to construct.

In conclusion, the solid phases of dipolar hard spheres estimated by free energy
calculations to be the most stable ones are of the bcc, bct or bco type. For dipole
moments µ∗ ≥ 2 these phases are polarized. For the bct and bco phases the di-
rection of polarization is the direction along which the bcc unit cell is compressed
(in our calculations the z direction). The pair distribution functions show, how-
ever, that the local arrangements of a particle and its nearest neighbours can differ
notably according to the values of ρ∗ and µ∗. A detailed and complete character-
ization of the unit cell of these phases remains difficult, in particular, due to the
proximity of nearest neighbour shells and the small number of particles in these
shells (cf. Sect. 3).

The NpT simulation results are in accord with the free energy results for ther-
modynamic states of fixed µ∗ and densities larger than roughly 1.10 and confirm in
this domain the phase diagram given in Fig. 10. For the states µ∗ ≥ 2 and densities
lower than approximately 1.10, although the stable phases are identified without
ambiguity from the free energy calculations, this domain of the phase diagram has
to be confirmed by a method different from that based on the NEW method.
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Figure Captions

Fig. 1: Projection on the xy plane of the dipole moments for a fcc lattice with
polarization along the x direction at ρ∗ = 1.26 and µ∗ = 3.0 (NVT simulation with
N=1372).

Fig. 2: Comparison of the pair distribution function g(r) in the final state of the
transition from the bcc phase to the bct phase (black line) with that obtained
from a canonical ensemble calculation in the bct phase (red line). The density is
ρ∗ = 1.16 and the dipole moment µ∗ = 3.

Fig. 3: Comparison of equilibrium pair distribution functions of the lowest free
energy states obtained from NEW method (dashed line and dots) and pair distri-
bution functions of stable final states resulting from NpT simulation (solid line)
a) µ∗ = 1 and ρ∗ = 1.20, the lowest free energy state is bcc; the NpT simulations
are started from an initial bcc lattice; b) µ∗ = 1 and ρ∗ = 1.10, the lowest free
energy state is bco with Ly/Lx = 1.10; the NpT simulations are started from an
initial bcc lattice; c) µ∗ = 2 and ρ∗ = 1.20, the lowest free energy state is bco with
Ly/Lx = 1.05; the NpT simulations start from an initial bct lattice.

Fig. 4: Comparison of equilibrium pair distribution functions of the lowest free
energy states obtained from NEW method (dashed line and dots) and pair distri-
bution functions of stable final states resulting from NpT simulation (solid line) a)
µ∗ = 3 and ρ∗ = 1.16, the lowest free energy state is bct; the NpT simulations are
started from an initial bct lattice; b) µ∗ = 3 and ρ∗ = 1.26, the lowest free energy
state is bct; the NpT simulations are started from an initial bct lattice.

Fig. 5: Pair distribution function g(r) for equilibrium states of a bct phase at
ρ∗ = 1.06 and increasing values of µ∗. For µ∗ = 2 and 3 the polarizations are
parallel to z and equal to ∼ 0.9.

Fig. 6: Pair distribution functions g(r) for equilibrium states of a bct phase at
ρ∗ = 1.26 and increasing values of µ∗ values. For µ∗ = 2 and 3 the polarizations
are parallel to z and equal to ∼ 0.9.

Fig. 7: Pair distribution functions g(r) for equilibrium states of a fcc phase at
ρ∗ = 1.06 and increasing values of µ∗. For µ∗ = 2 and 3 the polarizations are
parallel to z and equal to ∼ 0.75.

Fig. 8: Pair distribution function g(r) for equilibrium states of a fcc phase at
ρ∗ = 1.26 and increasing values of µ∗. For µ∗ = 2 and 3 the polarizations are
parallel to z and equal to ∼ 0.75.

Fig. 9: Pair distribution functions g(r) for final equilibrium states of a bcc to bct
phase transition corresponding to different orientations of the polarization at ρ∗ =
1.26 and µ∗ = 3.0. Solid line: polarization parallel to z axis; red line: polarization
parallel to a diagonal of the parallelepipedic volume.

Fig. 10: Phase diagram obtained from free energy differences computed by the
Jarzynski equality (NEW method). Two superimposed symbols for a state indicates
close stability of the two phases.
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