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Abstract

In this note, I study further the approach introduced in [1] for the hedging of derivatives in incom-
plete markets via local risk minimization. A structure result is provided, which essentially shows the
equivalence between non-quadratic risk minimization under the historical probability and quadratic local
risk minimization under an equivalent, implicitly defined probability.

Introduction
First introduced in the seminal work of [4], the quadratic local risk minimization approach to derivative
hedging is well understood, and its connection to pricing under the minimal martingale measure is well
established, see [3][5] for detailed results. More recently, [1][2], a theory using non-quadratic functions to
measure local risk has been presented. In this theory, a modified cost process is naturally introduced as the
limit of a nonlinear, discrete stochastic integral. The Ito differential of this new cost process depends in a
nonlinear fashion on that of the standard cost process dCt = dVt − δtdSt, and this nonlinear dependance
leads to a nonlinear equation for the portfolio value process Vt as well as a (possibly) nonlinear relationship
between the price process and the hedging strategy δ. Results are more accurate and better understood in
the markovian case, where the asset S is given as the solution of a stochastic differential equation, and this
is the setting that prevails in the rest of this paper.
The paper is organized as follows: Section 1 consists in a short reminder of the notations and results in
[1], where a general local risk function f is introduced; then, the relationship between the f-cost and the
classical cost of a strategy is worked out in Section 2, where a new probability measure appears in a natural
fashion. In Section 3, the identity between the general local risk minimizing strategy and the quadratic local
risk minimizing strategy under this new probability measure is proven. Finally, Section 4 is devoted to a
reformulation of the optimality condition as a fixed-point problem for the portfolio value process.

1 Some notations and earlier results
The key notations and concepts of [1] are now recalled for the sake of completeness.
(Ω,F , P ) is a probability space with a filtration (Ft)0≤t≤T satisfying the usual conditions of right-continuity
and completeness. T ∈ R∗+ denotes a fixed and finite time horizon. Furthermore, F0 is trivial and FT = F .
The tradablee, risky asset S = (St)0≤t≤T is a strictly positive, continuous semimartingale

S = S0 +N +A
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such that N = (Nt)0≤t≤T is a continuous square-integrable martingale with N0 = 0, and A = (At)0≤t≤T is
a continuous and adapted process of finite variation |A| with A0 = 0.
A general trading strategy Φ consists in a pair of càdlàg and adapted processes δ = (δt)0≤t≤T and β =
(βt)0≤t≤T , while a contingent claim is described by a random variable H ∈ L2(P ) with H = δHST + βH ,
δH and βH being FT−measurable random variables. Associated to any trading strategy is the value process
V = δS + β.
Next are two important definitions:

Definition 1.0.1 A trading strategy will be called H-admissible if it meets the following requirements
δT = δH P − a.s.
βT = βH P − a.s.
δ has finite and integrable quadratic variation
β has finite and integrable quadratic variation
δ and β have finite and integrable quadratic covariation.

Definition 1.0.2 For an H-admissible strategy Φ, the associated f -cost process fCt(Φ) is defined as the
following limit

lim
n→∞

ln∑
k=1

f ′(βτ
n
k − βτ

n
k−1 + (δτ

n
k − δτ

n
k−1)Sτ

n
k )

whenever it exists.

Here, convergence is required in ucp topology for any sequences Pn of Riemann partitions of [0, T ] of length
ln, and we have used the notation XT for the process stopped at T .
A general result concerning the f -cost process is the

Theorem 1.1 [1] The f−cost process of an H−admissible strategy Φ can be expressed in terms of the
portfolio value V

fCt(Φ) =

f ′′(0)
(
Vt − V0 −

∫ t
0+
δs−dSs

)
+ f(3)(0)

2

(
[V, V ]ct − 2

∫ t
0+
δs−d[V, S]cs +

∫ t
0+
δ2s−d[S, S]cs

)
+
∑

0<s≤t f
′(∆Vs − δs−∆Ss)− f ′′(0)(∆Vs − δs−∆Ss) (1.1)

with notation [X,Y ]c (see [6]) standing for the continuous part of the (càdlàg) quadratic covariation
process.

In a nutshell, the theory in [1] states that a minimizing strategy associated to the risk function f is charac-
terized by a continuous martingale Mt orthogonal to the (martingale part of the) price process St, such that
there holds

fCt = Mt. (1.2)

Note that (1.2) actually characterizes those strategies that are pseudo-optimal in the terminology of [1],
see [2] for an in-depth discussion of the relation between local risk minimizing and pseudo-optimal strategies.
Suffice it to say that, in the context of processes modelled by stochastic differential equations, both notions
can be proven to be identical, and any possible difference will be overlooked in the rest of this paper.
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2 Comparing the f-cost and the usual cost
Using Theorem 1.1, one easily shows the

Proposition 2.1 Under the assumption that the process S is continuous, the f -cost process and the usual
cost process are related to one another by

fCt = f”(0)Ct +
f (3)(0)

2
< C,C >t . (2.1)

Here, C ≡ x2

2 C denotes, with a slight abuse of notation, the cost process associated to the quadratic risk
function x→ x2

2 .

For simplicity, the function f will be assumed to be normalized in order that f”(0) = 1.
Now, the optimality condition (1.2) can be rewritten in terms of the usual cost process as

Ct + λ < C,C >t= Mt (2.2)

(with f(3)(0)
2 = λ), which is obviously equivalent to

Ct = Mt − λ < M,M >t . (2.3)

Upon introducing the Doleans-Dade exponential E(λM) of λM , solution on (0, T ) to

dφt = λφtdMt, (2.4)

and defining an absolutely continuous change of probability measure by its conditional density

dQ
dP
|Ft = φt, (2.5)

one can rephrase (2.3) by saying that C is a Q-martingale orthogonal to S.
Note that Q is precisely the minimal martingale measure associated to the cost process C as defined in [5],
see also Theorem 1 in [3] where the role of the structure assumption (1.2) is played by (2.3).
It is known, see [3], that the quadratic local risk minimizing strategy generates a cost process that is a mar-
tingale orthogonal to S, and a value process that has the representation Vt = EP∗(H|Ft) under the minimal
martingale measure associated to the process S. One is therefore led to address a very natural question: is
there a relation between the local risk minimizing strategy associated to f under P, and the quadratic local
risk minimizing strategy under the new probability Q ?
A positive answer to that question is provided in the next section.

3 An equivalent quadratic problem
For the sake of clarity, let us first work out the case of a simple stochastic volatility model driven by a
two-dimensional standard Wiener process (W 1

t ,W
2
t )

dSt
St

= F (St, σt, t)dW
1
t + µ(St, σt, t)dt (3.1)

dσt = α(St, σt, t)dW
2
t + β(St, σt, t)dt (3.2)

with smooth enough coefficients F, µ, α, β.
In this context, see Section 4 in [1], the f -cost process associated to the optimal strategy is given by

fCt =

∫ t

0

α
∂V

∂σ
dW 2

s , (3.3)
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where the value process V is solution to the equation

LPV + λα2(
∂V

∂σ
)2 = 0 (3.4)

with LPψ ≡ 1
2F

2S2 ∂
2ψ
∂S2 + 1

2α
2 ∂

2ψ
∂σ2 + β ∂ψ∂σ .

Under the new measure defined by (2.5) with

Mt =

∫ t

0

α
∂V

∂σ
dW 2

s , (3.5)

the infinitesimal generator LP changes to

LQ ≡ LP + (λα2 ∂V

∂σ
)
∂

∂σ
. (3.6)

Consider now that Q is the reference probability: the optimal strategy associated to the quadratic local
risk minimization under Q generates a cost process C̃ such that

C̃t =

∫ t

0

α
∂Ṽ

∂σ
dW̃ 2

s (3.7)

where W̃ 2
t ≡ W 2

t −
∫ t
0
λα∂V∂σ ds is a standard Wiener process under Q and the new value process Ṽ is given

by the solution to
LQṼ = 0. (3.8)

Now, it is trivial to remark that V, being a solution to (3.4), also solves (3.8). Since uniqueness holds for
the linear PDE (3.8), Ṽ ≡ V is its only solution. Hence, the general local risk minimization problem can
naturally be recast into a quadratic one, up to a change of probability measure.
This result can easily be generalized to a market driven by a (K + D)-dimensional Wiener process corre-
sponding to K tradable assets with D volatility-like "noises". In fact, there holds the

Theorem 3.1 Consider the (K +D)-dimensional process (S1, ..., SK , yK+1, ..., yK+D) solution to the (K +
D-dimensional system of stochastic differential equations:
for i = 1, ...,K

dSit
Sit

= F (S1
t , ..., S

K
t , y

K+1
t , ..., yK+D

t , t)dW i
t + µi(S1

t , ..., S
K
t , y

K+1
t , ..., yK+D

t , t)dt (3.9)

for i = K + 1, ...,K +D

dyit = αi(S
1
t , ..., S

K
t , y

K+1
t , ..., yK+D

t , t)dW i
t + βi(S

1
t , ..., S

K
t , y

K+1
t , ..., yK+D

t , t)dt. (3.10)

Then, the optimal strategy for the local risk minimization with risk function f also solves the quadratic local
risk minimization problem under the new measure defined by (2.5), with this time

Mt =

K+D∑
i=K+1

∫ t

0

αi
∂V

∂yi
dW i

s . (3.11)

Proof: Proposition 3.1 is obviously an extension of the simple example treated above in the case K = D = 1.
Upon applying the change of probability (2.5) and computing

E(φt+hf(S1
t+h, ..., S

K
t+h, y

K+1
t+h , ..., y

K+D
t+h , t+ h)|Ft), (3.12)
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one shows that, under the new probability Q, the infinitesimal generator of the diffusion is transformed
according to the following rule:

(LQf)(S1
t , ..., S

K
t , y

K+1
t , ..., yK+D

t , t) = (LPf)(S1
t , ..., S

K
t , y

K+1
t , ..., yK+D

t , t) + λ

K+D∑
i=K+1

(αi)2
∂V

∂yi
∂

∂yi
. (3.13)

Then, the argument goes exactly as that outlined in the case K = D = 1: the partial differential equation
for the value Ṽ of the optimal portfolio in the case of a quadratic local risk minimizing strategy under Q is
precisely

LQṼ = 0, (3.14)

for which a solution - actually, the solution, thanks to the uniqueness property for linear parabolic equations
- is already known and given by V , the optimal portfolio value for the local risk associated to f . Moreover,
the optimal cost process under the new probability Q is precisely equal to

∑K+D
i=K+1

∫ t
0
αi ∂V∂yi dW̃

i
s , where (W̃ i)

is a standard D-dimensional Wiener process under Q.
Finally, note that the case of a correlated (K + D)-dimensional Wiener process is dealt with in a similar
fashion, with computations that are slightly more involved.

4 A fixed-point formulation for the value process
In this section, we make use of the representation formula for the optimal value process in the quadratic case
as an expectation under the minimal martingale measure, see [5].
In view of this representation formula, the value process V provided by Theorem 3.1 can be obtained via
two successive changes of measures: a change from P to Q with conditional density

dQ
dP
|Ft = E(λMt), (4.1)

followed by a change of measure from Q to the minimal martingale measure of the price process S, Q∗, say.
This procedure yields an expression for the value process V as a conditional expectation under Q∗

Vt = EQ∗(H|Ft). (4.2)

One can work out the two changes of measure in the simple example at the beginning of Section 3 and obtain

Vt = EP(E(λ

∫ t

0

α
∂V

∂σ
dW 2

s −
∫ t

0

µ

σ
dW 1

s )H|Ft). (4.3)

Equation (4.3) can be used as a defining equation for the value process V via a fixed point argument.
Obviously, this new theory is not as satisfactory as in the quadratic case, in the sense that the change of
measure depends on the claim itself through the value process.
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