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This paper proposes an algorithm pipeline for estimating the camera orientation based on vanishing points computation targeting pedestrian navigation assistance in Manhattan World. Inspired from some of published methods, the proposed pipeline introduces a novel sampling strategy among finite and infinite vanishing points and a tracking along a video sequence to enforce the robustness by extracting the three most pertinent orthogonal directions while preserving a short processing time for real-time application. Experiments on real images and video sequences show that the proposed heuristic strategy for selecting orthogonal vanishing points is pertinent as our algorithm gives better results than the recently published RNS optimal method [16], in particular for the yaw angle, which is actually essential for navigation task.

INTRODUCTION

By perspective projection, the parallel lines in 3D scene intersect in the image plane in a so-called vanishing points. If the image plane is parallel to one axis of the 3D world, vanishing lines intersect very far from the image center, that is called infinite vanishing point, unlike the finite ones whose coordinates may be determined in the image plan. In man-made urban environments, many line segments are oriented along three orthogonal directions aligned with the global reference frame. Under this so-called Manhattan world assumption, vanishing lines or points are pertinent visual cues to estimate the camera orientation [START_REF] Antone | Automatic recovery of relative camera rotations for urban scene[END_REF], [START_REF] Coughlan | Manhattan World: Compass direction from a single image by Bayesian inference[END_REF], [START_REF] Förstner | Optimal vanishing point detection and rotation estimation of single images from a legoland scene[END_REF], [START_REF] Kalantari | A New Solution to the Relative Orientation Problem Using Only 3 Points and the Vertical Direction[END_REF], [12] [14]. This is an interesting alternative to structure and motion estimation based on features matching, a sensitive problem in computer vision. The orientation matrix of a calibrated camera, parameterized with three angles, may be efficiently computed from three noise-free orthogonal vanishing points. Vanishing points are also used for camera calibration [START_REF] Kosecka | Video Compass[END_REF] [START_REF] Pflugfelder | Online auto-calibration in man-made world[END_REF], [START_REF] Tardif | Non-iterative approach for fast and accurate vanishing point detection[END_REF]. However, these techniques rely on the ability to find a robust orthogonal triplet of vanishing points in a real image. Despite numerous papers dedicated to the straight line clustering to compute adequate vanishing points, this problem remains an open issue for real time application in video sequences. The estimation of the camera orientation is generally computed in a single image. Few works address the tracking along a video sequence [START_REF] Martins | Orientation in Manhattan world: Equiprojective classes and sequential estimation[END_REF]. In the context of navigation assistance for blind people in urban area, we address this problem with calibrated camera. Based on previous work, we propose a pragmatic solution to achieve an accurate estimation of the camera orientation while preserving a short processing time. Our algorithm pipeline relies on two contributions: a novel sampling strategy among finite and infinite vanishing points extracted with a RANSAC-based line clustering, and a tracking along a video sequence.

The paper is organized as follows. A review of related work is proposed in Section 2. The Section 3 presents our method for selecting and tracking three reliable orthogonal vanishing points which are used for estimating the camera orientation. Experimental results are shown in Section 4 and the Section 5 concludes the paper.

II. RELATED WORK

Since 30 last years, the literature is broad on the subject of vanishing points (VP) computation. In this section we review some of the most relevant. The first approaches used the Hough transform and accumulation methods [START_REF] Barnard | Interpreting perspective images[END_REF], [START_REF] Boulanger | ATIP : A tool for 3D navigation inside a single image with automatic camera calibration[END_REF], [START_REF] Cantoni | Vanishing Point Detection: Representation Analysis and New Approaches[END_REF], [START_REF] Lutton | Contribution to the determination of vanishing points using Hough transform[END_REF]. The efficiency of these methods highly depends on the discretization of the accumulation space and they are not robust in presence of outliers [START_REF] Shufelt | Performance evaluation and analysis of vanishing point detection techniques[END_REF]. Furthermore, they do not consider the orthogonality of the resulting VP. An exhaustive search method may take care of the constraint of orthoganality [START_REF] Rother | A new approach for vanishing point detection in architectural environments[END_REF] but it is off-side for real-time application.

Even few authors prefer to work on the raw pixels [START_REF] Denis | Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery[END_REF], [START_REF] Martins | Orientation in Manhattan world: Equiprojective classes and sequential estimation[END_REF], published methods mainly work on straight lines extracted from image. According to the mathematical formalisation of VP, some variants exist in the choice of the workspace: image plane [START_REF] Cantoni | Vanishing Point Detection: Representation Analysis and New Approaches[END_REF], [START_REF] Rother | A new approach for vanishing point detection in architectural environments[END_REF], projective [START_REF] Förstner | Optimal vanishing point detection and rotation estimation of single images from a legoland scene[END_REF], [START_REF] Nieto | Simultaneous estimation of vanishing points and their converging lines using the EM algorithm[END_REF], [START_REF] Pflugfelder | Online auto-calibration in man-made world[END_REF] or Gaussian sphere [START_REF] Barnard | Interpreting perspective images[END_REF], [START_REF] Collins | Vanishing point calculation as statistical inference on the unit sphere[END_REF], [START_REF] Kosecka | Video Compass[END_REF], [START_REF] Lutton | Contribution to the determination of vanishing points using Hough transform[END_REF]. Using Gaussian unit sphere or projective plane allow to treat equally finite and infinite VP, unlike image plane. This is well suited representation for simultaneously clustering lines that converge at multiple vanishing points by using a probabilistic Expectation-Maximisation (EM) joint optimization approach [START_REF] Antone | Automatic recovery of relative camera rotations for urban scene[END_REF], [START_REF] Coughlan | Manhattan World: Compass direction from a single image by Bayesian inference[END_REF], [START_REF] Kosecka | Video Compass[END_REF], [START_REF] Mingawa | Vanishing point and vanishing line estimation with line clustering[END_REF], [START_REF] Nieto | Simultaneous estimation of vanishing points and their converging lines using the EM algorithm[END_REF]. These approaches adress the misclassification and optimality issues but the initialization and grouping are the determining factors of their efficiency.

Recently, many authors adopt robust estimation based on RANSAC [START_REF] Fisher | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF], as the code is fast, easy to implement, and requires no initialization. These approaches consider intersection of line segments as VP hypotheses and then iteratively clustering the parallel lines consistent with this hypothesis [START_REF] Förstner | Optimal vanishing point detection and rotation estimation of single images from a legoland scene[END_REF], [START_REF] Mirzaei | Optimal estimation of vanishing points in a Manhattan world[END_REF], [START_REF] Wildenauer | Vanishing point detection in complex man-made worlds[END_REF]. A variant by J-Linkage algorithm has been used by [START_REF] Tardif | Non-iterative approach for fast and accurate vanishing point detection[END_REF]. By dismissing the outliers, the RANSAC-based classifiers are much more robust than accumulative methods, and give a more precise position of the VP, limited by the size of the accumulator cell. They have been used to initialize EM estimators to converge to the correct VP. Other optimal solutions rely on analytical approach often based on time consuming algorithms [START_REF] Bazin | Globally optimal line clustering and vanishing points estimation in a Manhattan world[END_REF], [START_REF] Kalantari | A New Solution to the Relative Orientation Problem Using Only 3 Points and the Vertical Direction[END_REF], [START_REF] Mirzaei | Optimal estimation of vanishing points in a Manhattan world[END_REF]. In this last paper, it is interesting to note that, even if they are non deterministic, the RANSAC-based approaches hold comparable results against exhaustive search for the number of clustered lines. So, it remains a very good approach for extracting the VP candidates, in addition with a judicious strategy for selecting a triplet consistent with the orthogonality constraint.

III. METHOD OVERVIEW

To achieve an accurate estimation of the camera orientation based on three reliable orthogonal vanishing points (VP), we propose an algorithm pipeline inspired from some of published methods, adding a novel sampling strategy among finite and infinite VP and a tracking along a video sequence.

The objective is to enforce the robustness by extracting the three most pertinent orthogonal VP while preserving a short processing time for real-time application. The next sections give some details and justifications about each bloc of the proposed pipeline.

A. Vanishing Point Selection

The output of this bloc must provide three VP, each of them aligned with the three main orthogonal directions of the Manhattan world. It is realised in two steps: i) dominant line extraction, ii) line clustering for VP detection. The most intuitive method is to detect the intersection of dominant lines in images. Working directly in the image plan is fast because it does not require a projection in other bounded space like Gaussian sphere. On the other hand, infinite VP need to be detected separately from the finite ones, but we will see in next section that we can take advantage of this differentiation in the good choice of orthogonal VP, with a fast and robust sampling strategy.

1) Dominant Line Detection: Some pre-processing are introduced to improve the quality and the robustness of the detected edges in case of embedded camera: first, an histogram equalization harmonizes the distribution of brightness levels in the image, secondly a geometric correction of lenses distortion is done assuming that the camera calibration matrix is known. To find the dominant lines, we detect edges by using a Canny's detector. Then, edge points are projected into sinusoidal curves in polar accumulation space by applying a Hough Transform (HT), where peaks correspond to the dominant clusters of line segments. We use the probabilistic version of HT as it is faster than the classic one. Only 10% or 20% of the edges are randomly selected to obtain statistically good results. Only the straight lines that are long enough are selected as input to estimate multiple VP in an image.

2) Line Clustering by RANSAC: Recently, numerous authors adopt RANSAC as a simple and powerful method to provide a partition of parallel straight lines into clusters by pruning outliers. The process starts by randomly selecting two lines to generate a VP hypothesis, then, all lines consistent with this hypothesis are grouped together to optimize the VP estimate. Once a dominant VP is detected, all the associated lines are removed, and the process is repeated to detect the next dominant VP. The principal drawback of this sequential search is that no orthogonality constraint is imposed for selecting a reliable set of three VP to compute the camera orientation. Very recent works propose optimal estimates of three orthogonal VP by an analytical approach based on a multivariate polynomial system solver [START_REF] Mirzaei | Optimal estimation of vanishing points in a Manhattan world[END_REF] or by optimization approach based on interval analysis theory [START_REF] Bazin | Globally optimal line clustering and vanishing points estimation in a Manhattan world[END_REF], but at the expenses of complex time consuming algorithms.

In this work, we introduce an heuristic strategy to extract a limited number of reliable VP while enforcing the orthogonality constraint, in conjunction with RANSAC. In the context of pedestrian navigation, the main orthogonal directions in Manhattan world consist generally in a vertical one (often associated with an infinite VP) and two horizontal ones (associated with finite or infinite VP). So we consider three different possible configurations depending on the alignment of the image plane with the 3D urban scene: i) one finite and two infinite VP, ii) two finite and one infinite VP, iii) three finite VP. The two first configurations are common unlike the third. More details about the computation of the camera orientation depending on these three configurations will be given in section 3.2.

For a robust selection of VP, we detect the three finite candidates and two infinite ones that maximize the consensus set. The criteria used in the consensus score [START_REF] Antone | Automatic recovery of relative camera rotations for urban scene[END_REF] for clustering lines by RANSAC are different depending on each category. Unlike the finite VP whose coordinates may be determined in the image plan, the infinite VP are generally represented as a direction. For finite VP, the consensus score is based on a distance between the candidate straight line and the intersecting point [START_REF] Barnard | Interpreting perspective images[END_REF]. For infinite VP, it uses an angular distance between the direction of the candidate straight line and the direction representing the infinite VP (3).

,

where n is the number of dominant lines and d(v, l i ) is the Euclidian distance from the finite VP candidate v to the line l i . All lines whose distance is below a fixed threshold δ are considered as participants (the threshold δ is equal to 4 pixels in our experiments).

,

where v , l is the angle between the infinite VP direction from the image center and the line l to test in image space (the threshold δ is equal to 4° in our experiments).

To avoid redundant VP candidates, we introduce the supplementary constraint to be far enough from each other: we impose on VP to have a minimum angular distance between their directions from the image center (threshold is set to 30° for finite VP and 60° for infinite ones).

By separating finite from infinite VP, the sampling strategy provides the most significant of them without giving more importance to one or other category (we enforce to have at least one candidate finite). Furthermore, this heuristic strategy is faster as we detect only five reliable VP candidates against generally much more for the previous published methods.

3) Three Orthogonal Vanishing Points: Among the five candidates selected before, only three VP whose directions from the optical center are orthogonal have to be accepted, included at least one finite VP. We adopt the following heuristic: i) choose the finite VP with the highest consensus score, ii) select two other VP (finite or infinite) based on their orthogonality to the first one, and considering their consensus score as a second criterion. Finally, we identify the vertical VP and the two horizontal ones. In our application, we assume that the camera is kept upright: we identify the vertical VP as which presents the closest direction with the vertical direction from the image center. The two remaining VP are thus horizontal.

B. Camera Orientation Computation

This part is directly inspired from [START_REF] Boulanger | ATIP : A tool for 3D navigation inside a single image with automatic camera calibration[END_REF] to compute the camera orientation from the three VP supposed to be orthogonal. We use the directions of the detected VP which correspond to the camera orientation to compute the rotation matrix , , . The vectors , and to be found represent three orthogonal directions of the scene, respectively the first horizontal direction, the vertical direction and the second horizontal direction. They need to satisfy the following orthonormal relations: . . . 0 1

The estimation of these vectors depends on the VP configurations.

1) One Finite and Two Infinite VP: This situation is the most frequent one. It occurs when the image plane is aligned with two axis of the world coordinate frame. Let be the finite VP and the focal length. The direction of can be expressed as , , whereas the directions of the infinite VP, in image space, are , , 0 and , , 0 . The vectors of the rotation matrix are given by the following system of equations:

, , , , , , (5) 
2) Two Finite and One Infinite VP: This situation happens when the image plane is aligned with only one of the three axis of the world coordinate frame. Let and be the two finite VP of directions , , and , , . Since there are two finite horizontal VP, we set to the closest VP to the image center. The vector is obtained by cross product as shown in the system of equations below.

, ,

, , (6) 
3) Three Finite VP: This last configuration is the least frequent one. It occurs when there is no alignment between the image plane and the world coordinate frame. Let , and be the three finite VP of directions , , , , , and , , . We start by setting to the VP whose direction is closest to the vertical direction. We then set to the closest VP to the image center. In the system of equations ( 7), we assume that is the vertical VP and is closest to the image center. , , , , , ,

C. Vanishing Point Tracker

Once the whole described algorithm is processed for the first frame of the video sequence 1 , the estimated camera parameters can be tracked from one frame to another. Indeed, VP positions or directions are slightly modified in video-sequences or even in a list of successive frames. So we introduce a tracker to check consistency between the positions of the estimated VP in the frame and those estimated in frame 1 . For this we use the distance between the positions of the VP for the finite ones , , and the angle between the VP directions for the infinite ones , . When a VP is not coherent with its previous position or direction, it is re-estimated taking into account its previous position or direction and using the remains of unclassified lines. Hence, aberrant VP are discarded and replaced by new VP that are, at the same time, consistent with the previous ones and satisfy the orthogonality constraint. This tracker is efficient since it makes our algorithm much more stable and much robust as will be shown in the next section.

IV. EXPERIMENTS

This section presents the performance evaluation of the proposed method on real static images and video sequences.

A. Vanishing Point Estimation

For comparison purpose, we have tested the public York Urban Database (YUD) approaches for estimating the VP quoted in section:

• an Hough-based accumulation appr [START_REF] Boulanger | ATIP : A tool for 3D navigation inside a single image with automatic camera calibration[END_REF].

• an analytical method RNS recently p that provides optimal least-squares orthogonal vanishing points using a classification of lines.

Each image in the YUD has been hand-l the three Manhattan vanishing points an compute the Euler angles relating the cam scene frame. The database provides the camera calibration parameters, ground truth l the camera orientation for each image [START_REF] Denis | Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery[END_REF]. some orthogonal vanishing points and their lines extracted by our algorithm on some ima YUD.

The table 1 presents a comparative stud facing the angular distance from the Ground camera orientation provided in the YUD.

The three first rows of the Table 1 give th the distance exceeds a fixed value of 2, 5 respectively. The average and standard devi in the two following rows (in degrees). F images, the HT method is obviously the less r 

B. Tracking the Camera Orien

To show the efficiency of camera orientation, we acquire embedded camera. Our experim a camera AVT GUPPY F-033 and a laptop (Intel core 2 Duo sequence is composed of 350 fr second in the hallways of our la a short focal length, it is reco distortion correction before e camera has been first http://www.vision.caltech.edu/b proposed by Bouguet. Fig. 2 vanishing point extraction for the evolution of the roll, pitch orientation along the sequence and without the vanishing p produces a smooth running and camera orientation along the v removes some aberrant vanis points that are consistent, we camera orientation.

The full processing time orientation takes 16 millisecon pixels with non-optimized cod suitable for real time application for blind pedestrian.

V. CO

We propose an algorithm estimation of the camera orie orthogonal vanishing points in Our method introduces a novel and infinite vanishing points sequence. Experimental results he presence of outliers and does onstraints between the vanishing ased classification of lines, the ers from the parallel groups. The sult for the pitch angle but it is hod is significantly better for the aw is actually essential for a ce it gives the camera viewing ns by our heuristic strategy for g points that are distant enough usion between finite and infinite ve been implemented by using ary. The full results of the RNS hnical report provided online by u/~faraz/vp). Concerning the g the three orthogonal vanishing ze 640x480 pixels, our method ~1.12 seconds for HT on a Intel S, the authors mention that their f the symbolic-numeric method d the solutions on a Core 2 Duo ntation f our algorithm for tracking the e real video sequences, with an mental prototype is composed of 3C equipped with a 3.5mm lens o 2.66GHz/4096MB). The video frames acquired at 25 frames per aboratory. As we use a lens with mmended to apply a geometric extracting line segments. The calibrated using the tool: bouguetj/calib_doc/, a software depicts some typical results of this sequence. Fig. 3 compares h and yaw angles of the camera e by applying our method with oint tracker (VPT). The VPT d a more reliable estimation for video sequence. Since the VPT shing points, keeping only the e then obtain a more accurate e for estimating the camera nds per image of size 320x240 de. Therefore, our algorithm is ns, such as navigation assistance ONCLUSION pipeline to achieve an accurate entation based on three reliable the context of visual navigation. l sampling strategy among finite and a tracking along a video on real images, show that, even simple, the adopted strategy for selecting three reliable distant and orthogonal vanishing points in conjunction with RANSAC performs well in practice since the estimation of the camera orientation is better than those obtained with a state-of-art analytical method. Furthermore, the tracker proved to be relevant to dismiss aberrant vanishing points along the sequence, making outmoded refinement or optimization later step and preserving a short processing time for real-time application. This algorithm is devoted to be a part of a localization system that should provides navigation assistance for blind people in urban area.
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 2 Figure 2: The vanishing points and their associated lines can be robustly detected and tracked along the video sequence during the navigation.
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 3 Figure 3: Smoothing effect of the VPT on the estimation of the camera's orientation (pitch, yaw and roll angles).
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