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We study the complex Dulac map for a holomorphic foliation of the complex plane, near a non-degenerate singularity (both eigenvalues of the linearization are nonzero) with two separatrices. Following the well-known results of Y. Il'yashenko we provide a geometric approach allowing to study the whole maximal domain of (geometric) definition of the Dulac map. In particular its topology and the regularity of its boundary are completely described. We also study the order of magnitude of the first non-trivial term of its asymptotic expansion and show how to compute it using path integrals supported in the leaves of the linearized foliation. Explicit bounds on the remainder are given. We perform similarly the study of the Dulac time spent around the singularity. All results are formulated in a unified framework taking no heed to the usual dynamical discrimination (i.e. no matter whether the singularity is formally orbitally linearizable or not and regardless of the arithmetic of the eigenvalues ratio).

Introduction

We consider a germ of a holomorphic vector field at the origin of the complex plane A (x, y) ∂ ∂x + B (x, y) ∂ ∂y admitting an isolated, non-degenerate singularity at (0, 0). In other words the origin is the only local zero of the vector field, and its linear part [∇A , ∇B] at this point is a 2×2 matrix with two nonzero eigenvalues, of ratio λ ∈ C 0 . Up to choose differently the local analytic coordinates (we particularly refer to Lemma 1.5) we may assume without loss of generality that the vector field admits the following expression:

X R = λx ∂ ∂x + (1 + R) y ∂ ∂y , R (0, 0) = 0 , R ∈ x a C {x, y} (X)
for some non-negative integer a. Our study is carried out on a fixed polydisc U = ρD × rD small enough for the relation sup

U |R| < 1 (R)
to hold. At some point we also use the hypothesis

ℜ a + 1 λ ≥ 0 . (a)
This setting encompasses almost all non-degenerate singularities, including every kind of saddle singularities (λ < 0). We write F R the (holomorphic, singular) foliation of U whose leaves are defined by the integral curves of X R . This foliation admits two special leaves (called separatrices) each of whose adherence corresponds to a branch of {xy = 0}. We define Û := U \ {xy = 0} . (1.1) Outside {x = 0} the foliation is transverse everywhere to the fibers of the fibration Π : (x, y) -→ x and if (R) holds the foliation is transverse to that of (x, y) → y too. Being given (x * , y * ) ∈ Û it is thus possible (under suitable assumptions that will be detailed later on) to lift in the foliation through Π a path γ linking x to x * , starting from the point (x, y * ). The arrival end-point of the lifted path defines uniquely a point (x * , y x ) ∈ Π -1 (x * ). This construction yields a locally analytic map from the transverse disc {y = y * } into the transverse disc {x = x * }, which is known as the Dulac map D R : x 0 -→ y x of X R associated to (x * , y * ). This map is in general multivalued, and its monodromy is generated by the holonomy of F R computed on {x = x * } by winding around {x = 0}. Y. Il'Yashenko carried out important works [Il'84,Il'85,Il'91] aimed at studying the germ of a subdomain of {y = y * } at (x * , y * ) on which the germ of a mapping D R is holomorphic and has «interesting» asymptotics, in connection to Dulac's conjecture and ultimately Hilbert's 16 th problem. We give more contextual details in paragraphs to come, let us just say for now that Y. Il'Yashenko proved D R is defined at least on a standard quadratic domain in logarithmic coordinates. By contrast, our concern here is to consider D R as a global mapping and to describe in a detailed manner the maximal Riemann surface Ω R on which D R is defined (for which the geometric construction above can be performed 1 ). Our main result is the following: Main Theorem. Assume conditions (X) and (R) hold.

(1) Ω R is simply connected and embeds into the universal covering of {y = y * , x 0}.

(2) Any component of the boundary ∂Ω R is a piecewise-analytic curve.

(3) If ℜ (λ) ≥ 0 then Ω R is connected.

Remark.

(1) Notice that the result holds as soon as the quantitative and explicit conditions (X), (R) are fulfilled: the theorem is a semi-local result.

(2) If the condition (R) is not met then the foliation F R is likely to fail being transverse to the fibration Π at some point. The Dulac map becomes multivalued in the presence of such tangency points, meaning that Ω R can no longer be embedded in the universal cover of the punctured transverse line. The topology of Ω R can therefore get richer, e.g. when the tangency point corresponds to a finite branch-point: in that case adh (Ω R ) contains an orbifold point and Ω R is not simply connected anymore. (3) Conclusions (1) and (3) are still valid when R is merely C 1 as a real function since their proofs actually only use elementary variational and topological arguments based on the sole knowledge of sup U |R|, as well as the local rectification theorem for vector fields. Conclusion (3) may hold with ∂Ω R of the same regularity as R but the local finiteness requirement in «piecewise» might be violated in some instances (see in particular Section 3.4).

1.1. Context and known facts. The Dulac map governs part of the dynamics of F R and has been submitted to an intense study at least in the two settings we describe now.

1.1.1. The proof of Dulac's conjecture regarding finiteness of the number of limit cycles for analytic vector fields in the real plane. Dulac maps are basic ingredients of the cross-section first-return map along a poly-cycle, whose attractive fixedpoints correspond to limit cycles. As was noticed by Y.Il'yashenko [Il'85] the original «proof» of H. Dulac [START_REF] Dulac | Sur les cycles limites[END_REF] crucially depends on a lemma which turned out to be false. Many powerful, if intricate, tools have been developed in the 1980's decade which finally led to a complete proof of Dulac's conjecture. Two parallel approaches evolved at the time to analyze the asymptotic expansion of the Dulac map: J. Écalle [Éca92] studied it first formally using trans-series then through resurgent summation techniques, while Y. Il'yashenko devised an argument based on super-accurate asymptotic series in the book [Il'91] dedicated to the proof of Dulac's conjecture. The key point of the argument is that a map with null asymptotic series should vanishes identically. This is not true for every possible domains, which is the reason why Dulac's attempt failed. A central class of domains for which that property does hold are called standard (quadratic) domains.

Although various authors contributed to the tale of Dulac's conjecture, the aim of this article is not to offer a comprehensive list. We make the choice to refer the reader to the textbook [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF] for more details regarding the context in which the Dulac map intervenes, for this book has a more geometric flavor. We also mention the unpublished material [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF] containing many dynamical details in the complex setting.

Regularity Theorem [Il'91,Il'84]. Assume λ < 0. Up to reduce the value of ρ and r, the set Ω R contains a standard quadratic domain for C > 0 big enough:

Ω (C) := ϕ C ({z : ℜ (z) > 0}) (1.2)
image of the real half-plane {ℜ (z) > 0} by the conformal mapping

ϕ C : z -→ z * -z -C √ 1 + z .
Remark.

(1) The constant C can be made as small as wished by taking x * close enough to 0. Viewed in the original x-variable, this domain contains germs of a sector around {x = 0} of arbitrary aperture.

(2) The most recent (and so far shortest) version of the proof given in [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF] chap. IV] uses the condition (R) (or more precisely the bound |R| < 1 /2 with a = 0). The approach ultimately relies on the fact that the holonomy of F R is a parabolic germ, which happens only when λ is rational, and no useful replacement estimate of the behavior of the iterates of the holonomy currently exist when λ is an irrational. (3) In [Il'91,Il'84] a proof of the statement for every λ ∈ R <0 is performed under the (non-restrictive, see Lemma 1.5) assumption that a > 0 is big enough.

1.1.2. The topology of singular germs of a planar holomorphic foliation. The study of the dynamics of a singular foliation through Seidenberg's reduction 2 process naturally involves Dulac maps as «corner maps» encoding the transition between different components of the exceptional divisor. They measure how the different components of the projective holonomy pseudo-group mix together. In that context D. Marín and J.-F. Mattei [START_REF] Marín | Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers[END_REF] proved that under suitable (generic) hypothesis a germ of a singular foliation is locally incompressible: there exists an adapted base of neighborhoods of (0, 0) in which the (non-trivial) cycles lying in the leaves of the restricted foliation must wind around the complement of the separatrix locus, in the trail of Milnor's theorem regarding holomorphic fibrations outside the singular fibers. This study is the first step towards a complete analytical and topological classification of (generic) singular germs of a foliation [START_REF] Marín | Topology of singular holomorphic foliations along a compact divisor[END_REF]. One of the main ingredients of their proof is the control of the «roughness» of the corner maps and elements of the projective holonomy. This roughness can be read in the first two terms of the asymptotic expansion of the Dulac map. In that respect Proposition 1.2, stated further down, allows to get rid of a non-necessary technical hypothesis in Marín-Mattei's theorem, namely discarding «bad 3 » irrational ratios appearing in Seidenberg's reduction of the singularity. We refer to [START_REF] Teyssier | Germes de feuilletages présentables du plan complexe[END_REF] for a complete dealing with the more general setting, as well as the proof of:

2 According to Seidenberg's algorithm (see [START_REF] Seidenberg | Reduction of singularities of the differential equation A dy = B dx[END_REF]) any isolated singularity of a germ of a holomorphic foliation F can be «reduced» through a proper, rational map π : M → C 2 , 0 , where M is a conformal neighborhood of a tree E := π -1 (0, 0) of normally-crossing, conformal divisors P 1 (C). The pulled-back foliation π * F has only isolated, reduced singularities (located on E): either nondegenerate or of saddle-node type (exactly one nonzero eigenvalue).

3 A «bad» irrational number is unusually well approximated by rational numbers (the so-called «small-divisors» problem), characterized by Brjuno's explicit arithmetic condition [START_REF] Brjuno | Analytic form of differential equations. I, II[END_REF] expressed in terms of the convergents of λ.

Incompressibility Theorem [START_REF] Teyssier | Germes de feuilletages présentables du plan complexe[END_REF]. Take λ 0 and assume that conditions (X) and (R) are fulfilled. Let E : (z, w) -→ (exp z, exp w) be the universal covering of Û . Then the foliation E * F R is regular and each one of its leaves is simply-connected.

1.2. Discussion and additional results. Let us begin with formulating a few remarks.

• We provide a framework which does not depend on the usual dynamical discrimination (i.e. no matter whether the singularity is formally orbitally linearizable or not and regardless of the arithmetic of λ). We only distinguish between node-like (ℜ (λ) ≥ 0) and saddle-like singularities (ℜ (λ) < 0). Notice that if λ R the singularity is hyperbolic, thus orbitally linearizable by Poincaré's theorem: the genuinely difficult cases arise only for real λ (actually λ < 0), which are the cases usually studied in the literature. Yet our constructions are real-analytic with respect to λ, allowing irregular situations to be studied as limiting cases of e.g. hyperbolic situations. • In the setting of real planar vector fields a quasi-resonant saddle (λ ∈ R <0 \Q) is always orbitally conjugate to its linear part by a (sufficiently more regular than) C ∞ change of coordinates [Il'85, Il '91], which explains why part of the literature (e.g. [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF]) mainly focus on resonant saddles (λ ∈ Q <0 ). This is no longer true in the complex plane in the presence of «bad» irrational ratios [START_REF] Marco | Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz)[END_REF]. Although a quasi-resonant saddle is orbitally conjugate to its linearization in the universal covering of Û , this conjugacy cannot extend to a C ∞ map along the lift of the separatrices. Therefore it is not sufficient to study linear foliations to encompass complex Dulac maps or their asymptotics in the case of quasi-resonant saddles. • We express below the Dulac map as an integral (more precisely, as the integral of the differential 1-form Rd log x -1 /λ along paths tangent to F R ). This integral form, while not being strictly speaking an «integral representation», will prove useful when performing computations. Let us call this integration process the characteristics of R along F R . Following the Incompressibility Theorem the natural space to study the Dulac map is the universal covering of Û (see (1.1)):

E : Ũ -→ Û (z, w) -→ (exp z , exp w) .
The Main Theorem (1) asserts that D R can be understood as a local holomorphic function z → w z , after having fixed once and for all a preimage (z * , w * ) ∈ E -1 (x * , y * ) and set D R (z * ) := w * . Because its Riemann surface Ω R is simply connected the map D R actually is holomorphic on an open set of {w = w * }, still written Ω R , corresponding to those z giving birth to a path γ R (z) tangent to E * F R with starting endpoint (z, w * ) and landing endpoint (z * , w z ).

Proximity Theorem. Assume that conditions (X) and (R) hold.

(1) For every z ∈ Ω R we have

D R (z) = w * + z * -z λ + 1 λ ˆγR (z) R • E dz .
(2) If ℜ (λ) < 0 and the condition (a) is satisfied then one has the asymptotic approximation

ˆγR (z) R • E dz = ˆγ0 (z) R • E dz + o (|z exp -z /λ|)
when ℜ (z) tends to -∞ with a bounded imaginary part.

Although the Dulac map's asymptotic expansion on standard domains can be expressed formally as

D R (x) ≃ n,m D n,m s n,m (x) , D n,m ∈ C , where s n,m (x) =        x nλ+m -x nλ+m * nλ+m if nλ + m 0 log x x *
otherwise is the Écalle-Roussarie compensator, the expansion converges if, and only if, the foliation is analytically normalizable4 , as was proved by A. Mourtada and R. Moussu [MM97, Proposition 1]. We compute the first non-trivial term in the asymptotic expansion for all saddle-like singularities. We also derive explicit bounds on the remainder in semi-infinite «horizontal» bands {ℜ (z) < cst , |ℑ (z)| < cst}). It is most probably possible to obtain explicit bounds on sub-standard-domains following the estimate produced in [Il'91,Il'84]. I decided not to include this computation for the sake of concision. Also these sharper bounds are not needed to deal with incompressibility of generic degenerate singularities [START_REF] Marín | Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers[END_REF][START_REF] Marín | Topology of singular holomorphic foliations along a compact divisor[END_REF][START_REF] Teyssier | Germes de feuilletages présentables du plan complexe[END_REF].

The computation of the characteristics along the model F 0 in (4) can be carried out explicitly. The exact value of ´γ0 (z) (x n y m ) • Edz does not offer an insightful interest as such (see Section 4). We can nonetheless deduce from it the dominant part of ´γ0 (z) R • Edz, which splits into two components: the regular part ´z * z R (exp u, 0) du, which induces a holomorphic function in U since R (0, 0) = 0, and the resonant part obtained by selecting in R only well-chosen monomials.

Definition 1.1. The resonant support Res (a, λ) associated to (a, λ) is

• the empty set if λ R <0 ,
• otherwise the subset of N 2 defined by

Res (a, λ) := (n, m) ∈ N 2 : m > 0 , n ≥ a , |nλ + m| < 1 2n . For G (x, y) = n≥0, m≥0 G n,m x n y m ∈ C {x, y} we denote by G 0 the regular part of G G 0 (x) := G (x, 0)
and by G Res its resonant part

G Res (x, y) := (n,m)∈Res(a,λ) G n,m x n y m .
It turns out that this support corresponds indeed to resonant or quasi-resonant monomials, according to the rationality of λ (Lemma 4.8), which carry without surprise the major part of the non-regular characteristics.

Proposition 1.2. Assume that ℜ (λ) < 0 and conditions (X), (R) and (a) holds. For any G ∈ C {x, y} we have

ˆγ0 (z) G 0 • Edz = G 0 (0) (z * -z) + O (exp z) and if moreover G ∈ x a C {x, y} ˆγ0 (z) G Res • Edz = O (|z exp -z /λ|) ˆγ0 (z) (G -G Res -G 0 ) • Edz = O (|exp -z /λ|)
(here again O (•) regards the situation when ℜ (z) tends to -∞ while z has bounded imaginary part).

As far as I know the above result is new when λ < 0 is irrational. Notice that in this case and if G Res is finitely supported then

ˆγ0 (z) G Res • Edz = O (|exp -z /λ|) .
Remark 1.3. If the condition (a) is not fulfilled then terms of order of magnitude exp az will appear instead of exp -z /λ. This noise can be avoided by normalizing X R further (Lemma 1.5).

1.3. Time spent near the singularity. In applications (for instance in the study of real analytic planar vector fields) it is sometimes important to estimate the Dulac time, that is the time it takes to drift from (z, w * ) to (z * , D R (z)) in the flow of the vector field. In the case of X R this time is obviously

T R,1 (z, z * ) := z -z * λ = ˆγR (z) dz λ .
Multiplying X R by a holomorphic unit U does not change the underlying foliation (i.e. the Dulac map), although it does the Dulac time T R,U . The later is obtained by integrating a time-form5 . P. Mardešić and M. Saavedra performed the complex analytic continuation of the Dulac time near resonant saddle singularities in [START_REF] Mardešić | Non-accumulation of critical points of the Poincaré time on hyperbolic polycycles[END_REF]. Their approach follows the techniques of [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF] while providing slightly different paths of integration γ R (z). This work was followed by a paper [START_REF] Mardešić | Unfolding of resonant saddles and the Dulac time[END_REF] of P. Mardešić, D. Marín and J. Villadelprat, studying the asymptotic expansion of the Dulac time with a controlled bound on the remainder in families of orbitally linearizable real planar vector fields. The results presented here complete and sharpen these studies in the more general setting described in the Proximity Theorem and Proposition 1.2.

One can choose the time-form as τ (x, y) := dx λxU (x, y) , so that the next result holds.

Theorem 1.4. Take U ∈ O (U ) such that U (0, 0) 0. Assume that U is chosen in such a way that, in addition to conditions (X) and (R), the holomorphic function U| U never vanishes. Then the Dulac time is holomorphic on Ω R and

T R,U (z) = ˆγR (z) dz λU • E .
If moreover ℜ (λ) < 0, the condition (a) holds and U -U 0 ∈ x a yC {x, y} then, as ℜ (z) tends to -∞ with bounded imaginary part,

T R,U (z) - ˆγ0 (z) dz λU 0 • E = ˆγ0 (z) dz λU Res • E + o (|z exp -z /λ|) .
The integral subtracted on the left-hand side boils down to z * -z λU (0,0) if U -U (0, 0) belongs to x a yC {x, y}. We mention that this situation can always be enforced by preparing the vector field: Lemma 1.5. Let Z be a germ of a holomorphic vector field near an isolated, nondegenerate singularity with ratio of eigenvalues λ R ≥0 . Then there exists a ∈ N >0 satisfying (a) and a choice of local analytical coordinates such that Z = UX R for two germs of a function satisfying R ∈ x a yC {x, y} and U -U (0, 0) ∈ x a yC {x, y} with U (0, 0) 0. This lemma is plainly trivial when λ R ≤0 : in that setting Z is locally analytically conjugate to its linear part, corresponding to R = 0 and U = cst. When λ < 0 is irrational the vector field is formally linearizable and can be put in the sought form for any finite order a ∈ N, particularly one such that a + 1 λ > 0. When λ = -p q for p and q positive co-prime integers, resonances may appear and Z may not be even formally orbitally linearizable. These resonances correspond to pairs (n, m) of integers belonging to (q, p) N (those for which nλ + m = 0) in the Taylor expansion of R and U -U (0, 0), and as such cannot appear for an index n lesser than q or for m = 0. It is thus possible to cancel out formally the (q -1)-jet with respect to x and the 0-jet with respect to y of the given functions, meaning we can take a := q. Then a + 1 λ ≥ 0. The fact that this formal transform can always be chosen convergent is well known. 1.4. Extension of the results to other singularities. Condition (X) is satisfied except for some cases when {λ, 1 /λ} ∩ N ∅. The heuristic is that these singularities may not possess sufficiently many separatrices: the resonant node (λ 0) and the saddle-node (λ = 0, exactly one nonzero eigenvalue) admit only one in general. The former case is not very interesting since it corresponds to vector fields which can be analytically reduced to polynomial vector fields (Poincaré-Dulac normal forms [START_REF] Dulac | Sur les points singuliers d'une équation différentielle[END_REF]) for which explicit computations are easily carried out. The geometry of the foliation itself is quite tame and completely understood. Save for some minor and technical complications, the framework we present can be adapted to encompass this case, although the trouble is not worth the induced lack of clarity in the exposition.

The case of the saddle-node is richer. In [START_REF] Teyssier | Germes de feuilletages présentables du plan complexe[END_REF] we prove that the Incompressibility Theorem holds in that case too. When the saddle-node is not divergent (i.e. it admits two separatrices) it can be brought in the form (X) and the Dulac map admits an integral representation as in Proximity Theorem (1)

D R (z) = D µx k (z) + ˆγR (z) R -µx k • E dz exp (kz)
where (k, µ) ∈ N >0 × C is the formal invariant of the saddle-node and D µx k is the Dulac map for the normal form which can be explicitly computed:

D µx k (z) = w * + µ (z -z * ) + exp (-kz) -exp (-kz * ) k .
When the singularity is a divergent saddle-node it is possible to obtain an integral representation as well as a sectoral asymptotic behavior. We refer also to [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF] for more details. Notice again that the results are quantitative and hold whenever condition (R) is satisfied.

After Seidenberg's reduction of its singularity a (germ of a) nilpotent foliation possesses singular points either of non-degenerate or of saddle-node type. As a consequence the work done here and in [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF] is somehow sufficient to analyze more general Dulac maps, although the difficulty of the task is huge. Yet there is a special case where it is not necessary to perform the reduction of singularities to be able to carry out some computations, which is in fact the most general formulation of the framework we introduce here, corresponding to vector fields in the form generalizing (X) X R = X 0 + RY where:

• X 0 and Y are commuting, generically transverse vector fields,

• Y admits a holomorphic first-integral u with connected fibers, • R ∈ u a C {x, y} for some a > 0. Being given both a transverse disc Σ meeting a common separatrix of X R and Y at some point p * , and a transverse Σ ′ corresponding to a trajectory {u = u * } of Y , we can define the Dulac map of X R joining Σ to Σ ′ by lifting paths through the fibration (x, y) → u (x, y). Then, with equality as multivalued maps on Σ\ {p * }, we have the implicit relation

H 0 • D R = H 0 • D 0 × exp ˆγR Rτ
where τ is some time-form of X R and H 0 a first-integral6 of X 0 . With little additional work the techniques used here can be applied in that context, in particular regarding the shape of the domain of D R and, when applicable, its asymptotics.

1.5. Structure of the article. This paper only uses elementary techniques and is consequently self-contained.

• Section 3 is devoted to proving the Main Theorem.

• This paper goes on with Section 4 where the explicit computation of characteristics ´γ0 (z) G • E dz are performed for the model F 0 . Yet the core of the section is the integral formula (1) of the Proximity Theorem (Section 4.1) and the study of the asymptotic deviation between ´γR G • E dz and ´γ0 (z) G • E dz. Immediate consequences of this estimation are (2) of the Proximity Theorem and the best part of Theorem 1.4.

• We end this paper with the proof of Proposition 1.2 in Section 4.3.3, completing Theorem 1.4.

1.6. Notations and conventions.

• Let K ⊂ R m be a compact set. A mapping f : K → R n will be said realanalytic if it is the restriction of a real-analytic mapping on an open neighborhood of K. • All the paths γ we use throughout the paper are, for the sake of simplicity, piecewise real-analytic maps from some compact interval I into U . Its starting point (resp. ending point) is written γ ⋆ (resp. γ ⋆ ). It will always be possible, though, to perturb γ slightly so that it is real-analytic everywhere when needed. • Take a foliation F defined on a domain U and some subset A ⊂ U . The saturation Sat F (A) ⊂ U is the union of all the leaves of F intersecting A. • The restriction of the foliation F to a sub-domain V ⊂ U is the foliation on V , written F ∩ V , whose leaves are the connected components of the trace on V of the leaves of F . • For the sake of concision we make the convention that an object X hatted with a tilde stands for its pull-back in logarithmic coordinates X :

= E * X E : Ũ -→ Û (z, w) -→ (exp z , exp w) . • If G ∈ O (U ) ∩ x a C {x,
y} is bounded we define its norm as

||G|| := sup U G x a .
• We recall that the rectifying theorem for regular points p of a foliation F asserts the existence of a local analytic chart ψ : (V , p) → C 2 such that ψ * (F ∩ V ) is a foliation by lines of constant direction. We call (ψ, V ) a rectifying chart.

Definition 1.6. Let Σ ⊂ U \ {(0, 0)} be a cross-section, transversal everywhere to F R (for short, a transverse to F R ).

(1) We introduce the groupoid Γ R (Σ) of equivalence classes of paths γ tangent to F R with γ ⋆ ∈ Σ, up to tangential homotopy (that is, homotopy within a given leaf of F R ) with fixed end-points. We call it the tangential groupoid of F R relative to Σ.

(2) The tangential groupoid of F R relative to Σ is naturally endowed with a structure of a foliated complex surface, which can be understood as the foliated universal covering of the saturation Sat F R (Σ) of Σ by the leaves of F R , that is the locally biholomorphic, onto mapping

σ : Γ R (Σ) -→ Sat F R (Σ) γ -→ γ ⋆ .
(3) Fix a tangent path η ∈ Γ R (Σ) and define the abstract transversal set

Γ Σ := γ ∈ Γ R (Σ) : Π • γ = Π • η .
We call holonomy map of F R associated to (η, Σ) the locally biholomorphic map

h η : Γ Σ -→ Π -1 Π η ⋆ γ -→ γ ⋆ .
(4) The Dulac map of F R associated with (x * , y * ) is the holomorphic function defined on

Γ * : = γ ∈ Γ R (U ∩ {y = y * , x 0}) : Π γ ⋆ = x * by D R : Γ * -→ Π -1 (x * ) γ -→ γ ⋆ .

Incompressibility of the leaves

We recall that U is some polydisc centered at (0, 0) on which R is bounded and holomorphic. We define Û := U \ {xy = 0} and Ũ its universal covering through the exponential map

E E : Ũ -→ Û (z, w) -→ (exp z , exp w) .
The Incompressibility Theorem asserts the leaves of the foliation F := E * F R are simply-connected. We recall briefly the argument of the proof for two reasons: on the one hand because we need some basic estimates borrowed from said argument for the rest of the article, on the other hand because it will make apparent that the proof remains valid when R is merely C 1 as a real function. Write

E * X R = E * X 0 + R • E × E * y ∂ ∂y
where

E * X 0 = λ ∂ ∂z + ∂ ∂w E * y ∂ ∂y = ∂ ∂w .
The vector field E * X R is holomorphic and regular on the infinite complex rectangle

Ũ := (z, w) ∈ C 2 : ℜ (z) < ln ρ , ℜ (w) < ln r .
It induces a foliation F transversal to the fibers of

Π : (z, w) -→ z ,
hence the leaf Lp 0 is everywhere locally the graph {w = f (z)} of some unique germ of a holomorphic function defined in a neighborhood V (p 0 ) of Π (p 0 ). Because of this property the boundary of Lp 0 is included in the boundary of the domain of study

∂ Ũ = ℜ (z) = ln ρ or ℑ (w) = ln r .
Incompressibility follows from the existence of (a family of) curves included in Lp 0 which project by Π on line segments of constant direction. A cycle γ within Lp 0 will therefore be pushed along those curves, as if repelled by the beam of a searchlight, resulting in a homotopy in Lp 0 with a path γ whose projection bounds a region of empty interior. The foliation obtained by restricting F to the 3-space Π -1 ( γ (I)) is a 1-dimensional foliation transverse to the fibers of Π. Therefore the leaves are contractible: γ (and γ) is homotopic in Lp 0 to a point.

Definition 2.1. (See Figure 2.1.) For v ∈ ℜ (z) < ln ρ , 0 < δ < π and ϑ ∈ S 1 the domain

S (v, ϑ, δ) := z : ℜ (z) < ln ρ , |arg (z -v) -argϑ| < δ is called a (searchlight) beam of aperture 2δ, direction ϑ and vertex v. If v = Π (p 0 )
we say it is a stability beam when the real part of the lift in Lp 0 , starting from p 0 , of an outgoing ray t ≥ 0 → v + tθ, with |arg θ /ϑ| < δ, is decreasing.

Remark 2.2. This particularly means that the outgoing ray lifts completely in Lp 0 as long as it does not cross ℜ (z) = ln ρ . Lemma 2.3. There exist δ ∈]0, π] and ϑ ∈ S 1 such that for all p 0 = (z 0 , w 0 ) ∈ Ũ the beam S (z 0 , ϑ, δ) is a stability beam. We can take

{ℜ(z) = ln ρ} v v + ϑ 2δ S(v, ϑ, δ)
ϑ := - λ |λ| δ ∈ 0, arccos sup U |R| ,
so that one can take δ as close to π 2 as one wishes by sufficiently diminishing ρ and r. Besides for any integral curve of E * X R of the form t → (z 0 + tθ, w (t)) with t ≥ 0, θ ∈ S 1 and w (0) = w 0 we have the estimate for ℜ (θ) 0

w (t) -w 0 -t θ λ ≤ exp (aℜ (z 0 )) |λℜ (θ)| a ||R|| |1 -exp (atℜ (θ))| (2.1)
and taking the limit ℜ (θ) → 0

w (t) -w 0 ± t i λ ≤ exp (aℜ (z 0 )) |λ| t ||R|| . (2.2)
Proof. The lift in F of a germ of a ray z (t) = z 0 + θt, with θ ∈ S 1 and t ≥ 0, starting from p 0 is obtained as the solution to

ẇ ż (t) = 1 + R • E (z (t) , w (t)) λ , w (0) = w 0 , that is ẇ (t) = θ λ (1 + R • E (z 0 + θt, w (t))) . (2.3) The function t → ϕ (t) := ℜ (w (t)) is therefore solution to the differential equation φ = ℜ θ λ (1 + R • E • (z, w)) , (2.4) which particularly means that φ (t) -ℜ θ λ ≤ exp (aℜ (z 0 )) |λ| ||R|| exp (atℜ (θ)) < ρ a |λ| ||R|| .
Exploiting the cruder estimate by taking θ ∈ ϑ exp (i [-δ, δ]) we derive

φ (t) ≤ - 1 |λ| (cos δ -ρ a ||R||) < 0 . (2.5)
Since ϕ (0) < ln r it follows that ϕ (t) < ln r as long as ℜ ((z (t))) < ln ρ, which is our first claim.

Integrating both sides of the estimate yields

ℜ w (t) -w 0 -t θ λ < exp (aℜ (z 0 )) |λℜ (θ)| a ||R|| |1 -exp (atℜ (θ))| .
The study we just performed can be carried out in just the same way for the imaginary part of w, yielding

ℑ w (t) -w 0 -t θ λ < exp (aℜ (z 0 )) |λℜ (θ)| a ||R|| |1 -exp (atℜ (θ))| ,
proving the sought estimate.

Remark 2.4. We should stress that the «roughness» of ∂Ω p 0 is controlled by the aperture 2δ of the stability beam, which can be taken as close to π as one wishes, and by the direction ϑ (which is that of the model). This is a kind of «conicconvexity» which forbids ∂Ω p 0 to be too wild. In fact the closer ℜ (z) is to -∞, the more Ω p 0 looks like ℜ w 0 + z-z 0 λ < ln r , ℜ (z) < ln ρ near z.

-

λ |λ| {ℜ(w 0 + z-z 0 λ ) = ln r} z 0 δ {ℜ(z) = ln ρ}
The previous remark can be made more quantitative if we explicitly allow δ to vary. In fact we can sharpen the estimate from the previous lemma by replacing in (2.5) ρ a ||R|| with M (z (t) , w (t)) where

M (z, w) := exp (aℜ (z)) (K 0 exp ℜ (z) + K 1 exp ℜ (w)) , K 0 := sup U ∂x -a R ∂x , K 1 := sup U ∂x -a R ∂y , for |R • E (z, w)| ≤ M (z, w) .
By reducing slightly the size of U we can assert that sup U M < 1. The function M depends implicitly on the parameter (a, K 0 , K 1 ) ∈ N × R 2 ≥0 . Corollary 2.5. Define the functional space

E :=        ǫ ∈ C 0 (R ≥0 → R >0 ) : sup R ≥0 ǫ ≤ 1 -M (ln ρ, ln r) |λ| and lim t→∞ ˆt 0 ǫ (s) ds = +∞        . For (z, w) ∈ Ũ , ǫ ∈ E and t ∈ R set δ ǫ (t, z, w) := arccos(ǫ (|t|) |λ| + M (z, w)) (the bound enforced on ǫ guarantees that ǫ (R ≥0 ) |λ| + M Ũ is included in [0, 1]). Fix p 0 = (z 0 , w 0 ) ∈ Ũ . As long as the image of the path z ± ǫ : t ∈ ±R ≥0 → z ± ǫ (t), solution of        dz ± ǫ dt (t) = ϑ exp ±iδ ǫ t , z ± ǫ (t) , w 0 - ´|t| 0 ǫ (s) ds z ± ǫ (0) = z 0 , stays in z : ℜ (z) < ln ρ then it is contained in Ω p 0 . Moreover if ℜ (λ) > 0 each z ± ǫ is a solution for all t ∈ ±R ≥0 and tan arg dz ± ǫ dt (t) ∼ t→±∞ 1 -(ǫ (|t|) |λ|) 2 ǫ (|t|) |λ| .
The estimate on tan arg dz ± ǫ dt as t goes to ±∞ controls the asymptotic direction of the image curve. If ǫ → 0 then the curve gets arbitrarily tangent to the imaginary axis.

Proof. Assume t ≥ 0. By construction, and similarly as in (2.4), the corresponding solution

w + ǫ satisfies dℜ (w + ǫ ) dt (t) ≤ - 1 |λ| cos δ ǫ t, z + ǫ (t) , w 0 - ˆt 0 ǫ (s) ds -M z + ǫ (t) , w 0 - ˆt 0 ǫ (s)ds = -ǫ (t) < 0 .
The rest of the proof is clear.

Definition 2.6. We call maximal stability beam of parameter (a, K 0 , K 1 ) based at p 0 the open set included in Ω p 0 S max (p 0 ) := connected component of p 0 in

       ℜ (z) < ln ρ ∩ ǫ∈E z ± ǫ (±R ≥0 )        .
By taking R x a linear we see that a maximal stability beam is optimal for all F R with same corresponding parameter (a, K 0 , K 1 ). Notice that ∂S max (p 0 ) is the limit of curves parameterized by z ± ǫ with ǫ → 0 in E. In particular its slope gets asymptotically tangent to the imaginary axis.

Geometry of Ω R and of its boundary

We continue to write D R for the Dulac map of F R associated to some couple (x * , y * ) expressed in the coordinates E (i.e. understood as a locally holomorphic function of (z, w)). We recall that for any p 0 ∈ Ũ the leaf Lp 0 of F passing through p 0 projects on

Ω p 0 := Π Lp 0 .
Proposition 3.1. We fix a preimage (z * , w * ) ∈ E -1 (x * , y * ).

(1) The Dulac map is holomorphic on the open, simply connected set

Ω := z ∈ C : (z, w * ) ∈ Ũ and z * ∈ Ω (z,w * ) .
We write Ω * the connected component containing z * . As Riemann surfaces Ω and Ω R are isomorphic.

(2) The boundary ∂Ω is a locally finite union of piecewise real-analytic curves. Remark. In (4) one can take ρ = ρ ′ and r = r ′ when λ is real. Also when a > 0 one can guarantee that r = r ′ .

The rest of the section is devoted to proving the proposition. In doing so we build an explicit tangent path linking (z 0 , w * ) to (z * , D R (z 0 )), see Proposition 3.2 below, which will serve in the next section to establish the asymptotic expansion of the Dulac map through the integral formula of Corollary 4.6. For saddle-like singularities the paths are built in the same fashion as in [Il'84,Il'91,[START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF]. We underline right now the fact that the projection γ of that path through Π does not depend on w * , but only on z 0 , a, λ, ρ, ||R|| and z * .

3.1. The integration path. We write p 0 := (z 0 , w * ). If ℜ (λ) ≥ 0 and z 0 ∈ Ω then both stability beams S (z 0 , ϑ, δ) and S (z * , ϑ, δ) are included in Ω p 0 and their intersection W is non-empty. Therefore z 0 can be linked to z * in Ω p 0 by following first a ray segment of S (z 0 , ϑ, δ) from z 0 to some point z 1 in W , then from this point backwards z * along a ray segment of S (z * , ϑ, δ), as illustrated in Figure 3.1 below. On the contrary if ℜ (λ) < 0 the candidate region W could be beyond ℜ (z) = ln ρ . The construction must therefore be adapted. Proposition 3.2. Assume ℜ (λ) < 0. There exists κ ∈ R depending only on a, λ, ||R|| and z * for which the following property holds: for every z 0 ∈ Ω one can choose a path γ : z 0 → z * with image inside Ω p 0 in such a way that γ is a polygonal line of ordered vertexes (z 0 , z 1 , z 2 , z 3 , z * ) with (we refer also to Figure 3

.2 below)

• z 1 = max {κ, ℜ (z 0 )} + iℑ (z 0 ),

• arg (z 2 -z 1 ) = arg ϑ ± δ, • ℜ (z 2 ) = ℜ (z 3 ) < ln ρ and |ℑ (z 3 -z 2 )| ≤ |ℑ (z 0 -z * )|+tan (|arg ϑ| + δ) (ln ρ -κ), • arg (z * -z 3 ) = arg ϑ ± δ . z 0 {ℜ(z) = ln ρ} z * {ℜ(z) = κ} z 1 z 3 z 2 Figure 3.2.
The path of integration γ when ℜ (λ) < 0.

Remark 3.3. We could have made a similar construction without the use of κ (i.e. by joining directly z 0 to some z 2 ), but we need it in order to obtain uniform bounds with respect to ℑ (z 0 -z * ) in the next section.

Proof. Write

ϑ ± := ϑ exp (±iδ) . (3.1) Either ℜ (ϑ + ) (if ℑ (λ) ≤ 0) or ℜ (ϑ -) (if ℑ (λ) ≥ 0)
is positive, let us assume for the sake of example that ℑ (λ) ≤ 0, the other case being similar in every respect. There exists κ ≤ ℜ (z * ) such that the ray segment (z 0 + R ≥0 ) ∩ {ℜ (z) < κ} is included in Ω p 0 . Obviously κ depends only on a, λ, ||R|| and z * . We take for γ the polygonal line of ordered vertexes (z 0 , z 1 , z 2 , z 3 , z * ) built in the following fashion.

• If z 0 ∈ {ℜ (z) < κ} then the partial ray (z 0 + ϑ 0 R ≥0 ) ∩ {ℜ (z) < κ}, included
in Ω p 0 according to Lemma 2.3, leaves the region at some point z 1 with ℜ (z 1 ) = κ. Otherwise we set z 1 := z 0 . • Both rays {z 1 , z * }+ϑ + R ≥0 , included in Ω p 0 , intersect the line ℜ (z) = ln ρǫ in, respectively, z 2 and z 3 for ǫ > 0 very small. The line segment [z 2 , z 3 ], and therefore the whole image of γ, is included in Ω p 0 thanks to the next lemma:

Lemma 3.4. If ℜ (λ) ≤ 0 then adh Ω p 0 ∩ ℜ (z) = ln ρ is a nonempty line segment.
If λ R ≥0 there exists r, ρ > 0 such that the same property holds.

Proof. In the case ℜ (λ) ≤ 0 we have max {ℜ (ϑ exp (±iδ))} > 0; say, for the sake of example, that ϑ + := ϑ exp (iδ) has positive real part. If λ is not a positive number this property can be secured by decreasing ρ, r and taking δ as close to π 2 as need be. Take a path Γ connecting two points of adh Ω p 0 ∩ ℜ (z) = ln ρ (which is a non-empty set) within Ω p 0 . Let I be the line segment of ℜ (z) = ln ρ joining those points. The ray p-ϑ + R ≥0 emitted from some p ∈ I separates ℜ (z) ≤ ln ρ into two connected regions. Since Γ starts from one of them and lands in the other one, the curve must cross the ray at some point q ∈ Ω p 0 . The ray q + ϑ + R ≥0 is included in Ω p 0 since it lies within a stability beam, while it contains p in its adherence.

We deduce the following characterization.

Corollary 3.5. Assume ℜ (λ) < 0. The following propositions are equivalent.

(1)

z 0 ∈ Ω, (2) z * ∈ Ω p 0 , ( 3 
) there exists ε > 0 such that for all 0 < ǫ ≤ ε the points z 2 and z 3 built in Proposition 3.2 can be taken with

ℜ (z 2 ) = ℜ (z 3 ) = ln ρ-ε, meaning [z 2 , z 3 ] ⊂ Ω p 0 .
Proof.

(1) ⇔ (2) is the definition of D R and Ω while (3) ⇒ (2) is clear. The converse follows from the previous proposition and its proof, particularly Lemma 3.4.

3.2.

The dual searchlight sweep.

Lemma 3.6.

If ℜ (λ) ≥ 0 the beam S (z 0 , -ϑ, δ) is included in Ω for any z 0 ∈ Ω. If ℜ (λ) < 0 beam S (z * , -ϑ, δ) is included in Ω * .
For any z ∈ S (z 0 , -ϑ, δ) we can link (z, w * ) to some point (z 0 , w) with ℜ (w) ≤ ℜ (w * ) by lifting in F the line segment [z, z 0 ]. Therefore the lemma is trivial in the case where ℜ (λ) < 0. On the contrary when ℜ (λ) ≥ 0 the lemma is a consequence of the next one. which are themselves included in every Ω (z 0 ,w n ) . Because the real analytic curves defining ∂Ω (z 0 ,w) vary continuously when w does we have S ⊂ Ω (z 0 ,w ∞ ) also. In particular z * ∈ Ω (z 0 ,w ∞ ) and z 0 belongs to Ω * for w * := w ∞ . The former property implies in turn that A is a closed subset of B and as such spans the whole region B.

Remark 3.8. When ℜ (λ) < 0 the above argument does not work since the image of γ must sometimes leave the (adherence of the) union of stability beams emitted by z 1 and z * (when it visits [z 2 , z 3 ]). Nothing guarantees that the limiting domain Ω (z 0 ,w ∞ ) does not disconnect [z 2 , z 3 ] at some point. Since this lemma will be used to show simple-connectedness of Ω * in the node-like case, we will need another argument in the saddle-like case.

3.3. Proof of Proposition 3.1 (1). We first mention that Ω is clearly open since if one can link a point (z, w * ) to (z * , D R (z)) with a tangent path γ, whose image is included in the open set Ũ , then surely this is again the case for a neighborhood of z (consider a covering of the compact image of γ by rectifying charts). Take now a simple loop Γ 0 ⊂ Ω bounding a relatively compact, simply-connected domain W 0 and show W 0 ⊂ Ω (without loss of generality we may assume that Γ 0 is smooth and real-analytic). If ℜ (λ) ≥ 0 Lemma 3.6 proves precisely that fact, since

W 0 ⊂ z∈Γ 0 S (z, -ϑ, δ) ⊂ Ω .
Assume next that ℜ (λ) < 0 and denote by γz the integration path built in Proposition 3.2 for z 0 := z, while (z) j stand for the corresponding vertex z j of the polygonal line. We want to show that γz can be lifted in F through Π starting from (z, w * ) all the way to (z * , D R (z)), when z ∈ W 0 . Along the line segments z, (z) 1 and (z) 1 , (z) 2 the real part of the w-component of the lift is decreasing, therefore γz can be lifted at least until (z) 2 for every ℜ (z) < ln ρ.

From now on we work in the 3-dimensional real slice

R := (z, w) : ℜ (z) = ln ρ -ǫ, ℜ (w) < ln r
for fixed ǫ > 0, which we identify to

R × C = {(t, w) : t = ℑ (z) , (z, w) ∈ R} .
We recall that we write F ∩ R the restriction of F to R, which is a 1-dimensional real-analytic regular foliation everywhere transverse to the fibers of Π| R (the lines {t = cst}).

Lemma 3.9. We refer to Figure 3.3. Take a relatively compact, simply connected domain W ⊂ ℜ (z) < ln ρǫ with smooth real-analytic boundary Γ. Consider the correspondence map

h 0→2 : adh (W ) -→ R z -→ h [z,(z) 1 ,(z) 2 ] (z)
where h γ denotes the holonomy of F associated to (γ, {w = w * }) as in Definition 1.6.

(1) h 0→2 is a real-analytic, open and injective mapping.

(2) Set

Γ 2 := h 0→2 (Γ) ⊂ R W 2 := h 0→2 (W ) ⊂ R .
The compact set adh (W 2 ) is a smoothly-embedded real-analytic disc with boundary Γ 2 .

{ℜ(z) = ln ρ} z * {ℜ(z) = κ} z3 W Γ (a) z 3 {ℜ(w) = ln r} {z = z 3 } {z = z min } {z = z max } Γ 2 Γ 3 w ℑ(z) ℓ p2→p3 W 3 W 2 T p 3 p 2 ℓ q3→q2 q 2 q 3 (b) Figure 3.3 Proof. Write h 0→2 (z) =: (ℑ ((z) 2 ) , w 2 (z)).
(1) The mapping h 0→2 is clearly locally real-analytic and open, because w 2 is holomorphic and non-constant. In particular

∂W 2 = Γ 2 . Show that h 0→2 is injective. If adh (W 2 ) contains a double-point h 0→2 (z) = h 0→2 (z ′ ) with, say, ℜ (z) 
≤ ℜ (z ′ ) then z and z ′ belong to the same polygonal line z, (z) 1 , (z) 2 .

Since the real part of the w-component of the lift of the polygonal line is strictly decreasing we can only have z = z ′ .

(2) The parametric tangent space of W 2 at p = h 0→2 (z) is spanned by

      0 ∂w 2 ∂ℜ(z) (z)       and       1 ∂w 2 ∂ℑ(z) (z)       as ∂(z) 2
∂ℑ(z) = i (we assume here for the sake of simplicity that ℜ (z) < κ so that

∂(z) 2
∂ℜ(z) = 0). From Cauchy-Riemann formula we know that ∂w 2 ∂ℜ(z) (z) = 0 if, and only if, w ′ 2 (z) = 0. This outcome is not possible because w 2 is locally invertible, hence adh (W 2 ) is a smooth real-analytic surface.

Remark 3.10. This is the only place where we explicitly use the holomorphy of R via Cauchy-Riemann formula, although it is not necessary. In the case where R should only be assumed C 1 as a real mapping, the preceding proof can be adapted because w 2 is a C 2 -diffeomorphism and therefore ∂w 2 ∂ℜ(z) (z) cannot vanish. Although F ∩ R need not be transverse everywhere to adh (W 2 ), the tangency points are nonetheless simple as asserted by the following lemma.

Lemma 3.11. For every p 2 ∈ W 2 there exist a neighborhood V of p 2 in R such that any leaf of F ∩ V intersects adh (W 2 ) at most in a single point.

Proof. Let p 2 = h 0→2 (z 0 ) ∈ adh (W 2 ) be given and let γ 0 be the curve linking (z 0 , w * ) to p 2 along F above [z 0 , z 2 ]. We take a finite covering C = ι≤d C ι of γ 0 by rectifying holomorphic charts ψ ι : C ι → C 2 ι≤d of F . By relabeling the collection if necessary we assume that (z 0 , w * ) ∈ C 0 . We may choose C 0 small enough so that for any (z, w * ) ∈ (adh (W ) × {w * }) ∩ C 0 the tangent curve linking (z, w * ) to h 0→2 (z) above z, (z) 2 is included in C. Since F is transverse to the fibers of (z, w) → w if condition (R) holds, adh (W ) ∩ C 0 is transverse to F ∩ C 0 : for C 0 small enough the set adh (W ) ∩ C 0 meets any leaf of F ∩ C 0 in at most one point. The conclusion follows as h 0→2 is injective and maps adh (W ) into adh (W 2 ). It suffices to take V such that

V ∩ adh ((W 2 )) = h 0→2 ({z : (z, w * ) ∈ C 0 }) .
We apply Lemma 3.9 to W := W 0 (so that Γ = Γ 0 ⊂ Ω) in order to built W 2 ∪ Γ 2 through the correspondence map h 0→2 (we may choose ǫ independent on z 0 := z ∈ W 0 ∪ Γ 0 in Corollary 3.5 and use this value to define h 0→2 ). The key point to complete the proof of Proposition 3.1 (1) is that (z) 3 = z 3 does not actually depend on z once z * is chosen, therefore the process of lifting (z) 2 , z 3 in F takes place solely in R. Because Γ 0 ⊂ Ω the map

h 2→3 : Γ 2 -→ {z = z 3 } ∩ R p 2 -→ h [Π(p 2 ),z 3 ] (p 2 )
is well-defined. Set

Γ 3 := h [Π(p),z 3 ] (p) : p ∈ Γ 2 ⊂ {z = z 3 } ∩ R
(Γ 3 is a smooth, simple real-analytic loop). We need to ensure the existence of W 3 ⊂ {z = z 3 } ∩ R built in the same way from W 2 . In fact we prove the stronger statement below:

Lemma 3.12. The map h 2→3 extends to a bijective real-analytic map from adh (W 2 ) onto the compact connected component adh (W 3 ) ⊂ {z = z 3 } ∩ R enclosed by Γ 3 .

Proof. We call ℓ p 2 →p 3 the piece of the leaf of F ∩ R linking p 2 ∈ Γ 2 to p 3 ∈ Γ 3 above [Π (p 2 ) , z 3 ] (for the sake of clarity the leaves of F ∩ R are shown as straight lines in Figure 3.3 (B)). Let T be the smooth cylinder obtained as

T := p 2 ∈Γ 2 ℓ p 2 →p 3
and T be the capped cylinder T := T ∪ adh (W 2 ) ∪ adh (W 3 ) which is an immersed piecewise-real-analytic sphere. The leaf ℓ q 3 of F ∩ R issued from q 3 ∈ W 3 enters into the space bounded by T and, because it is transverse to the fibers of Π| R , must meet the compact T at some point. Because F ∩ R is regular ℓ q 3 cannot intersect T (invariant by F ∩R) and therefore intersects both W 2 and W 3 . We therefore obtain a (connected) sub-leaf ℓ q 3 →q 2 ⊂ ℓ q 3 containing both q 3 and some q 2 ∈ ℓ q 3 ∩adh (W 2 ).

If q 3 = p 3 ∈ Γ 3 we let ℓ q 3 →q 2 := ℓ p 2 →p 3 and q 2 := p 2 . Define the map h 3→2 : adh (W 3 ) -→ adh (W 2 ) q 3 -→ q 2 whose restriction to Γ 3 is the inverse of h 2→3 . Clearly h 3→2 is injective. We need to show that h 3→2 is continuous, so that it will be an homomorphism onto its image, which can then only span the whole adh (W 2 ) for h 3→2 (Γ 3 ) = Γ 2 .

q 2 V + W 2 ℓ q 3 C V - (a)
Accumulation of double intersections (white squares)

q 2 V + W 2 ℓ q 3 V - C (b) Only simple intersections (white discs) Figure 3.4
First notice that if q 2 is not a tangency point between F ∩ R and adh (W 2 ) then h 3→2 is continuous at q 3 (proceed with the argument in a finite covering of ℓ q 3 →q 2 by rectifying charts). Now if ℓ q 3 is tangent to adh (W 2 ) at q 2 then one among two mutually exclusive situations happens. In the following V is any sufficiently small neighborhood of q 2 which is separated by adh (W 2 ) into two domains V + and V - with, say, V + outside T .

(1) The leaf ℓ q 3 does not exit T near q 2 , that is ℓ q 3 ∩V + = ∅, as in Figure 3.4 (A).

(2) The leaf pierces T at q 2 , i.e. ℓ q 3 ∩ V ± ∅, as in Figure 3.4 (B).

Let C be a small tubular neighborhood of ℓ q 3 ∩ V invariant by F ∩ R. Lemma 3.11 rules (1) out because in that case there must exist leaves visiting V + after leaving V -and before entering again in V -. Hence case (2) is the only possible event and h 3→2 is continuous as any leaf must exit by V + after arriving through V -.

Corollary 3.13. For any z ∈ W 0 the path γz can be lifted in F through Π starting from (z, w * ) all the way to (z * , D R (z)). In other words W 0 ⊂ Ω and Ω is simply connected.

Proof. Lemma 3.12 asserts that γz can be lifted at least until z 3 . In the 3-dimensional real slice R ′ := [z 3 , z * ] × C the saturation of Γ 3 by the leaves of the regular foliation F ∩ R ′ (transverse to the fibers of Π| R ′ ) is a smooth cylinder T ′ (similar to T in the proof of the previous lemma). Therefore any leaf of F ∩ R ′ starting from W 3 cannot escape from T ′ and must reach the transverse line {z = z 3 }.

3.4. Proof of Proposition 3.1 (2). A point z ∈ ℜ (z) < ln ρ belongs to Ω if, and only if, the lift of the polygonal line γz in F starting from (z 0 , w * ) does not meet the real 3-space {ℜ (w) = ln r} ⊂ C 2 . For z 0 ∈ ∂Ω\ ℜ (z) = ln ρ we can find a compact neighborhood W ∋ z 0 such that if r were slightly bigger we would have W ⊂ Ω. In particular we can assume that the Dulac map is the restriction to Ω of an analytic map, written D, on a neighborhood of W . For z ∈ W we call ℓ z the real-analytic curve obtained as the image of the lift of the path γz in F starting from (z, w * ) and ending at (z * , D (z)). Then

A W := z∈W ℓ z
is a compact real-analytic 3-manifold which intersects {ℜ (w) = ln r} along a compact real surface S (with boundary). If z ∈ W ∩ ∂Ω the curve ℓ z cannot meet {ℜ (w) > ln r}. Therefore ℓ z intersects S in a finite numbers of points (p z n ) 1≤n≤d with d = d (z) ≥ 1, all of them tangency points. According to (2.3), assuming Π (p z n ) lies on the line segment (z) j , (z) j+1 of direction θ j ∈ S 1 , the tangency point p z n lies in

T j := p ∈ C 2 : ℜ θ j λ (1 + R • E (p)) = 0 ∩ S .
If T j = S then R = 0 and the result is clear. Otherwise T := j T j is a finite union of irreducible real-analytic curves, as is {z ∈ W : ℓ z ∩ S ⊂ T }. The latter contains ∂Ω ∩ W .

Remark 3.14. In case R is merely C 1 we cannot guarantee that ℓ z ∩ S is finite.

3.5. Proof of Proposition 3.1 (3). From Lemma 3.6 follows the fact that adh (Ω)∩ ℜ (z) = ln ρ is a nonempty line segment, as can be seen by adapting in a straightforward way the proof of Lemma 3.4. In particular Ω is connected. To prove that adh (Ω)∩ ℜ (z) = ln ρ can be arbitrarily wide provided that ℜ (w * ) be sufficiently small it is sufficient to invoke the fact that {y = 0} is the adherence of a separatrix of F R , so that Γ R (Σ) contains elements winding more and more around {x = 0}.

3.6. Proof of Proposition 3.1 (4). Because S (z * , -ϑ, δ) ⊂ Ω * we only need to ensure that ℑ (ϑ + ) and ℑ (ϑ -) have opposite signs, where ϑ ± is defined by (3.1). This can be enforced by taking ℜ (z * ) and ℜ (w * ) negative enough, i.e. by taking δ as close to π 2 as needed.

Asymptotics of the Dulac map

Definition 4.1. A time-form of a vector field X is a meromorphic 1-form τ such that τ (X) = 1.

Because of the specific form of X R one can always choose a time-form as τ := dx λx .

We prove first in Section 4.1 that to obtain the image of x by the Dulac map D R we need to compute the integral

ˆγR (x) Rτ ,
where γ R is a path tangent to F R linking (x, y * ) to some point of Π -1 (x * ). This is (1) of the Proximity Theorem. We intend in a second step (Section 4.2) to compare this value with that of ˆγ0 (x) Rτ which can be explicitly computed (Section 4.3). We prove more generally the quantitative result: Lemma 4.4. Let Σ be a transverse to F R ; we refer to Definition 1.6 for the construction of the groupoid Γ R (Σ). For given G ∈ O (U ) the integration process

F : γ ∈ Γ R (Σ) -→ ˆγ Gτ
gives rise to a holomorphic function whose Lie derivative X R • F along X R can be computed by considering F as a local analytic function of the end-point γ ⋆ . Then

X R • F = G .
Proof. Outside the singular locus of X R there exists a local rectifying system of coordinates: a one-to-one map ψ such that ψ * X R = ∂ ∂t . In these coordinates we have ψ * (Gτ) = G • ψdt. The fundamental theorem of integral calculus yields the result.

Notice that X 0 admits a (multivalued) first-integral with connected fibers H 0 (x, y) := x -1 /λ y , which means that it lifts through σ to a holomorphic map, still written H 0 , constant along the leaves of σ * F 0 and whose range is in one-to-one correspondence with the space of leaves of σ * F 0 .

Lemma 4.5. Let Σ be a transverse to F R . The function

H R : Γ R (Σ) -→ C γ -→ H 0 exp ˆγ -Rτ is a holomorphic first-integral of σ * F R with connected fibers. Proof. The fact that H R is holomorphic on Γ R (Σ) is clear enough from Lemma 4.4.
It is a first integral of σ * F R if, and only if, the Lie derivative X R • H R vanishes. This quantity is computed as follows:

X R • H R = X 0 • H R + R y ∂ ∂y • H R = H R ×            X R • ˆγ -Rτ + R y ∂ ∂y • H 0 H 0            .
Since y ∂ ∂y • H 0 = H 0 our claim holds. The fact that H R has connected fibers is a direct consequence of both facts that H 0 also has and H R | Σ = H 0 .

Corollary 4.6. We have

D R = D 0 × exp ˆ• Rτ . Proof. For any path γ ∈ Γ * we have the relation H R (γ ⋆ ) = H R (γ), that is H 0 (γ) exp ˆγ -Rτ = H 0 (γ ⋆ ) .
The conclusion follows since γ → H 0 (γ) is linear with respect to the y-coordinate of γ when x * is fixed. Notice that the time form τ is transformed into

τ := E * τ = 1 λ dz .
We make here the hypothesis that ℜ (λ) < 0. We need to compare this integral and the one obtained for the model, i.e. bound ∆ (z 0 ) := ˆγ(z 0 ) G (z, w R (z, z 0 )) -G (z, w 0 (z, z 0 )) dz where γ (z 0 ) is a path linking z 0 to z * within Ω (z 0 ,w * ) and z → w R (z, z 0 ) is its lift in FR starting from (z 0 , w * ). We mention that w 0 (z, z 0 ) = w * + zz 0 λ .

For any z, w j ∈ Ũ we have the estimate

G (z, w 2 ) -G (z, w 1 ) ≤ |exp (az)| ∂G ∂y |exp w 2 -exp w 1 | so that |∆ (z 0 )| ≤ ∂G ∂y ˆγ |exp (az + w 0 (z, z 0 )) (exp (w R (z, z 0 ) -w 0 (z, z 0 )) -1) dz| . Setting D R (z, z 0 ) := |w R (z, z 0 ) -w 0 (z, z 0 )| and taking |exp z -1| ≤ |z| exp |z| into account we derive |∆ (z 0 )| ≤ ∂G ∂y ˆγ exp ℜ (az + w 0 (z, z 0 )) D R (z, z 0 ) exp D R (z, z 0 ) |dz| .
The proof is done when the next lemma is established: In particular the dominant integral in the above list is I 0→1 , so that there exists a constant M, satisfying the required dependency properties, with If n + m /λ = 0 then λ =p /q, with p and q co-prime positive integers, and (n, m) = k (q, p) with k ∈ N. In that case, and when k > 0, The other case n + m /λ 0 is not more difficult:

T n,m (z) = exp (mw * + nz) exp ((n + m /λ) (z * -z)) -1 n + m /λ .

One can see easily that as n + m /λ tends to zero (which may happen if, and only if, λ is a negative irrational) the function T n,m grows in modulus. The dominant support introduced in Definition 1.1 allows to discriminate between two kinds of growth rate.

4.3.2. Resonant support. We show now that the resonant support consists of (quasi-)resonant monomials only.

Lemma 4.8. Assume that λ < 0 and a + 1 λ > 0.

(1) If λ =p /q < 0 is a rational number then Res (a, λ) = {k (q, p) : k ∈ N , kq ≥ a} .

(2) If λ is a negative irrational we denote by (p k/q k ) k∈N its sequence of convergents. Then

Res (a, λ) = {(q k , p k ) : k ∈ N , q k ≥ a} .

Proof.

(1) Because we have n ≥ a ≥ q the relation |nλ + m| < 1 2n becomes |np -mq| < q 2n < 1 .

Hence np = mq and since p and q are co-prime the conclusion follows.

(2) This is a consequence of the well-known result in continued-fraction theory: if p q ∈ Q >0 is given such that p q + λ < q -2 /2 then (p, q) is one of the convergents of |λ|. 
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 1 Figure 1.1. The Dulac map, pictured in a real slice.
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 2 Figure 2.1. A searchlight beam.
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 3 If ℜ (λ) ≥ 0 then Ω = Ω * and adh (Ω * ) ∩ ℜ (z) = ln ρ is a nonempty line segment. For every N ∈ N >0 there exists r ≥ r ′ > 0 such that this line segment contains at least ln ρ + iℑ (z * ) + [-πiN , πiN ] whenever ℜ (w * ) < ln r ′ . (4) If ℜ (λ) < 0 there exists 0 < ρ ′ ≤ ρ and 0 < r ′ ≤ r depending only on a, λ and ||R|| such that for every ℜ (z * ) < ln ρ ′ , ℜ (w * ) < ln r ′ and N ∈ N >0 the domain Ω * contains some infinite half-band {ℜ (z) ≤ κ ′ , |ℑ (zz * )| ≤ πN } with κ ′ ≤ ℜ (z * ) depending only on N , a, λ and ||R||.
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 31 Figure 3.1. The path of integration γ when ℜ (λ) ≥ 0.

Lemma 3. 7 .

 7 Assume that ℜ (λ) ≥ 0, z 0 ∈ Ω and let η := ℜ (w * ). Then for any other choice of w * with real part lesser or equal to η we still have z 0 ∈ Ω as well.Proof. We set up a connectedness argument. Let B := w * : ℜ (w * ) ≤ η and A := {w * : w * ∈ B and z 0 ∈ Ω}. By assumption A is not empty, and it is open in B for the same reason that Ω is open. More precisely any w * ∈ A admits a neighborhood V in B such that the image of γ is included in Ω (z 0 ,w) for every w ∈ V . Let now a sequence (w n ) n∈N ⊂ A converge towards w ∞ ∈ B. If ℜ (λ) ≥ 0 then the image of γ is included in the union of the two stability beams S := S (z 0 , ϑ, δ) ∪ S (z * , ϑ, δ)

Theorem 4. 2 .

 2 Let N ∈ N >0 be given. There exists a constant M > 0 depending only on N , λ, a, ρ, ||R|| and δ such that for any G ∈ O (U ) ∩ x a C {x, y} with ∂G ∂y bounded and all x = exp z with |ℑ (zz * )| ≤ πN one has ˆγR (x) Gτ -ˆγ0 (x) Gτ ≤ M ∂G ∂y y * |x| a . Remark 4.3. Under the assumption ℜ a + 1 λ > 0 we have |x| a = o x -1 /λ log x , proving (2) of the Proximity Theorem when G := R. 4.1. Integral expression of the Dulac map: proof of Proximity Theorem (1).

4. 2 .

 2 Approximation to the formal model. We fix once and for all a preimage (z * , w * ) ∈ E -1 (x * , y * ). Since D R is naturally defined on the universal covering Ũ of Û := U \ {xy = 0} we keep on working in logarithmic coordinates (x, y) = E (z, w) = (exp z, exp w) .

Lemma 4. 7 .≤≤

 7 There exists a constant K > 0, depending only on N , λ, a, ρ, ||R||, z * and δ, such that sup t D R ( γ (t) , z 0 ) ≤ K where γ is the integration path built in Proposition 3.2. The values of K is explicitly, if crudely, determined in the proof to come.Proof. Invoking the estimate (2.1) from Lemma 2.3 and settingC 1 := ||R|| a |λ| C 2 := C 1 ℜ (ϑ + ) C 3 := aρ a C 1 we know that, using the number κ obtained in Proposition 3.2, sup z∈[z 0 ,z 1 ] D R (z, z 0 ) ≤ K 1 := C 1 (ρ a + exp (aκ)) sup z∈[z 1 ,z 2 ] D R (z, z 0 ) ≤ K 2 := K 1 + C 2 (ρ a + exp (aκ)) sup z∈[z 2 ,z 3 ] D R (z, z 0 ) ≤ K 3 := K 2 + C 3 (2πN + tan (|arg ϑ + |) (ln ρκ)) sup z∈[z 3 ,z * ] D R (z, z 0 ) ≤ K := K 3 + C 2 (ρ a + exp ℜ (az * )) .We conclude now the proof starting from|∆ (z 0 )| ≤ K ∂G ∂y exp ℜ (K + w *z 0/λ) ˆγ exp ℜ a + 1 λ z |dz| .Let α := a + 1 λ . We bound each partial integral I ⋆→• := ´[z ⋆ ,z • ] exp ℜ a + 1 λ z |dz| in the following manner:I 0→1 ≤ exp ℜ a + exp (α |z 1 |) exp (α (ln ρκ)) -1 α ≤ exp α √ κ 2 + π 2 N 2 + ln ρκ , I 2→3 ≤ exp (α |z 2 |) ˆℑ(z 3 -z 2 exp α |z 2 | + 1 λ |ℑ (z 3 -z 2 )| ≤ exp (α (|z * | + πN + tan (|arg ϑ| + δ) (ln ρκ)))× exp 1 λ (2πN + tan (|arg ϑ| + δ) (ln ρκ)) , I 3→ * ≤ exp α ℜ (z * ) 2 + π 2 N 2 + ln ρ -ℜ (z * ) .

|∆

  (z 0 )| ≤ M ∂G ∂y exp ℜ (w * + az 0 ) . Since ℜ a + 1 λ > 0 we have ∆ (z 0 ) = o |z 0 | exp ℜ -z 0 λ as expected.4.3. Study of the model. 4.3.1. Explicit computation. We want to compute for n, m ∈ N the functions defined by T n,m (z) := ˆγ(z) exp (nu + mw 0 (u, z 0 )) du = exp m w * -z λ × ˆz * z exp n + m λ u du .

T

  kq,kp (z) = (z * -z) exp (k (pw * + qz)) = O (|z exp ℜ (az)|) . (4.1)

  4.3.3. Dominant terms: proof of Proposition 1.2. Nothing needs to be proved for G 0 so we assume that G expands into a power series G (x, y) = n≥a,m>0 G n,m x n y m convergent on a closed polydisc of poly-radii at least (ρ + ǫ, r + ǫ). Because of the Cauchy formula, for all n, mG n,m ≤ C (ρ + ǫ) -n (r + ǫ) -m where C := sup |x|=ρ+ǫ , |y|=r+ǫ G (x, y) . If λ is not real then inf (n,m)∈N 2 \{(0,0)} |nλ + m| ≥ a |ℑ (λ)| > 0 .Let zz * be given with imaginary part bounded by N π for some integer N > 0 and with real part lesser thanµ := -ℑ (λ) ℜ (λ) N π .By construction of µ we haveℜ m λ (z * -z) = m |λ| 2 (ℜ (λ) ℜ (z * -z) + ℑ (λ) ℑ (z * -z)) < 0 ≤ ℜ 1 λ (z * -z)so that we derive at lastT n,m (z) ≤ 2 |λ| r m ρ n+ℜ( 1 /λ) m T n,m (z) ≤ 2 |λ| ρ ℜ( 1 /λ) C a |ℑ (λ)| × (r + ǫ) (ρ + ǫ) ǫ 2 × exp ℜ -z λ = O (|exp -z /λ|) ,ending the proof for the non-real case. In fact this reasoning goes on holding even when λ < 0 as long as (n, m) belongs not to Res (a, λ), since in that case |n + m /λ| > |λ| 2n has strictly sub-geometric inverse.Take now λ negative real and G = G Res . If λ =p /q is a negative rational number then (4.1) provides what remains to be proved. Assume now that λ is irrational. Because |exp z -1| ≤ |z| when ℜ (z) < 0 we have for (n, m) ∈ Res (a, λ) T n,m (z) ≤ |(z -z * ) exp (nz)| r m . Therefore ˆγ0 (z) G Res • Edz ≤ C (n,m)∈Res(a,λ) (ρ + ǫ) -n (r + ǫ) -m T n,m (z) ≤ C |z * -z| (n,m)∈Res(a,λ) exp ℜ (z) ǫ) (ρ + ǫ) ǫ 2 |z * -z| exp ℜ (az) = O (|z exp -z /λ|) as expected.

It may happen that D R admits a bigger Riemann surface as a multivalued map, but this case is not dealt with here.

Situation which arises not so often in the most interesting (quasi-)resonant cases.

A meromorphic 1-form τ is a time-form for a vector field X when τ (X) = 1.

This first-integral can be multivalued, as is the case in the main situation studied here where H 0 (x, y) = x -1/λ y.
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