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COMPUTING DULAC’S MAPS OF (ALMOST EVERY)

NON-DEGENERATE SINGULARITIES

LOÏC TEYSSIER

Abstract. We study the complex Dulac map for a holomorphic foliation near a
non-degenerate singularity (both eigenvalues of the linearization are nonzero). We
describe the order of magnitude of the first two terms of the asymptotic expansion
and show how to compute explicitly those terms using characteristics supported in the
leaves of the linearized foliation. We perform similarly the study of the Dulac time
spent around the singularity. These results are formulated in a unified framework
taking no heed to the usual dynamical discrimination (i.e. no matter whether the
singularity is formally orbitally linearizable or not and regardless of the arithmetics of
the eigenvalues) provided the foliation has enough (i.e. two) separatrices. The study
aims at being as explicit as possible, in particular by giving as precise a bound as
possible on the remainder in the asymptotic expansion.

1. Introduction

We consider a germ of a holomorphic vector field at the origin of C2

A (x, y) ∂
∂x +B (x, y) ∂

∂y

admitting an isolated, non-degenerate singularity at (0, 0). In other words the origin is
the only local zero of the vector field, and its linear part [∇A , ∇B] at this point is a 2×2
matrix with two nonzero eigenvalues, of ratio λ ∈ C 6=0. We make the further assumption
that the vector field admits the following decomposition in a convenient local analytic
chart:

XR = λx
∂

∂x
+ (1 +R) y

∂

∂y
, R ∈ xaC {x, y}(X)

for some positive integer a satisfying the relation

ℜ

(

a+
1

λ

)

≥ 0 .(a)

This setting encompasses almost all non-degenerate singularities, including every kind of
saddle singularities (λ < 0), as will be discussed at the end of the introduction.

Our study is carried out on a fixed polydisc U = ρD× rD small enough for the relation

sup |R (U)| < 1(R)

to hold. We write FR the foliation of U whose leaves are defined by the integral curves of
XR. This foliation admits two special leaves (called separatrices) each of whose adherence
corresponds to a branch of {xy = 0}. We write Û := U\ {xy = 0}. Outside {x = 0} the
foliation is transverse everywhere to the fibers of the fibration

Π : (x, y) 7−→ x .

Being given (x∗, y∗) /∈ Û it is thus possible (under suitable assumptions that will be
detailed later on) to lift through Π a path γ linking x to x∗ in the foliation, starting
from the point (x, y∗). The arrival end-point of the lifted path defines uniquely a point

Date: December 2012.

1
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(x∗, yx) ∈ Π−1 (x∗). This construction yields a locally analytic map from a sub-domain of
the transverse disc {y = y∗} into the transverse {x = x∗}, which is known as the Dulac
map

DR : x 6= 0 7−→ yx

of XR associated to (x∗, y∗).

{x = x∗}

{y = y∗}

x γ

yx

Figure 1.1. The Dulac map.

This map is in general multivalued, and its monodromy is generated by the holonomy
of FR computed on {x = x∗} by winding around {x = 0}. The Dulac map governs part
of the dynamics of FR and has been submitted to an intense study at least in the two
settings we describe now.

• The proof of the Dulac conjecture regarding finiteness of the number of limit cycles
for analytic vector fields in the real plane. Dulac maps are natural ingredients
of the cross-section first-return map along a singular poly-cycle, whose attractive
fixed-points correspond to limit cycles. As was noticed by Y.Il’yashenko [Il’85]
the original «proof» of H. Dulac [Dul23] crucially depends on a lemma which
turned out to be false. Many powerful, if intricate, tools have been developed in
the 1980’s decade which finally led to a complete proof of Dulac’s conjecture. Two
parallel approaches evolved at the time to analyze the asymptotic expansion of
the Dulac map: J. Écalle [Éca92] studied it first formally using trans-series then
through resurgent summation techniques, while Y. Il’yashenko [Il’91] devised
an argument based on super-accurate asymptotic series. Of course various authors
contributed to the tale of Dulac’s conjecture but the aim of this article is not to
offer a comprehensive list.

• The study of the dynamics of a singular foliation through Seidenberg’s reduction1

process: Dulac maps appear naturally as «corner maps» encoding the transition
between different components of the exceptional divisor. They measure how the
different components of the projective holonomy pseudo-group mix together. In
that context D. Marín and J.-F. Mattei [MM08] proved recently that under
suitable (generic) hypothesis a germ of a singular foliation is locally incompress-
ible: there exists an adapted base of neighborhoods of (0, 0) in which the (non-
trivial) cycles lying in the leaves of the restricted foliation must wind around the
complement of the separatrix locus, in the trail of Milnor’s theorem regarding

1According to Seidenberg’s algorithm (see [Sei68]) any isolated singularity of a germ of a holomorphic
foliation F can be «reduced» through a proper, rational map π : M →

(

C2, 0
)

, where M is a conformal
neighborhood of a tree E := π−1 (0, 0) of normally-crossing, conformal divisors P1 (C). The pulled-
back foliation π∗F has only isolated, reduced singularities (located on E): either non-degenerate or of
saddle-node type (exactly one nonzero eigenvalue).
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holomorphic fibrations outside the singular fibers. This study is the first step
towards a complete analytical and topological classification of (generic) singular
germs of a foliation. One of the main ingredients of their proof is to control the
«roughness» of the corner maps and elements of the projective holonomy. This
roughness can be read in the first two terms of the asymptotic expansion of the
Dulac map.

The topic addressed here may appear worthless in view of the formidable work carried
out by both J. Écalle and Y. Il’yashenko. Yet it must be noticed that they were
essentially busy with the real context and, although their techniques are naturally part of
complex analysis, they focused on small neighborhoods of real trajectories. The originality
of the present work lies in the study of the analytic continuation of the Dulac map on
large sectors around the real directions. More precisely our results cover the following
items, for saddle-like singularities (that is, ℜ (λ) < 0):

• we give a geometrical description of the maximal domain of definition (it contains
germs of a sector around {x = 0} of arbitrary aperture),

• we express the Dulac map as an integral (more precisely, as the characteristics of
the differential 1-form Rd

(

log x−1/λ
)

along the leaves of FR),
• we derive explicit bounds on the remainder of the asymptotic expansion in the

sectors.

In particular it should be noted that although the Dulac map’s asymptotic expansion can
be expressed formally

DR (x) ≃
∑

n,m

Dn,msn,m (x) ,

where

sn,m (x) =

{

xnλ+m

nλ+m if nλ+m 6= 0

xnλ+m (log x) otherwise ,

the expansion converges if, and only if, the foliation is analytically normalizable2, as was
proved by A. Mourtada and R. Moussu [MM97, Proposition 1].

We also mention that the result exposed here allows to get rid of a non-necessary tech-
nical hypothesis in Marín-Mattei’s theorem, namely discarding «bad3» irrational ratios
in Seidenberg’s reduction of the singularity. Proposition 1.5, stated further down, implies
that the hypothesis of Lemma 4.4.3 of [MM08] are fulfilled, which was the only depen-
dency of the chain of proof that needed to be addressed. The other restriction in their
theorem, namely that no degenerate singularity occurs in the reduction process, is not
technical and must be kept (see this paper’s cousin [MT13] for examples of compressible
foliations). Marín-Mattei’s theorem now holds on the complement of a proper analytic set
of the space of singular holomorphic foliations, the one avoiding degenerate singularities
in the singularity’s reduction.

1.1. Statement of the main results. The Dulac map is actually well-defined on the
foliated universal covering of the restriction of FR to Û , a complex surface isomorphic
to the groupoid of paths tangent to FR with starting endpoint in {y = y∗ , x 6= 0}. Our
first result regards the structure of this space, which turns out to be embedded in the
universal covering of Û . This is another manner of saying that FR is incompressible in
U : every non-trivial cycle of a leaf of FR is a non-trivial cycle of Û .

2Situation which arises not so often in the most interesting (quasi-)resonant cases.
3A «bad» irrational is unusually well approached by rational numbers. This only happens on a set of

null Lebesgue-measure, but does nonetheless. Brjuno’s explicit arithmetic condition [Brj71], expressed in
terms of the convergents of λ, governs this behavior.
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Theorem 1.1. Let E : (z, w) 7−→ (exp z, expw) be the universal covering of Û . Assume
that conditions (X) and (R) are fulfilled. Then the foliation E∗FR is regular and each one
of its leaves is simply connected.

We understand now DR as a function z 7→ wz , after having fixed once and for all a
preimage (z∗, w∗) ∈ E−1 (x∗, y∗). The domain of definition of DR corresponds to those
(z, w∗) giving birth to a path γR (z) tangent to E∗FR with landing endpoint (z∗, wz). We
state now our main result.

Theorem 1.2. Assume that conditions (X) and (R) hold.

(1) DR is holomorphic on a domain Ω∗ ∋ z∗ satisfying the following additional prop-
erties for any N ∈ N>0.

• If ℜ (λ) ≤ 0 then Ω∗ is simply connected and there exists r ≥ r′ > 0 such
that, for any w∗ in {ℜ (w) < ln r′} and ℜ (z∗) ≤ ln ρ, the domain Ω∗ contains
at least the line segment

{ℜ (z) = ln ρ , |ℑ (z − z∗)| ≤ πN}

in its adherence. Besides inf ℜ (Ω∗ ∩ {|ℑ (z − z∗)| ≤ Nπ}) > −∞.
• If ℜ (λ) < 0 there exists 0 < ρ′ ≤ ρ such that for every ℜ (z∗) < ln ρ′ and
N ∈ N>0 the domain Ω∗ contains some infinite half-band

{ℜ (z) ≤ κ′ , |ℑ (z − z∗)| ≤ πN}

with κ′ ≤ ℜ (z∗).
(2) For every z ∈ Ω∗ we have

DR (z) = w∗ +
z∗ − z

λ
+

1

λ

ˆ

γR(z)

R ◦ E dz .

In particular DR (z∗) = w∗.
(3) If ℜ (λ) < 0 and the condition (a) is satisfied then one has the asymptotic expan-

sion
ˆ

γR(z)

R ◦ E dz =

ˆ

γ0(z)

R ◦ E dz + o (|z exp−z/λ|)

when ℜ (z) tends to −∞ with a bounded imaginary part.

Remark 1.3. In (3) it only makes sense to consider that «ℜ (z) tends to −∞ with a
bounded imaginary part» when ℜ (λ) < 0, as underlined in (1). This is why we make the
hypothesis on the real part of λ to precise the asymptotic behavior of the Dulac map.
Although it is a technical artifact that can be overcome, by considering slanted bands
instead of «horizontal» bands {|ℑ (z − z∗)| ≤ πN}, I surmise that arg z must be somehow
controlled in order to be able to obtain a useful asymptotic expansion as ℜ (z) → −∞.

It is possible to carry out the computation of the characteristics associated to the model
F0. The exact value of

´

γ0(z)
(xnym) ◦ Edz does not offer an insightful interest as such.

We can nonetheless deduce from it the dominant part of the characteristics
´

γ0(z)
R◦Edz,

which splits into two components: the regular part
´ z∗
z R (expu, 0)du, which induces a

holomorphic function in U since R (0, 0) = 0, and the resonant part obtained by selecting
in R only well-chosen monomials.

Definition 1.4. The resonant support Res (a, λ) associated to (a, λ) is

• the empty set if λ /∈ R<0,
• otherwise the subset of N2 defined by

Res (a, λ) :=

{

(n,m) ∈ N2 : m > 0 , n ≥ a , |nλ+m| <
1

2n

}

.
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For G (x, y) =
∑

n≥0,m≥0Gn,mx
nym ∈ C {x, y} we denote by G0 the regular part of G

G0 (x) := G (x, 0)

and by GRes its resonant part

GRes (x, y) :=
∑

(n,m)∈Res(a,λ)

Gn,mx
nym .

It turns out that this support consists indeed of resonant or quasi-resonant monomials,
according to the rationality of λ (Lemma 3.4), which carry without surprise the major
part of the non-regular characteristics.

Proposition 1.5. Assume that ℜ (λ) < 0 and condition (a) holds. Then for any G ∈
C {x, y} we have

ˆ

γ0(z)

G0 ◦ Edz = G0 (0) (z∗ − z) +O (exp z)

and if moreover G ∈ xaC {x, y}
ˆ

γ0(z)

GRes ◦ Edz = O (|z exp−z/λ|)

ˆ

γ0(z)

(G−GRes −G0) ◦ Edz = O (|exp−z/λ|)

(here again O (•) regards the situation when ℜ (z) tends to −∞ with a bounded imaginary
part).

Notice that if λ < 0 is irrational and GRes is finitely supported then
ˆ

γ0(z)

GRes ◦ Edz = O (|exp−z/λ|) .

1.2. Time spent near the singularity. In applications (for instance in the study of
real analytical vector fields of the plane) it is important to estimate the Dulac time, that
is the time it takes to drift from (z, w∗) to (z∗,DR (z)) in the flow of the vector field. In
the case of XR this time is obviously

z − z∗
λ

=

ˆ

γR(z)

dz
λ
.

MultiplyingXR by a holomorphic unit U does not change the underlying foliation (i.e. the
Dulac map), although it does the Dulac time TR,U . The later is obtained by integrating
a time-form4. P. Mardišić, D. Marín and J. Villadelprat derived in [MMV08] the
asymptotic expansion of the Dulac time for (deformations of) real planar vector fields
when λ is rational. We wish to complete their study in the complex setting.

One can choose the time-form as

τ (x, y) :=
dx

λxU (x, y)
,

so that the next result holds.

Theorem 1.6. Take U ∈ O (U) such that U (0, 0) 6= 0. Assume that U is chosen in such
a way that, in addition to conditions (X) and (R), the holomorphic function U |U never
vanishes. Then the Dulac time is holomorphic on Ω∗ and

TR,U (z) =

ˆ

γR(z)

dz

λU ◦ E
.

4A meromorphic 1-form τ is a time-form for a vector field X when τ (X) = 1.
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If moreover ℜ (λ) < 0, the condition (a) holds and U − U0 ∈ xayC {x, y} then, as ℜ (z)
tends to −∞ with bounded imaginary part,

TR,U (z)−

ˆ

γ0(z)

dz

λU0 ◦ E
=

ˆ

γ0(z)

dz

λURes ◦ E
+ o (|z exp−z/λ|) .

The integral subtracted on the left-hand side boils down to z∗−z
λU(0,0) if U−U (0, 0) belongs

to xayC {x, y}. We mention that this situation can always be enforced by preparing the
vector field:

Lemma 1.7. Let Z be a germ of a holomorphic vector field near an isolated, non-
degenerate singularity with ratio of eigenvalues λ /∈ R≥0. Then there exists a ∈ N>0

satisfying (a) and a choice of the local analytical coordinates such that Z = UXR for
two germs of a function satisfying R ∈ xayC {x, y} and U − U (0, 0) ∈ xayC {x, y} with
U (0, 0) 6= 0.

This lemma is plainly trivial when λ /∈ R≤0: in that setting Z is locally analytically
conjugate to its linear part, corresponding to R = 0 and U = cst. When λ < 0 is
irrational the vector field is formally linearizable and can be put in the sought form for
any finite order a ∈ N, particularly one such that a + 1

λ > 0. When λ = − p
q for p and

q positive co-prime integers, resonances may appear and Z may not be even formally
orbitally linearizable. These resonances correspond to pairs (n,m) of integers belonging
to (q, p)N (those for which nλ +m = 0) in the Taylor expansion of R and U − U (0, 0),
and as such cannot appear for an index n lesser than q or for m = 0. It is thus possible
to cancel out formally the (q − 1)-jet with respect to x and the 0-jet with respect to y of
the given functions, meaning we can take a := q. Then a + 1

λ ≥ 0. The fact that this
formal transform can always be chosen convergent is well known.

1.3. Extension of the results to other singularities. Condition (X) is satisfied except
for some cases when {λ, 1/λ} ∩ N 6= ∅. The heuristic is that these singularities may not
possess sufficiently many separatrices: the resonant node (λ 6= 0) and the saddle-node
(λ = 0, exactly one nonzero eigenvalue) admit only one in general. The former case is not
very interesting since it corresponds to vector fields which can be analytically reduced to
polynomial vector fields (Poincaré-Dulac normal forms) for which explicit computations
are easily carried out. The geometry of the foliation itself is quite tame and completely
understood. Save for some minor and technical complications, the framework we present
can be adapted to encompass this case, although the trouble is not worth the induced
lack of clarity in the exposition.

The case of the saddle-node is richer. In [MT13] we prove that Theorem 1.1 holds in
that case. When the saddle-node is not divergent (i.e. it admits two separatrices) it can
be brought in the form (X) and the Dulac map admits an integral representation as in
Theorem 1.2 (2)

DR (z) = Dµxk (z) +

ˆ

γR(z)

(

R− µxk
)

◦ E
dz

exp (kz)

where (k, µ) ∈ N>0 ×C is the formal invariant of the saddle-node and Dµxk is the Dulac
map for the normal form which can be explicitly computed:

Dµxk (z) = w∗ + µ (z − z∗) +
exp (−kz)− exp (−kz∗)

k
.

When the singularity is a divergent saddle-node it is possible to obtain an integral rep-
resentation as well as a sectoral asymptotic behavior. We refer to the already cited
bibliographic item for more details.
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After Seidenberg’s reduction of its singularity a (germ of a) nilpotent foliation only
has singular points either of non-degenerate or of saddle-node type. As a consequence
the work done here and in [MT13] is somehow sufficient to analyze more general Dulac
maps. Yet there is a special case where it is not necessary to perform the reduction of
singularities to be able to carry out some computations, which is in fact the most general
formulation of the framework we introduce here, corresponding to vector fields in the
form generalizing (X)

XR = X0 + RY

where:

• X0 and Y are commuting, generically transverse vector fields,
• Y admits a holomorphic first-integral u with connected fibers,
• R ∈ uaC {x, y} for some a > 0.

Being given both a transverse disc Σ meeting a common separatrix of XR and Y at
some point p∗, and a transverse Σ′ corresponding to a trajectory {u = u∗} of Y , we
can define the Dulac map of XR joining Σ to Σ′ by lifting paths through the fibration
(x, y) 7→ u (x, y). Then, with equality as multivalued maps on Σ\ {p∗}, we have the
implicit relation

H0 ◦ DR = H0 ◦ D0 × exp

ˆ

γR

Rτ

where τ is some time-form of XR and H0 a first-integral5 of X0. With further work, and
when applicable, it should be possible to derive the asymptotic behavior of DR near p∗,
as is done here.

1.4. Structure of the article. This paper only uses elementary techniques and is con-
sequently self-contained. Section 2 is devoted to the study of the geometry of the foliation
and the analytic properties of the Dulac map. There are proved Theorem 1.1 and The-
orem 1.2 (1) in the respective Section 2.2 and Section 2.3, while Theorem 1.2 (2) is
established in Section 2.1. This paper ends with Section 3 where the explicit computa-
tion of characteristics

´

γ0(z)
G ◦ E dz are performed for the model F0. Yet the core of the

section is the study of the asymptotic deviation between
´

γR

G ◦ E dz and
´

γ0(z)
G ◦ E dz.

Immediate consequences of this estimation are Theorem 1.2 (3) and the best part of The-
orem 1.6. We end this paper with the proof of Proposition 1.5 in Section 3.2.3, completing
Theorem 1.6.

2. Analytic properties of the Dulac map, geometry of the foliation

We recall that U is some polydisc centered at (0, 0) on which R is holomorphic and
bounded, and we take (x∗, y∗) ∈ Û := U\ {xy = 0}. We will impose more technical
assumptions on the size of U in this section but they all shall be determined uniquely by

||R|| := sup
U

∣

∣

∣

∣

R

xa

∣

∣

∣

∣

.

We will mostly use the fact that if the supremum of |R| on U is lesser than 1 then the
foliation has a «controlled topological type».

Definition 2.1. All the paths γ we use throughout the paper are C∞ maps from some
compact interval I into U . Its starting point (resp. ending point) is written γ⋆ (resp. γ⋆).

5This first-integral can be multivalued, as is the case considered above where H0 (x, y) = x−1/λy.
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(1) Let Σ ⊂ U\ {(0, 0)} be a cross-section transversal everywhere to FR (for short, a
transverse to FR) . We introduce the groupoid ΓR (Σ) of equivalence classes of
paths γ tangent to FR with γ⋆ ∈ Σ, up to tangential homotopy (that is, homotopy
within a given leaf of FR) with fixed end-points. We call it the tangential
groupoid of FR relative to Σ.

(2) The tangential groupoid of FR relative to Σ is naturally endowed with a structure
of a foliated complex surface, which can be understood as the foliated universal
covering of SatFR

(Σ), that is the locally biholomorphic, onto map

σ : ΓR (Σ) −→ SatFR
(Σ)

γ 7−→ γ⋆ .

(3) The Dulac map of FR associated with (x∗, y∗) is the holomorphic function de-
fined on

Γ∗ : = {γ ∈ ΓR (U ∩ {y = y∗ , x 6= 0}) : Π (γ⋆) = x∗}

by

DR : Γ∗ −→ Π−1 (x∗)

γ 7−→ γ⋆ .

2.1. Integral representation of the Dulac map.

Definition 2.2. A time-form of a vector field X is a meromorphic 1-form τ such that
τ (X) = 1.

Because of the peculiar form of XR one can always choose a time-form as

τ :=
dx
λx

.

Lemma 2.3. Let Σ be a transverse to FR. For given G ∈ O (U) the integration process

F : γ ∈ ΓR (Σ) 7−→

ˆ

γ

Gτ

gives rise to a holomorphic function whose Lie derivative XR ·F along XR can be computed
by considering F as a local analytic function of the end-point γ⋆. Then

XR · F = G .

Proof. Outside the singular locus of XR there exists a local rectifying system of co-
ordinates: a one-to-one map ψ such that ψ∗XR = ∂

∂t . In these coordinates we have
ψ∗ (Gτ) = G ◦ ψdt. The fundamental theorem of integral calculus yields the result. �

Notice that X0 admits a (multivalued) first-integral with connected fibers

H0 (x, y) := x−
1/λy ,

which means that it lifts through σ to a holomorphic map, still written H0, constant
along the leaves of FΣ

0 and whose range is in one-to-one correspondence with the space
of leaves of FΣ

0 .

Lemma 2.4. Let Σ be a transverse to FR. The function

HR : ΓR (Σ) −→ C

γ 7−→ H0 exp

ˆ

γ

−Rτ

is a holomorphic first-integral of σ∗FR with connected fibers.
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Proof. The fact that HR is holomorphic on ΓR (Σ) is clear enough from Lemma 2.3. It is
a first integral of σ∗FR if, and only if, the Lie derivative XR ·HR vanishes. This quantity
is computed as follows:

XR ·HR = X0 ·HR +R

(

y
∂

∂y

)

·HR

= HR ×



XR ·

ˆ

γ

−Rτ +R

(

y ∂
∂y

)

·H0

H0



 .

Since
(

y ∂
∂y

)

·H0 = H0 our claim holds. The fact that HR has connected fibers is a direct

consequence of both facts that H0 also has and HR|Σ = H0. �

Corollary 2.5. We have

DR = D0 × exp

ˆ

•

Rτ .

Proof. For any path γ ∈ Γ∗ we have the relation HR (γ⋆) = HR (γ), that is

H0 (γ) exp

ˆ

γ

−Rτ = H0 (γ⋆) .

The conclusion follows since γ 7→ H0 (γ) is linear with respect to the y-coordinate of γ
when x∗ is fixed. �

2.2. Foliated universal covering. Proving Theorem 1.1 amounts to proving that the
leaves of the foliation F̃ := E∗FR are simply connected. The result is thereby established
once we show the

Proposition 2.6. For given p0 ∈ Ũ define the domain Ωp0
as the projection by Π :

(z, w) 7→ z of the leaf L̃p0
of F̃ passing through p0. Then L̃p0

is the graph of a function
holomorphic on the simply connected domain Ωp0

.

Because of the condition imposed on ρa ||R|| the foliation F̃ is regular (that is, FR is
regular on U outside (0, 0)). Besides F̃ is transversal to the fibers of Π : (z, w) 7→ z,
hence the leaf L̃p0

is everywhere locally the graph {w = f (z)} of some unique germ of a
holomorphic function defined in the neighborhood of some point of Ωp0

. The hard part is
consequently to show that Ωp0

is simply connected: being granted that fact all the local
defining functions f glue to a single one, holomorphic on Ωp0

.

{ℜ(z) = ln ρ}

v

v + ϑ

2δ

S(v, ϑ, δ)

Figure 2.1. A searchlight’s beam.
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The strategy is to show that any compact component of C\Ωp0
, if such a one does exist,

intersects a convenient sector S (v, ϑ, δ) ⊂ {ℜ (z) < ln ρ} of positive, if small, aperture 2δ
pointing in the direction ϑ ∈ S1 from its vertex v ∈ Ωp0

(see Figure 2.1), as if caught
in the beam of a searchlight. The direction ϑ will be chosen in such a way that the real
part of the lift of an outgoing ray γ of S (v, ϑ, δ) is decreasing. We call such a sector a
stability beam. Invoking again the transversality argument we derive that the whole ray
lifts in the foliation, since it can never leave Ũ . In other words S (v, ϑ, δ) ⊂ Ωp0

, which is
in blatant contradiction with the existence of a compact component of C\Ωp0

.

{ℜ(z) = ln ρ}

v

Figure 2.2. The domain Ωp0
is the complement of the hatched areas.

This way we have reduced our argument to the following claim:

Lemma 2.7. (The searchlight’s sweep) Any compact component of C\Ωp0
is hit by some

stability beam.

In the course of the proof we will establish an important estimate regarding the as-
ymptotic expansion to be obtained later on. The argument, based on the differential form
of Gronwall’s lemma, allows to estimate the discrepancy between the leaves of the model
and those of the initial foliation. It so happens that this elementary method is quite close
to the one used in [Il’91], as I noticed after writing the body of this article.

Remark 2.8. As a closing remark we should stress that the «roughness» of ∂Ωp0
is con-

trolled by the aperture 2δ of the stability beam, which can be taken as close to π as one
wishes, and by the direction ϑ (which is that of the model). This is a kind of «conic-
convexity» which forbids ∂Ωp0

to be too wild. In fact the closer ℜ (z) is to −∞ the closer
Ωp0

is to
{

ℜ
(

w0 +
z−z0
λ

)

< ln r , ℜ (z) < ln ρ
}

near z.

− λ
|λ|

{ℜ(w0 +
z−z0
λ

) = ln r}

z0

δ

{ℜ(z) = ln ρ}
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Proof of Lemma 2.7. Write4

E∗XR = E∗X0 +R ◦ E × E∗

(

y
∂

∂y

)

where

E∗X0 = λ
∂

∂z
+

∂

∂w

E∗

(

y
∂

∂y

)

=
∂

∂w
.

The vector field E∗XR is holomorphic and regular on the complex rectangle

Ũ := {ℜ (z) < ln ρ , ℜ (w) < ln r} .

Lemma 2.9. There exists δ ∈]0, π] and ϑ ∈ S1 such that for all p0 = (z0, w0) ∈ Ũ the
open sector

S (z0, ϑ, δ) := {z : ℜ (z) < ln ρ , |arg (z − z0)− argϑ| < δ}

is included in Ωp0
. We can take

ϑ := −
λ

|λ|

δ ∈ ]0, arccos (||R|| ρa) [ ,

so that one can take δ as close to π
2 as one wishes by sufficiently diminishing ρ. Besides

for any integral curve of E∗XR of the form t 7→ (z0 + tθ, w (t)) with t ≥ 0, θ ∈ S1 and
w (0) = w0 we have the estimate fro ℜ (θ) 6= 0

∣

∣

∣

∣

w (t)− w0 − t
θ

λ

∣

∣

∣

∣

≤
exp (aℜ (z0))

|λℜ (θ)| a
||R|| |1− exp (atℜ (θ))|(2.1)

and taking the limit ℜ (θ) → 0
∣

∣

∣

∣

w (t)− w0 ± t
i

λ

∣

∣

∣

∣

≤
exp (aℜ (z0))

|λ|
t ||R||(2.2)

Proof. The lift in F̃ of a germ of a ray z (t) = z0 + θt, with θ ∈ S1 and t ≥ 0, starting
from p0 is obtained as the solution to

ẇ

ż
(t) =

1 +R ◦ E (z (t) , w (t))

λ
, w (0) = w0 ,

that is

ẇ (t) =
θ

λ
(1 +R ◦ E (z0 + θt, w (t))) .(2.3)

The function t 7→ ϕ (t) := ℜ (w (t)) is therefore solution to the differential equation

ϕ̇ = ℜ

(

θ

λ
(1 +R ◦ E ◦ (z, w))

)

,(2.4)

which particularly means that
∣

∣

∣

∣

ϕ̇ (t)−ℜ

(

θ

λ

)∣

∣

∣

∣

≤
exp (aℜ (z0))

|λ|
||R|| exp (atℜ (θ)) <

ρa

|λ|
||R|| .

Exploiting the cruder estimate by taking θ ∈ ϑ exp (i [−δ, δ]) we derive

ϕ̇ (t) ≤
1

|λ|
(cos δ − ρa ||R||) < 0 .

Since ϕ (0) < ln r it follows that ϕ (t) < ln r as long as ℜ ((z (t))) < ln ρ, which is our first
claim.
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Gronwall’s lemma yields

∣

∣

∣

∣

ℜ

(

w (t)− w0 − t
θ

λ

)∣

∣

∣

∣

<
exp (aℜ (z0))

|λℜ (θ)| a
||R|| |1− exp (atℜ (θ))| .

The study we just performed can be carried out in just the same way for the imaginary
part of w, yielding

∣

∣

∣

∣

ℑ

(

w (t)− w0 − t
θ

λ

)∣

∣

∣

∣

<
exp (aℜ (z0))

|λℜ (θ)| a
||R|| |1− exp (atℜ (θ))| ,

proving the sought estimate. �

The searchlight’s sweep lemma is now established, since the half-line z−ϑR≥0 eventu-
ally leaves any compact component of C\Ωp0

containing z, i.e. crosses Ωp0
at some point

v. By construction for any α > 0 we have v ∈ S (z,−ϑ, α) so that z ∈ S (v, ϑ, α).

2.3. The domain of definition of the Dulac map : proof of Theorem 1.2 (1).
We continue to write DR for the Dulac map of FR associated to some couple (x∗, y∗)
expressed in the coordinates E (i.e. understood as a holomorphic function of (z, w)).

Proposition 2.10. We fix a preimage (z∗, w∗) ∈ E−1 (x∗, y∗).

(1) The Dulac map is holomorphic on the open set

Ω :=
{

z ∈ C : (z, w∗) ∈ Ũ and z∗ ∈ Ω(z,w∗)

}

.

We write Ω∗ the connected component containing z∗.
(2) If ℜ (λ) ≥ 0 then Ω = Ω∗ is a simply connected domain. Particularly adh (Ω∗) ∩

{ℜ (z) = ln ρ} is a nonempty line segment. For every N ∈ N>0 there exists r ≥
r′ > 0 such that this line segment contains at least ln ρ + iℑ (z∗) + [−πiN, πiN ]
for every ℜ (w∗) < ln r′.

(3) If ℜ (λ) < 0 there exists 0 < ρ′ ≤ ρ depending only on a, λ and ||R|| such that for
every ℜ (z∗) < ln ρ′ and N ∈ N>0 the domain Ω∗ contains some infinite half-band
{ℜ (z) ≤ κ′ , |ℑ (z − z∗)| ≤ πN} with κ′ ≤ ℜ (z∗) depending only on N , a, λ and
||R||.

We first mention that Ω is clearly open since if one can link a point (z, w∗) to (z∗,DR (z))

with a compact tangent path γ, whose image is included in the open set Ũ , then surely
this is again the case for a neighborhood of z. The rest of the section is devoted to proving
the remaining items. In doing so we build an explicit tangent path linking (z0, w∗) to
(z∗,DR (z0)), see Proposition 2.11 below, which will serve in the next section to establish
the asymptotic expansion of the Dulac map through the integral formula of Corollary 2.5.
We underline right now the fact that the projection γ̃ of that path through Π does not
depend on w∗, but only on z0, a, λ, ρ, ||R|| and z∗.

2.3.1. The integration path. We write p0 := (z0, w∗). If ℜ (λ) ≥ 0 and z0 ∈ Ω then both
stability beams S (z0, ϑ, δ) and S (z∗, ϑ, δ) are included in Ωp0

and their intersection W
is non-empty. Therefore z0 can be linked to z∗ in Ωp0

by following first a ray segment of
S (z0, ϑ, δ) from z0 to some point z1 in W , then from this point backwards z∗ along a ray
segment of S (z∗, ϑ, δ), as illustrated in Figure 2.3 below.
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z0

{ℜ(z) = ln ρ}

z∗

z1

Figure 2.3. The path of integration γ̃ when ℜ (λ) ≥ 0.

On the contrary if ℜ (λ) < 0 the candidate region W could be beyond {ℜ (z) = ln ρ}.
The construction must therefore be adapted.

Proposition 2.11. Assume ℜ (λ) < 0. There exists κ ∈ R depending only on a, λ, ||R||
and z∗ for which the following property holds: for every z0 ∈ Ω∗ one can choose a path
γ̃ : z0 → z∗ with image inside Ωp0

in such a way that γ̃ is a polygonal line of ordered
vertexes (z0, z1, z2, z3, z∗) with (we refer also to Figure 2.4 below)

• z1 = max {κ,ℜ (z0)}+ iℑ (z0),
• arg (z2 − z1) = argϑ± δ,
• ℜ (z2) = ℜ (z3) < ln ρ and |ℑ (z3 − z2)| ≤ 2πN + tan (|argϑ|+ δ) (ln ρ− κ),
• arg (z∗ − z3) = argϑ± δ .

z0

{ℜ(z) = ln ρ}

z∗

{ℜ(z) = κ}

z1

z3

z2

Figure 2.4. The path of integration γ̃ when ℜ (λ) < 0.

Remark 2.12. We could have made a similar construction without the use of κ (i.e. by
joining directly z0 to some z2), but we need it in order to obtain uniform bounds with
respect to ℑ (z0 − z∗) in the next section.
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Proof. Write

ϑ± := ϑ exp (±iδ) .

Either ℜ (ϑ+) if ℑ (λ) ≤ 0 or ℜ (ϑ−) if ℑ (λ) ≥ 0 is positive, let us assume for the sake
of example that ℑ (λ) ≤ 0, the other case being similar in every respect. There exists
κ ≤ ℜ (z∗) such that argϑ = arccos (||R|| exp (aκ)): in other words the ray segment
(z0 + R≥0)∩ {ℜ (z) < κ} is included in Ωp0

. Obviously κ depends only on a, λ, ||R|| and
z∗. We take for γ̃ the polygonal line of ordered vertexes (z0, z1, z2, z3, z∗) built in the
following fashion.

• If z0 ∈ {ℜ (z) < κ} then the partial ray (z0 + ϑ0R≥0) ∩ {ℜ (z) < κ}, included in
Ωp0

according to Lemma 2.9, leaves the region at some point z1 with ℜ (z1) = κ.
Otherwise we set z1 := z0.

• Both rays {z1, z∗}+ ϑ+R≥0, included in Ωp0
, intersect the line {ℜ (z) = ln ρ− ǫ}

in, respectively, z2 and z3 for ǫ > 0 very small. The worst case scenario to
bound |ℑ (z3 − z2)| happens when z1 = κ+iℑ (πN + z∗), which gives the claimed
estimate.

The line segment [z2, z3], and therefore the whole image of γ̃, is included in Ωp0
thanks

to the next lemma:

Lemma 2.13. If ℜ (λ) ≤ 0 then adh (Ωp0
) ∩ {ℜ (z) = ln ρ} is a nonempty line segment.

If λ /∈ R≥0 there exists ρ > 0 such that the same property holds.

Proof. In the case ℜ (λ) ≥ 0 we have max {ℜ (ϑ exp (±iδ))} > 0; say, for the sake of
example, that ϑ+ := ϑ exp (iδ) has positive real part. If λ is not a positive number this
property can be secured by decreasing ρ and taking δ as close to π

2 as need be. Take
a path Γ connecting two points of adh (Ωp0

) ∩ {ℜ (z) = ln ρ} (which is a non-empty set)
within Ωp0

. Let I be the line segment of {ℜ (z) = ln ρ} joining those points. The ray
p− ϑ+R≥0 emitted from some p ∈ I separates {ℜ (z) ≤ ln ρ} into two connected regions.
Since Γ starts from one of them and lands in the other one, the curve must cross the
ray at some point q ∈ Ωp0

. The ray q + ϑ+R≥0 is included in Ωp0
since it lies within a

stability beam, while it contains p in its adherence. �

�

2.3.2. The dual searchlight’s sweep.

Lemma 2.14. When ℜ (λ) ≥ 0 the searchlight’s beam S (z0,−ϑ, δ) is included in Ω for
any z0 ∈ Ω. When ℜ (λ) < 0 the beam S (z∗,−ϑ, δ) is included in Ω.

For any z ∈ S (z0,−ϑ, δ) we can link (z, w∗) to some point (z0, w) with ℜ (w) ≤ ℜ (w∗)

by lifting in F̃ the line segment [z, z0]. Therefore the lemma is trivial in the case where
ℜ (λ) < 0. On the contrary when ℜ (λ) ≥ 0 the lemma is a consequence of the next one.

Lemma 2.15. Assume that ℜ (λ) ≥ 0, z0 ∈ Ω and let η := ℜ (w∗). Then for any other
choice of w∗ with real part lesser or equal to η we have z0 ∈ Ω as well.

Proof. We set up a connectedness argument. Let B := {w∗ : ℜ (w∗) ≤ η} and A :=
{w∗ : w∗ ∈ B and z0 ∈ Ω}. By assumption A is not empty, and it is open in B for
the same reason that Ω is open. More precisely any w∗ ∈ A admits a neighborhood
V in B such that the image of γ̃ is included in Ω(z0,w) for every w ∈ V . Let now a
sequence (wn)n∈N

⊂ A converge towards w∞ ∈ B. If ℜ (λ) ≥ 0 then the image of γ̃ is
included in the union of the two stability beams S := S (z0, ϑ, δ) ∪ S (z∗, ϑ, δ) which are
themselves included in every Ω(z0,wn). Because the real analytic curves defining ∂Ω(z0,w)

vary continuously when w does we have S ⊂ Ω(z0,w∞) also. In particular z∗ ∈ Ω(z0,w∞)

and z0 belongs to Ω∗ for w∗ := w∞. The former property implies in turn that A is a
closed subset of B and as such spans the whole region B. �
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Remark 2.16. When ℜ (λ) < 0 the above argument does not work since the image of γ̃
must sometimes leave the (adherence of the) union of stability beams emitted by z1 and
z∗ (when it visits [z2, z3]). Nothing guarantees that the limiting domain Ω(z0,w∞) does
not interrupt [z2, z3] at some point.

2.3.3. Proof of (2). The fact that Ω is simply connected is a consequence of Lemma 2.14,
in the way that what was previously done to prove the simple-connectedness of Ωp0

.
From this lemma also follows the fact that adh (Ω) ∩ {ℜ (z) = ln ρ} is a nonempty line
segment, as can be seen by adapting in a straightforward way the proof of Lemma 2.13.
In particular Ω is connected.

To prove that adh (Ω) ∩ {ℜ (z) = ln ρ} can be arbitrarily big provided that ℜ (w∗)
be sufficiently small it is sufficient to invoke the fact that {y = 0} is the adherence of
a separatrix of FR, so that ΓR (Σ) contains elements winding more and more around
{x = 0}.

2.3.4. Proof of (3). Because S (z∗,−ϑ, δ) ⊂ Ω∗ we only need to ensure that ℑ (ϑ+) and
ℑ (ϑ−) have opposite signs. This can be enforced by taking ℜ (z∗) negative enough, i.e.
by taking δ as close to π

2 as need be.

3. Asymptotics of the Dulac map

Since DR is naturally defined on the universal covering of U\ {xy = 0} we keep on
working in logarithmic coordinates

(x, y) = E (z, w) = (exp z, expw) .

We fix once and for all a preimage (z∗, w∗) ∈ E−1 (x∗, y∗). For the sake of concision
we make the convention that an object X hatted with a tilde stands for its pull-back in
logarithmic coordinates X̃ := E∗X . Notice that the time form τ is transformed into

τ̃ =
1

λ
dz .

To obtain the image of x by the Dulac map DR we need to compute the integral
ˆ

γR(x)

Rτ ,

where γR is a path tangent to FR linking (x, y∗) to some point of Π−1 (x∗), and we intend
more precisely to compare this value with that of

ˆ

γ0(x)

Rτ

which can be explicitly computed (Sub-section 3.2). The section’s main result is the

Theorem 3.1. Let N ∈ N>0 be given. There exists a constant M > 0 depending only on
N, λ, a, ρ, ||R|| and δ such that for any bounded G ∈ O (U)∩xaC {x, y} and all x = exp z
with ℑ (z − z∗) ≤ πN one has

∣

∣

∣

∣

∣

ˆ

γR(x)

Gτ −

ˆ

γ0(x)

Gτ

∣

∣

∣

∣

∣

≤ M

∣

∣

∣

∣

∣

∣

∣

∣

∂G

∂y

∣

∣

∣

∣

∣

∣

∣

∣

|y∗| |x|
a
.

Remark 3.2. Since ℜ
(

a+ 1
λ

)

> 0 we have |x|a = o
(∣

∣x−1/λ log x
∣

∣

)

, proving the first part
of Theorem 1.2 (3).
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3.1. Approximation to the formal model : proof of Theorem 3.1 (1). We make
here the hypothesis that ℜ (λ) > 0. We need to compare this integral and the one obtained
for the model, i.e. bound

∆(z0) :=

ˆ

γ̃(z0)

G̃ (z, wR (z, z0))− G̃ (z, w0 (z, z0))dz

where γ̃ (z0) is a path linking z0 to z∗ within Ω(z0,w∗) and z 7→ wR (z, z0) is its lift in F̃R

starting from (z0, w∗). We mention that

w0 (z, z0) = w∗ +
z − z0
λ

.

For any (z, wj) ∈ Ũ we have the estimate
∣

∣

∣G̃ (z, w2)− G̃ (z, w1)
∣

∣

∣ ≤ |exp (az)|

∣

∣

∣

∣

∣

∣

∣

∣

∂G

∂y

∣

∣

∣

∣

∣

∣

∣

∣

|expw2 − expw1|

so that

|∆(z0)| ≤

∣

∣

∣

∣

∣

∣

∣

∣

∂G

∂y

∣

∣

∣

∣

∣

∣

∣

∣

ˆ

γ̃

|exp (az + w0 (z, z0)) (exp (wR (z, z0)− w0 (z, z0))− 1)dz| .

Setting

DR (z, z0) := |wR (z, z0)− w0 (z, z0)|

and taking |exp z − 1| ≤ |z| exp |z| into account we derive

|∆(z0)| ≤

∣

∣

∣

∣

∣

∣

∣

∣

∂G

∂y

∣

∣

∣

∣

∣

∣

∣

∣

ˆ

γ̃

expℜ (az + w0 (z, z0))DR (z, z0) expDR (z, z0) |dz| .

The proof is done when the next lemma is established:

Lemma 3.3. There exists a constant K > 0, depending only on N, λ, a, ρ, ||R||, z∗ and
δ, such that

sup
t
DR (γ̃ (t) , z0) ≤ K

where γ̃ is the integration path built in Proposition 2.11. The values of K is explicitly, if
crudely, determined in the proof to come, and can surely be sharpened.

Proof. Invoking the estimate (2.1) from Lemma 2.9 and setting

C1 :=
||R||

a |λ|

C2 :=
C1

ℜ (ϑ+)

C3 := aρaC1

we know that, using the number κ obtained in Proposition 2.11,

sup
z∈[z0,z1]

DR (z, z0) ≤ K1 := C1 (ρ
a + exp (aκ))

sup
z∈[z1,z2]

DR (z, z0) ≤ K2 := K1 + C2 (ρ
a + exp (aκ))

sup
z∈[z2,z3]

DR (z, z0) ≤ K3 := K2 + C3 (2πN + tan (|argϑ+|) (ln ρ− κ))

sup
z∈[z3,z∗]

DR (z, z0) ≤ K := K3 + C2 (ρ
a + expℜ (az∗)) .

�
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We conclude now the proof starting from

|∆(z0)| ≤ K

∣

∣

∣

∣

∣

∣

∣

∣

∂G

∂y

∣

∣

∣

∣

∣

∣

∣

∣

expℜ (K + w∗ − z0/λ)

ˆ

γ̃

expℜ

((

a+
1

λ

)

z

)

|dz| .

Let α :=
∣

∣a+ 1
λ

∣

∣. We bound each partial integral I⋆→• :=
´

[z⋆,z•]
expℜ

((

a+ 1
λ

)

z
)

|dz|
in the following manner:

I0→1 ≤ expℜ

((

a+
1

λ

)

z0

)
ˆ κ−ℜ(z0)

0

exp

(

tℜ

(

a+
1

λ

))

dt

≤
expℜ

((

a+ 1
λ

)

κ
)

− expℜ
((

a+ 1
λ

)

z0
)

ℜ
(

a+ 1
λ

) ,

I1→2 ≤ expℜ

((

a+
1

λ

)

z1

)
ˆ ln ρ−κ

0

exp

(

tℜ

((

a+
1

λ

)

ϑ+

))

dt

≤ exp (α |z1|)
exp (α (ln ρ− κ))− 1

α

≤ exp
(

α
(
√

κ2 + π2N2 + ln ρ− κ
))

,

I2→3 ≤ exp (α |z2|)

ˆ ℑ(z3−z2)

0

exp

(

t

∣

∣

∣

∣

ℑ

(

1

λ

)∣

∣

∣

∣

)

|dt|

≤ exp

(

α |z2|+

∣

∣

∣

∣

1

λ

∣

∣

∣

∣

|ℑ (z3 − z2)|

)

≤ exp (α (|z∗|+ πN + tan (|argϑ|+ δ) (ln ρ− κ)))

× exp

(∣

∣

∣

∣

1

λ

∣

∣

∣

∣

(2πN + tan (|argϑ|+ δ) (ln ρ− κ))

)

,

I3→∗ ≤ exp

(

α

(
√

ℜ (z∗)
2
+ π2N2 + ln ρ−ℜ (z∗)

))

.

In particular the dominant integral in the above list is I0→1, so that there exists a constant
M , satisfying the required dependency properties, with

|∆(z0)| ≤ M

∣

∣

∣

∣

∣

∣

∣

∣

∂G

∂y

∣

∣

∣

∣

∣

∣

∣

∣

expℜ (w∗ + az0) .

Since ℜ
(

a+ 1
λ

)

> 0 we have

∆(z0) = o

(

|z0| expℜ

(

−z0
λ

))

as expected.

3.2. Study of the model.

3.2.1. Explicit computation. We want to compute for n, m ∈ N the functions defined by

Tn,m (z) :=

ˆ

γ̃(z)

exp (nu+mw0 (u, z0)) du

= exp
(

m
(

w∗ −
z

λ

))

×

ˆ z∗

z

exp
((

n+
m

λ

)

u
)

du .

If n+m/λ = 0 then λ = −p/q, with p and q co-prime positive integers, and (n,m) = k (q, p)
with k ∈ N. In that case, and when k > 0,

Tkq,kp (z) = (z∗ − z) exp (k (pw∗ + qz)) = O (|z expℜ (az)|) .(3.1)
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The other case n+ m/λ 6= 0 is not more difficult:

Tn,m (z) = exp (mw∗ + nz)
exp ((n+ m/λ) (z∗ − z))− 1

n+ m/λ
.

One can see easily that as n + m/λ tends to zero (which may happen if, and only if,
λ is a negative irrational) the function Tn,m grows in modulus. The dominant support
introduced in Definition 1.4 allows to discriminate between two kind of growth rate.

3.2.2. Resonant support. We show now that the resonant support consists of (quasi-
)resonant monomials only.

Lemma 3.4. Assume that λ < 0 and a+ 1
λ > 0.

(1) If λ = −p/q < 0 is a rational number then

Res (a, λ) = {k (q, p) : k ∈ N , kq ≥ a} .

(2) If λ is a negative irrational we denote by (−pk/qk)k∈N
its sequence of convergents.

Then

Res (a, λ) = {(qk, pk) : k ∈ N , qk ≥ a} .

Proof.

(1) Because we have n ≥ a ≥ q the relation |nλ+m| < 1
2n becomes

|np−mq| <
q

2n
< 1 .

Hence np = mq and since p and q are co-prime the conclusion follows.
(2) This is a consequence of the well-known result in continued-fraction theory: if

p
q ∈ Q>0 is given such that

∣

∣

∣

p
q + λ

∣

∣

∣ < q−2
/2 then (p, q) is one of the convergents

of |λ|.

�

3.2.3. Dominant terms: proof of Proposition 1.5. Nothing needs to be proved for G0 so we
assume that G expands into a power series G (x, y) =

∑

n≥a,m>0Gn,mx
nym convergent

on a closed polydisc of poly-radii at least (ρ+ ǫ, r + ǫ). Because of the Cauchy formula,
for all n, m

|Gn,m| ≤ C (ρ+ ǫ)
−n

(r + ǫ)
−m

where C := sup|x|=ρ+ǫ , |y|=r+ǫ |G (x, y)|.
If λ is not real then

inf
(n,m)∈N2\{(0,0)}

|nλ+m| ≥ a |ℑ (λ)| .

Let z−z∗ be given with imaginary part bounded by Nπ for some integer N > 0 and with
real part lesser than

µ := −

∣

∣

∣

∣

ℑ (λ)

ℜ (λ)

∣

∣

∣

∣

Nπ .

By construction of µ we have

ℜ
(m

λ
(z∗ − z)

)

=
m

|λ|2
(ℜ (λ)ℜ (z∗ − z) + ℑ (λ)ℑ (z∗ − z)) < 0

≤ ℜ

(

1

λ
(z∗ − z)

)

so that we derive at last

|Tn,m (z)| ≤
2 |λ| rmρn+ℜ(1/λ)

a |ℑ (λ)|
expℜ

(

−
z

λ

)

.
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Now
∣

∣

∣

∣

ˆ z∗

z

G ◦ Edz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n≥a ,m>0

Gn,mTn,m (z)

∣

∣

∣

∣

∣

∣

≤
2 |λ| ρℜ(1/λ)C

a |ℑ (λ)|
×

(r + ǫ) (ρ+ ǫ)

ǫ2
× expℜ

(

−
z

λ

)

= O (|exp−z/λ|) ,

ending the proof for the non-real case. In fact this reasoning goes on holding even when
λ < 0 as long as (n,m) belongs not to Res (a, λ), since in that case

|n+ m/λ| >
|λ|

2n

has strictly sub-geometric inverse.
Take now λ negative real and G = GRes. If λ = −p/q is a negative rational number

then (3.1) provides what remains to be proved. Assume now that λ is irrational. Because
|exp z − 1| ≤ |z| when ℜ (z) < 0 we have for (n,m) ∈ Res (a, λ)

|Tn,m (z)| ≤ |(z − z∗) exp (nz)| r
m .

Therefore
∣

∣

∣

∣

∣

ˆ

γ0(z)

GRes ◦ Edz

∣

∣

∣

∣

∣

≤ C
∑

(n,m)∈Res(a,λ)

(ρ+ ǫ)
−n

(r + ǫ)
−m |Tn,m (z)|

≤ C |z∗ − z|
∑

(n,m)∈Res(a,λ)

(

expℜ (z)

ρ+ ǫ

)n (
r

r + ǫ

)m

≤ C
(r + ǫ) (ρ+ ǫ)

ǫ2
|z∗ − z| expℜ (az)

= O (|z exp−z/λ|)

as expected.
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