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Abstract

We investigate a method for regression that makes use of a randomly generated subspace GP ⊂ F
(of finite dimension P) of a given large (possibly infinite) dimensional function space F , for ex-

ample, L2([0,1]
d ;R). GP is defined as the span of P random features that are linear combinations

of a basis functions of F weighted by random Gaussian i.i.d. coefficients. We show practical mo-

tivation for the use of this approach, detail the link that this random projections method share with

RKHS and Gaussian objects theory and prove, both in deterministic and random design, approx-

imation error bounds when searching for the best regression function in GP rather than in F , and

derive excess risk bounds for a specific regression algorithm (least squares regression in GP). This

paper stresses the motivation to study such methods, thus the analysis developed is kept simple for

explanations purpose and leaves room for future developments.

Keywords: regression, random matrices, dimension reduction

1. Introduction

We consider a standard regression problem. Thus let us introduce X an input space, and Y = R the

real line. We denote by P an unknown probability distribution over the product space Z = X ×R

and by PX its first marginal, that is, dPX (x) =
∫
R

P (x,dy). In order for this quantity to be well

defined we assume that X is a Polish space (i.e., metric, complete, separable), see Dudley (1989,

Th. 10.2.2). Finally, let L2,PX (X ;R) be the space of real-valued functions on X that are squared

integrable with respect to (w.r.t.) PX , equipped with the quadratic norm

‖ f‖PX

def
=

√∫
X

f 2(x)dPX (x) .

In this paper, we consider that P has some structure corresponding to a model of regression with

random design; there exists a (unknown) function f ⋆ : X → R such that if (xn,yn)n6N ∈ X ×R are

independently and identically distributed (i.i.d.) according to P , then one can write

yn = f ⋆(xn)+ηn ,

where ηn is a centered noise, independent from PX , introduced for notational convenience. In terms

of random variables, we will often simply write Y = f ⋆(X)+η where (X ,Y )∼ P .
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MAILLARD AND MUNOS

Let F ⊂ L2,PX (X ;R) be some given class of functions. The goal of the statistician is to build,

from the observations only, a regression function f̂ ∈F that is closed to the so-called target function

f ⋆, in the sense that it has a low excess risk R( f )−R( f ⋆), where the risk of any f ∈ L2,PX (X ;R) is

defined as

R( f )
def
=

∫
X×R

(y− f (x))2dP (x,y) .

Similarly, we introduce the empirical risk of a function f to be

RN( f )
def
=

1

N

N

∑
n=1

[yn − f (xn)]
2 ,

and we define the empirical norm of f as ‖ f ‖N
def
=

√
1

N

N

∑
n=1

f (xn)2 .

Function spaces and penalization. In this paper, we consider that F is an infinite dimensional

space that is generated by the span over a denumerable family of functions {ϕi}i>1 of L2,PX (X ;R):
We call the {ϕi}i>1 the initial features and thus refer to F as to the initial feature space:

F
def
=

{
fα(x)

def
= ∑

i>1

αiϕi(x),‖α‖< ∞
}
.

Examples of initial features include Fourier basis, multi-resolution basis such as wavelets, and

also less explicit features coming from a preliminary dictionary learning process.

In the sequel, for the sake of simplicity we focus our attention to the case when the target

function f ⋆ = fα⋆ belongs to the space F , in which case the excess risk of a function f can be

written as R( f )−R( f ⋆) = ‖ f − f ⋆‖PX . Since F is an infinite dimensional space, empirical risk

minimization in F defined by argmin
f∈F

RN( f ) is certainly subject to overfitting. Traditional methods

to circumvent this problem consider penalization techniques, that is, one searches for a function that

satisfies

f̂ = argmin
f∈F

RN( f )+pen( f ),

where typical examples of penalization include pen( f ) = λ‖ f‖p
p for p = 1 or 2, where λ is a pa-

rameter and usual choices for the norm are ℓ2 (ridge-regression: Tikhonov 1963) and ℓ1 (LASSO:

Tibshirani 1994).

Motivation. In this paper we follow a complementary approach introduced in Maillard and Munos

(2009) for finite dimensional space, called Compressed Least Squares Regression, and extended in

Maillard and Munos (2010), which considers generating randomly a space GP ∈ F of finite dimen-

sion P and then returning an empirical estimate in GP. The empirical risk minimizer in GP, that is,

argming∈GP
RN(g) is a natural candidate, but other choices of estimates are possible, based on tra-

ditional literature on regression when P < N (penalization, projection, PAC-Bayesian estimates...).

The generation of the space GP makes use of random matrices, that have already demonstrated

their benefit in different settings (see for instance Zhao and Zhang 2009 about spectral clustering or

Dasgupta and Freund 2008 about manifold learning).

Our goal is first to give some intuition about this method by providing approximation error and

simple excess risk bounds (which may not be the tightest possible ones as explained in Section 4.2)
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LINEAR REGRESSION WITH RANDOM PROJECTIONS

for the proposed method, and also by providing links to other standards approaches, in order to

encourage research in that direction, which, as showed in the next section, has already been used in

several applications.

Outline of the paper. In Section 2, we quickly present the method and give practical motivation

for investigating this approach. In Section 3, we give a short overview of Gaussian objects theory

(Section 3.1), which enables us to show how to relate the choice of the initial features {ϕi}i>1 to the

construction of standard function spaces via Gaussian objects (Section 3.2), and we finally state a

useful version of the Johnson-Lindenstrauss Lemma for our setting (Section 3.3).

In Section 4, we describe a typical algorithm (Section 4.1), and then provide some quick survey

of classical results in regression while discussing the validity of their assumptions in our setting

(Section 4.2). Then our main results are stated in Section 4.3, where we provide bounds on approxi-

mation error of the random space GP in the framework of regression with deterministic and random

designs, and in Section 4.4, where we derive excess risk bounds for a specific estimate.

Section 5 provides some discussion about existing results and finally appendix A contains the

proofs of our results.

2. Summary Of The Random Projection Method

From now on, we assume that the set of features {ϕi}i>1 are continuous and satisfy the assumption

that,

sup
x∈X

‖ϕ(x)‖2 < ∞, where ϕ(x)
def
= (ϕi(x))i>1 ∈ ℓ2 and ‖ϕ(x)‖2 def

= ∑
i>1

ϕi(x)
2.

Let us introduce a set of P random features (ψp)16p6P defined as linear combinations of the

initial features {ϕi}1>1 weighted by random coefficients:

ψp(x)
def
= ∑

i>1

Ap,iϕi(x), for 1 6 p 6 P , (1)

where the (infinitely many) coefficients Ap,i are drawn i.i.d. from a centered distribution (e.g., Gaus-

sian) with variance 1/P. Then let us define GP to be the (random) vector space spanned by those

features, that is,

GP
def
=

{
gβ(x)

def
=

P

∑
p=1

βpψp(x),β ∈ R
P
}
.

In the sequel, PG will refer to the law of the Gaussian variables, Pη to the law of the observation

noise and PY to the law of the observations. Remember also that PX refers to the law of the inputs.

One may naturally wish to build an estimate g
β̂

in the linear space GP. For instance in the case of

deterministic design, if we consider the ordinary least squares estimate, that is,

β̂ = argminβ∈RP RN(gβ), then we can derive the following result (see Section 4.4 for a similar result

with random design):

Theorem 1 (Deterministic design) Assuming that the random variable Y is such that |Y |6 B, then

for all P > 1, for all δ ∈ (0,1) there exists an event of PY ×PG -probability larger than 1− δ such
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that on this event, the excess risk of the least squares estimate g
β̂

is bounded as

‖g
β̂
− f ⋆‖2

N 6
12log(8N/δ)

P
‖α⋆‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 +κB2 P+ log(2/δ)

N
, (2)

for some numerical constant κ > 0.

Example: Let us consider as an example the features {ϕi}i>1 to be a set of functions defined by

rescaling and translation of a mother one-dimensional hat function (illustrated in Figure 1, middle

column) and defined precisely in paragraph 3.2.2. Then in this case we can show that

‖α⋆‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2
6

1

2
‖ f ⋆‖2

H1 ,

where H1 = H1([0,1]) is the Sobolev space of order 1. Thus we deduce that the excess risk is

bounded as ‖g
β̂
− f ⋆‖2

N = O(
B‖ f ⋆‖

H1 log(N/δ)√
N

) for P of the order
√

N.

Similarly, the analysis given in paragraph 3.2.1 below shows that when the features {ϕi}i>1 are

wavelets rescaled by a factor σi = σ j,l = 2− js for some real number s > 1/2, where j, l are the

scale and position index corresponding to the ith element of the family, and that the mother wavelet

enables to generate the Besov space Bs,2,2([0,1]) (see paragraph 3.2.1), then for some constant c, it

holds that

‖α⋆‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2
6

c

1−2−2s+1
‖ f ⋆‖2

s,2,2 .

Thus the excess risk in this case is bounded as ‖g
β̂
− f ⋆‖2

N = O(
B‖ f ⋆‖s,2,2 log(N/δ)√

N
).

2.1 Comments

The second term in the bound (2) is a usual estimation error term in regression, while the first term

comes from the additional approximation error of the space GP w.r.t. F . It involves the norm of the

parameter α⋆, and also the norm ‖ϕ(x)‖ at the sample points.

The nice aspects of this result:

• The weak dependency of this bound with the dimension of the initial space F . This appears

implicitly in the terms ‖α⋆‖2 and 1
N ∑N

n=1 ‖ϕ(xn)‖2, and we will show that for a large class of

function spaces, these terms can be bounded by a function of the norm of f ⋆ only.

• The result does not require any specific smoothness assumptions on the initial features {ϕi}i>1;

by optimizing over P, we get a rate of order N−1/2 that corresponds to the minimax rates under

such assumptions up to logarithmic factors.

• Because the choice of the subspace GP within which we perform the least-squares estimate is

random, we avoid (with high probability) degenerated situations where the target function f ⋆

cannot be well approximated with functions in GP. Indeed, in methods that consider a given

deterministic finite-dimensional subspace G of the big space F (such as linear approximation

using a predefined set of wavelets), it is often possible to find a target function f ⋆ such that
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infg∈GP
‖ f ⋆−g‖N is large. On the other hand when we use the random projection method, the

random choice of GP implies that for any f ⋆ ∈ F , the approximation error infg∈GP
‖ f ⋆−g‖N

can be controlled (by the first term of the bound (2)) in high probability. See section 5.2

for an illustration of this property. Thus the results we obtain is able to compete with non-

linear approximation (Barron et al., 2008) or kernel ridge regression (Caponnetto and De Vito,

2007).

• In terms of numerical complexity, this approach is more efficient than non-linear regression

and kernel ridge regression. Indeed, once the random space has been generated, we simply

solve a least squares estimate in a low-dimensional space. The computation of the Gram

matrix involves performing random projections (which can be computed efficiently for several

choices of the random coefficients Ap,i, see Liberty et al. 2008; Ailon and Chazelle 2006;

Sarlos 2006 and many other references therein). Numerical aspects of the algorithms are

described in Section 5.4.

Possible improvements. As mentioned previously we do not make specific assumptions about

the initial features {ϕi}i>1. However, considering smoothness assumptions on the features would

enable to derive a better approximation error term (first term of the bound (2)); typically with a

Sobolev assumption or order s, we would get a term of order P−2s instead of P−1. For simplicity of

the presentation, we do not consider such assumptions here and report the general results only.

The log(N) factor may be seen as unwanted and one would like to remove it. However, this

term comes from a variant of the Johnson-Lindenstrauss lemma combined with a union bound, and

it seems difficult to remove it, unless the dimension of F is small (e.g., we can then use covers) but

this case is not interesting for our purpose.

Possible extensions of the random projection method. It seems natural to consider other construc-

tions than the use of i.i.d. Gaussian random coefficients. For instance we may consider Gaussian

variables with variance σ2
i /P different for each i instead of homeoscedastic variables, which is ac-

tually equivalent to considering the features {ϕ′
i}i>1 with ϕ′

i = σiϕi instead.

Although in the paper we develop results using Gaussian random variables, such method will

essentially work similarly for matrices with sub-Gaussian entries as well.

A more important modification of the method would be to consider, like for data-driven pe-

nalization techniques, a data-dependent construction of the random space GP, that is, using a data-

driven distribution for the random variable Ap,i instead of a Gaussian distribution. However the

analysis developed in this paper will not work for such modification, due to the fact we longer have

independent variables, and thus a different analysis is required.

Illustration. In order to illustrate the method, we show in figure 1 three examples of initial

features {ϕi} (top row) and random features {ψp} (bottom row). The first family of features is

the basis of wavelet Haar functions. The second one consists of multi-resolution hat functions

(see paragraph 3.2.2) and the last one shows multi-resolution Gaussian functions. For example,

in the case of multi-resolution hat functions (middle column), the corresponding random features

are Brownian motions. The linear regression with random projections approach described here

simply consists in performing least-squares regression using the set of randomly generated features

{ψp}16p6P (e.g., Brownian motions).
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Figure 1: Three representative of initial features ϕ (top row) and a sample of a corresponding ran-

dom feature ψ (bottom row). The initial set of features are (respectively) Haar functions

(left), multi-resolution hat functions (middle) and multi-resolution Gaussian functions

(right).

2.2 Motivation From Practice

We conclude this introduction with some additional motivation to study such objects coming from

practical applications. Let us remind that the use of random projections is well-known in many

domains and applications, with different names according to the corresponding field, and that the

corresponding random objects are widely studied and used. Our contribution is to provide an anal-

ysis of this method in a regression setting.

For instance, in Sutton and Whitehead (1993) the authors mentioned such constructions under

the name random representation as a tool for performing value function approximation in practical

implementations of reinforcement learning algorithms, and provided experiments demonstrating the

benefit of such methods. They also pointed out that such representations were already used in 1962

in Rosenblatt’s perceptron as a preprocessing layer. See also Sutton (1996) for other comments

concerning the practical benefit of “random collapsing” methods.

Another example is in image processing, when the initial features are chosen to be a wavelet

(rescaled) system, in which case the corresponding random features {ψp}16p6P are special cases of

random wavelet series, objects that are well studied in signal processing and mathematical physics

(see Aubry and Jaffard 2002; Durand 2008 for a study of the law of the spectrum of singularities of

these series).

Noise model and texture generation. The construction of Gaussian objects (see paragraph 3.2.1)

is highly flexible and enables to do automatic noise-texture generation easily, as explained in Deguy
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Figure 2: Example of an initial large texture (left), subsampled (middle), and possible recovery

using regression with random projections (right)

and Benassi (2001). In their paper, the authors show that with the appropriate choice of the wavelet

functions and when using rescaling coefficients of the form σ j,l = 2− js with scale index j an position

index l (see paragraph 3.2.1), where s is not a constant but is now a function of j and l, we can

generate fractional Brownian motions, multi-scale fractional Brownian motions, and more generally

what is called intermittent locally self-similar Gaussian processes.

In particular, for image texture generation they introduce a class of functions called morphlets

that enables to perform approximations of intermittent locally self-similar Gaussian processes.

These approximations are both numerically very efficient and have visually imperceptible differ-

ences to the targeted images, which make them very suitable for texture generation. The authors

also allow other distributions than the Gaussian for the random variables ξ (which thus does not

fit the theory presented here), and use this additional flexibility to produce an impressive texture

generator.

Figure 2 illustrates an example performed on some simple texture model1 where an image of

size 512×512 is generated (two-dimensional Brownian sheet with Hurst index H = 1.1) (left) and

then subsampled at 32× 32 (middle), which provides the data samples for generating a regression

function (right) using random features (generated from the symlets as initial features, in the simplest

model when s is constant).

3. Gaussian Objects

We now describe some tools of Gaussian object theory that would be useful in later analysis of

the method. Each random feature ψp built from Equation (1), when the coefficients are Gaussian,

qualifies as a Gaussian object. It is thus natural to study some important features of Gaussian

objects.

1. The authors wish to thank Pierre Chainais for performing experimental study of random projection methods applied

to image processing, and for providing us with interesting pointers to related works.
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3.1 Reminder of Gaussian Objects Theory

In all this section, S will refer to a vector space, S ′ to its topological dual, and (·, ·) to its duality

product. The reader mostly interested in application of the random projection method may skip this

section and directly go to Subsection 3.2 that provides examples of function spaces together with

explicit construction of the abstract objects considered here.

Definition 2 (Gaussian objects) A random variable W ∈ S is called a Gaussian object if for all

ν ∈ S ′, (ν,W ) is a Gaussian (real-valued) variable. We further call any a ∈ S to be an expectation

of W if

∀ν ∈ S ′ , E(ν,W ) = (ν,a)< ∞ ,

and any K : S ′ → S to be a covariance operator of W if

∀ν,ν′ ∈ S ′ ,Cov((ν,W )(ν′,W )) = (ν,Kν′)< ∞ ,

where Cov refers to the correlation between two real-valued random variables.

Whenever there exist such a and K, we say that W follows the law N (a,K). Moreover, W is

called a centered Gaussian object if a = 0.

Kernel space. We only provide a brief introduction to this notion and refer the interested reader

to Lifshits (1995) or Janson (1997) for refinements.

Let I′ : S ′ → L2(S ,N (0,K)) be the canonical injection from the space of continuous linear

functionals S ′ to the space of measurable linear functionals

L2(S ;R,N (0,K)) =
{

z : S → R,EW∼N (0,K)|z(W )|2 < ∞
}
,

endowed with inner product 〈z1,z2〉=E(z1(W )z2(W )), that is, for any ν∈ S ′, I′ is defined by I′(ν) =
(ν, ·). It belongs to L2(S ;R,N (0,K)) since by definition of K we have (ν,Kν) = E(ν,W )2 < ∞.

Then note that the space defined by S ′
N

def
= I′(S ′), that is, the closure of the image of S ′ by I′ in the

sense of L2(S ;R,N (0,K)), is a Hilbert space with inner product inherited from L2(S ;R,N (0,K)).
Now under the assumption that I′ is continuous (see Section 4.1 for practical conditions ensuring

that this is the case), we can define the adjoint I : S ′
N

→ S of I′, by duality. Indeed for any µ ∈ S ′

and z ∈ I′(S ′), we have by definition that

(µ, Iz) =
〈
I′µ,z

〉
S ′

N
= EW ((µ,W )z(W )) ,

from which we deduce by continuity that Iz = EW (Wz(W )). For the sake of clarity, this specifies

for instance in the case when S = L2(X ;R), for all x ∈ X as

(Iz)(x) = EW (W (x)z(W )) .

Now that the two injection mappings I, I′ have been defined, we are ready to provide the formal

(though slightly abstract) definition for our main object of interest:

Definition 3 (Kernel space) Provided that the mapping I′ is continuous, then we define the kernel

space of a centered Gaussian object W as K
def
= I(I′(S ′))⊂ S .
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A more practical way of dealing with kernels is given by the two following lemmas that we use

extensively in Section 3.2. First, the kernel space can be built alternatively based on a separable

Hilbert space H as follows (Lifshits, 1995):

Lemma 4 (Construction of the Kernel space.) Let J : H → S be an injective linear mapping such

that K = JJ′, where J′ is the adjoint operator of J. Then the kernel space of N (0,K) is K = J(H ),

endowed with inner product 〈Jh1,Jh2〉H

def
= 〈h1,h2〉H .

We then conclude this section with the following Lemma from Lifshits (1995) that enables to

define the expansion of a Gaussian object W .

Lemma 5 (Expansion of a Gaussian object) Let {ϕi}i>1 be an orthonormal basis of K for the

inner product 〈·, ·〉K and {ξi
i.i.d.∼ N (0,1)}i>1. Then ∑∞

i=1 ξiϕi is a Gaussian object following the

law N (0,K). It is called an expansion for N (0,K).

Note that from Lemma 4, one can build an orthonormal basis {ϕi}i>1 by defining, for all i > 1,

ϕi = Jhi where {hi}i>1 is an orthonormal basis of H and J satisfies conditions of Lemma 4.

3.2 Interpretation of Some Function Spaces with Gaussian Objects Theory

In this section, we precise the link between Gaussian objects theory and reproducing kernel Hilbert

spaces (RKHS) in order to provide more intuition about such objects. Indeed in many cases, the

kernel space of a Gaussian object is a RKHS. Note, however, that in general, depending on the

Gaussian object we consider, the former space may also be a more general space for instance when

the Hilbert assumption is dropped (see Canu et al. 2002 about RKS). Therefore, there is no one-to-

one correspondence between RKHS and kernel spaces of Gaussian objects and it is worth explaining

when the two notions coincide. More importantly, this section shows various examples of classical

function spaces, related to the construction of the space GP for different choices of initial features

{ϕi}i>1, and that can be useful for applications.

3.2.1 GAUSSIAN OBJECTS WITH A SUPPORTING HILBERT SPACE

In this subsection only, we make the assumption that S = H is a Hilbert space and we introduce

{ei}i>1 an orthonormal basis of H . Let us now consider ξi ∼ N (0,1) i.i.d., and positive coefficients

σi > 0 such that ∑i σ2
i < ∞. Since ∑i σ2

i < ∞, the Gaussian object W = ∑i ξiσiei is well defined and

our goal is to identify the kernel of the law of W .

To this aim we first identify the function I′. Since S is a Hilbert space, then its dual is S ′ = S ,

thus we consider f = ∑i ciei ∈ S ′ for some c ∈ ℓ2. For such an f , we deduce by the previous section

that the injection mapping is given by (I′ f )(g) = ∑i ci(g,ei), and that we also have

‖I′ f‖2
S ′

N
= E

(
(I′ f ,W )2

)
= E

((
∑
i>1

σiξici

)2)
= ∑

i>1

σ2
i c2

i .

Now, since ‖ f‖S = ‖c‖ℓ2
, the continuity of I′ is insured by the assumption that ∑i σ2

i < ∞, and

thus I is defined as in the previous section. Therefore, a function in the space K corresponding to f

is of the form ∑i σiciei, and one can easily check that the kernel space of the law of W is thus given

by

K =
{

fc = ∑
i>1

ciei ; ∑
i>1

( ci

σi

)2

< ∞
}
,
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endowed with inner product ( fc, fd)K = ∑i>1
cidi

σ2
i

.

Reproducing Kernel Hilbert Spaces (RKHS). Note that if we now introduce the functions {ϕi}i>1

defined by ϕi
def
= σiei ∈ H , then we get

K =
{

fα = ∑
i>1

αiϕi ; ‖α‖l2 < ∞
}
,

endowed with inner product ( fα, fβ)K = 〈α,β〉l2 . For instance, if we consider that H ⊂ L2,µ(X ;R)
for some reference measure µ, and that {ei}i>1 are orthonormal w.r.t. L2,µ(X ;R), then K appears

to be a RKHS that can be made fully explicit; its kernel is defined by k(x,y) = ∑∞
i=1 σ2

i ei(x)ei(y) ,
and {σi}i>1 and {ei}i>1 are trivially the eigenvalues and eigenfunctions of the integral operator

Tk : L2,µ(X )→ L2,µ(X ) defined by (Tk( f ))(x) =
∫

X k(x,y) f (y)dµ(y).

Wavelet basis and Besov spaces. In this paragraph, we now apply the previous construction to

the case when the {ei}i>1 are chosen to be a wavelet basis of functions defined on X = [0,1] with

reference measure µ being the Lebesgue measure. Let e denote the mother wavelet function, and let

us write e j,l the ith element of the basis, with j ∈ N a scale index and l ∈ {0, . . . ,2 j −1} a position

index, where we re-index all families indexed by i with the indice j, l. Let us define the coefficients

{σi}i>1 to be exponentially decreasing with the scale index:

σ j,l
def
= 2− js for all j > 0 and l ∈ {0, . . . ,2 j −1} ,

where we introduced some positive real number s.

Now assume that for some q ∈ N \ {0} such that q > s, the mother wavelet function e belongs

to C q(X ), the set of q-times continuously differentiable functions on X , and admits q vanishing

moments. The reason to consider such case is that the (homogeneous) Besov space Bs,2,2([0,1]
d)

then admits the following known characterization (independent of the choice of the wavelets, see

Frazier and Jawerth 1985; Bourdaud 1995):

Bs,2,2(X ;µ) =
{

f ∈ L2,µ(X ) ; ‖ f‖2
s,2,2

def
=

∞

∑
j=1

[
22 js

2 j−1

∑
l=0

|
〈

f ,e j,l

〉
|2
]
< ∞

}
.

On the other hand, with the notations above, where in particular ϕ j,l = σ j,lε j,l , we deduce that

the kernel space of the Gaussian object W = ∑ j,l ξ j,lϕ j,l (that we call a Scrambled wavelet), is

simply the space

K =
{

fα = ∑
j,l

α j,lϕ j,l ; ∑
j,l

α2
j,l < ∞

}
,

and a straightforward computation shows that ‖α‖2
l2
= ‖ fα‖2

s,2,2, so that K =Bs,2,2(X ;µ). Moreover,

assuming that the mother wavelet is bounded by a constant λ and has compact support [0,1], then

we have the property that is useful in view of our main Theorem

sup
x∈X

‖ϕ(x)‖2
6

λ2

1−2−2s+1
.

Note that a similar construction applies to the case when the orthonormal basis {ei}i>1 is chosen

to be a Fourier basis of functions, and the coeficients {σi}i>1 are chosen to be of the form σi = i−s.
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3.2.2 GAUSSIAN OBJECTS DEFINED BY A CARLEMAN EXPANSION

We now no longer assume that the supporting space S is a Hilbert space. In this case, it is still

possible to generate a Gaussian object with kernel space being a RKHS by resorting to Carleman

operators.

A Carleman operator is a linear injective mapping J : H 7→ S (where H is a Hilbert space) such

that J(h)(t) =
∫

Γt(s)h(s)ds where (Γt)t is a collection of functions of H . As shown for instance

in Canu et al. (2002); Saitoh (1988), there is a bijection between Carleman operators and the set of

RKHSs. In particular, J(H ) is a RKHS.

A Gaussian object admitting J(H ) as a kernel space can be built as follows. By application of

Lemma 5, we have that K = J(H ) endowed with the inner product 〈Jh1,Jh2〉K
def
= 〈h1,h2〉H is the

kernel space of N (0,JJ′). Now, if we consider an orthonormal basis {ei}i>1 of H , an application

of Lemma 5 shows that the functions {ϕi}i>1 defined by ϕi
def
= J(ei) form an orthonormal basis of

J(H ) and are such that the object W = ∑i>1 ξiϕ is first a well-defined Gaussian object and then

an expansion for the law N (0,JJ′). We call this expansion a Carleman expansion. Note that this

expansion is bottom-up whereas the Mercer expansion of a kernel via the spectral Theorem is top-

down, see, for example, Zaanen (1960).

Cameron-Martin space. We apply as an example this construction to the case of the Brownian

motion and the Cameron-Martin space.

Let S = C ([0,1]) be the space of continuous real-valued functions of the unit interval. Then

S ′ is the set of signed measures and we can define the dual product by (ν, f ) =
∫
[0,1] f dν. It is

straightforward to check that the Brownian motion indexed by [0,1] is a Gaussian object W ∈ S ,

with a ≡ 0 and K defined by (Kν)(t) =
∫
[0,1] min(s, t)ν(ds).

Kernel space. We consider the Hilbert space H = L2([0,1]) and define the mapping J : H 7→ S
by

(Jh)(t) =
∫
[0,t]

h(s)ds ;

simple computations show that (J′ν)(t) = ν([t,1]), K = JJ′ and that J is a Carleman operator.

Therefore, the kernel space K is equal to J(L2([0,1])), or more explicitly

K =
{

k ∈ H1([0,1]);k(0) = 0
}
,

where H1([0,1]) is the Sobolev space of order 1.

Expansion of the Brownian motion. We build a Carleman expansion for the Brownian motion

thanks to the Haar basis of L2([0,1]), whose image by J defines an orthonormal basis of K ; the Haar

basis (e0,{e j,l} j,l∈N ) is defined in a wavelet-way via a mother function e(x) = I[0,1/2[− I[1/2,1[ and

father function e0(x) = I[0,1](x) with functions {e j,l} j,l∈N defined for any scale j > 1 and translation

index 0 6 l 6 2 j −1 by

e j,l(x)
def
= 2 j/2e(2 jx− l) .

An orthonormal basis of the kernel space of the Brownian motion W and an expansion of W is thus

obtained by

W = ∑
j,l>1

ξ j,lϕ j,l +ξ0ϕ0,

with ϕ j,l(x) = Je j,l(x) = 2− j/2Λ(2 jx− l) and ϕ0(x) = Je0(x) = x ,
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where Λ(x) = xI[0,1/2[+(1− x)I[1/2,1[ is the mother hat function.

Bounded energy. Note that the rescaling factor inside ϕ j,l naturally appears as 2− j/2, and not

as 2 j/2 as usually defined in wavelet-like transformations. Note also that since the support of the

mother function Λ is [0,1], and also ‖Λ‖∞ 6 1/2, then for any x ∈ [0,1]d , for all j there exists at

most one l = l(x) such that ϕ j,l(x) 6= 0, and we have the property that

‖ϕ(x)‖2 = ∑
j>1

ϕ j,l(x)(x)
2
6 ∑

j>1

(2− j/2‖Λ‖∞)
2
6

1

2
.

Remark 6 This construction can be extended to the dimension d > 1 in at least two ways. Consider

the space S = C ([0,1]d), and the Hilbert space H = L2([0,1]
d). Then if we define J to be the volume

integral (Jh)(t) =
∫
[0,t] h(s)ds where [0, t]⊂ [0,1]d , this corresponds to the covariance operator de-

fined by (Kν)(t) =
∫
[0,1]d Πd

i=1 min(si, ti)ν(ds), that is, to the Brownian sheet defined by tensorization

of the Brownian motion. The corresponding kernel space in this case is thus K = J(L2([0,1]d)),

endowed with the norm ‖ f‖K = ‖ ∂d f

∂x1...∂xd
‖L2([0,1]d). It corresponds to the Cameron-Martin space

(Janson, 1997) of functions having a d-th order crossed (weak) derivative
∂d f

∂x1...∂xd
that belongs to

L2([0,1]d), vanishing on the “left” boundary (edges containing 0) of the unit d-dimensional cube.

A second possible extension that is not detailed here would be to consider the isotropic Brownian

sheet.

3.3 A Johnson-Lindenstrauss Lemma for Gaussian Objects

In this section, we derive a version of the Johnson-Lindenstrauss’ lemma that applies to the case of

Gaussian objects.

The original Johnson-Lindenstrauss’ lemma can be stated as follows; its proof directly uses

concentration inequalities (Cramer’s large deviation Theorem from 1938) and may be found, for

example, in Achlioptas (2003).

Lemma 7 Let A be a P×F matrix of i.i.d. Gaussian N (0,1/P) entries. Then for any vector α in

R
F , the random (with respect to the choice of the matrix A) variable ‖Aα‖2 concentrates around its

expectation ‖α‖2 when P is large: for ε ∈ (0,1), we have

P

(
‖Aα‖2

> (1+ ε)‖α‖2
)

6 e−P(ε2/4−ε3/6) ,

and P

(
‖Aα‖2

6 (1− ε)‖α‖2
)

6 e−P(ε2/4−ε3/6) .

Remark 8 Note the Gaussianity is not mandatory here, and this is also true for other distributions,

such as:

• Rademacher distributions, that is, which takes values ±1/
√

P with equal probability 1/2,

• Distribution taking values ±
√

3/P with probability 1/6 and 0 with probability 2/3.

What is very important is the scaling factor 1/P appearing in the variance of N (0,1/P).

This Lemma together with the measurability properties of Gaussian objects enable us to derive

the following statement.
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Lemma 9 Let {xn}n6N be N (deterministic) points of X . Let A : ℓ2(R) 7→R
P be the operator defined

with i.i.d. Gaussian N (0,1/P) variables (Ai,p)i>1,p6P, such that for all α ∈ ℓ2(R), then

(Aα)p = ∑
i>1

αiAi,p .

Let us also define ψp = ∑
i>1

Ai,pϕi, fα = ∑
i>1

αiϕi and gβ =
P

∑
p=1

βpψp.

Then, A is well-defined and for all P > 1, for all ε ∈ (0,1), with probability larger than 1−
4Ne−P(ε2/4−ε3/6) w.r.t. the Gaussian random variables,

‖ fα −gAα‖2
N 6 ε2‖α‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 ,

where we recall that by assumption, for any x, ϕ(x)
def
= (ϕi(x))i>1 is in ℓ2.

This result is natural in view of concentration inequalities, since for all x ∈ X , the expecta-

tion satisfies EPG (gAα(x)) = fα(x) and the variance VPG (gAα(x)) =
1
P
( f 2

α(x)+ ‖α‖2‖ϕ(x)‖2). See

Appendix A.1 for the full proof.

Note also that a natural idea in order to derive generalization bounds would be to derive a similar

result uniformly over X instead of a union bound over the samples. However, while such extension

would be possible for finite dimensional spaces F (by resorting to covers) these kind of results are

not possible in the general case, since F is typically big.

More intuition. Let us now provide some more intuition about when such a result is interesting.

In interesting situations described in Section 4 we consider a number of projections P lower than

the number of data samples N, typically P is of order
√

N. Thus, it may seem counter-intuitive

that we can approximate—at a set of N points—a function fα that lies in a high (possibly infinite)

dimensional space F by a function gAα in a space G of dimension P < N.

Of course in general this is not possible. To illustrate this case, let us consider that there is no

noise, assume that all points (xn)n6N belong to the unit sphere, and that ϕ is the identity of X = R
D.

Thus a target function f is specified by some α∈R
D (where D is assumed to be large, that is, D>N)

and the response values are yn = fα(xn) = αT xn. Write ŷ ∈ R
D the estimate gAα at the points, that is,

such that ŷn = gAα(xn). In that case, the bound of Lemma 9 provides an average quadratic estimation

error 1
N
‖y− ŷ‖2 of order

log(N/δ)

P
||α||2, with probability 1−δ.

On the other hand the zero-value regressor has an estimation error of

1

N
‖y‖2 =

1

N

N

∑
n=1

(αT xn)
2 = αT Sα , where S

def
=

1

N

N

∑
n=1

xnxT
n ∈ R

D×D .

This shows that the result of Lemma 9 is essentially interesting when
αT Sα

‖α‖2
≫ log(N/δ)

P
, which

may not happen in certain cases: Indeed if we specifically choose xn = en ∈ R
D, for n 6 N 6 D,

where (e1, . . . ,eD) denotes the Euclidean basis of R
D, then for such a choice, we have

αT Sα

||α||2 =
∑N

d=1 α2
d

N ∑D
d=1 α2

d

6
1

N
6

log(N/δ)

P
,
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which means that the random projection method fails to recover a better solution than a trivial one.

The reason why it fails is that in that case the points {xn}n6N lie in a subspace of R
D of high-

dimension N, that is, such that the information at any set of points does not help us to predict the

value at any other point. Essentially, what Lemma 9 tells us is that the random projection method

will work when the points {xn}n6N lie in a vector subspace of smaller dimension d0 < N and that

the d0 corresponding coefficients of α contain most information about α (i.e., the other D− d0

coordinates are small). Let us illustrate this case by considering the case where xn = e
1+(n mod d0)

for all n 6 N. In that case, we have (for N multiple of d0),

αT Sα

||α||2 =
∑

d0

d=1 α2
d

d0 ∑D
d=1 α2

d

,

which is larger than
log(N/δ)

P
whenever the components {αd}d>d0

decrease fast and P is large enough,

in which case, the random projection method will work well.

Now introducing features, the condition says that the number of relevant features should be rela-

tively small, in the sense that the parameter should mostly contain information at the corresponding

coordinates, which is the case in many functional spaces, such as the Sobolev and Besov spaces

(for which D = ∞) described in Section 2 and Section 3.2.1, paragraph ”Wavelet basis and Besov

spaces”, for which ‖α‖ equals the norm of the function fα in the corresponding space. Thus a

”smooth” function fα (in the sense of having a low functional norm) has a low norm of the param-

eter ‖α‖, and is thus well approximated with a small number of wavelets coefficients. Therefore,

Lemma 9 is interesting and the random projection method will work in such cases (i.e., the addi-

tional projection error is controlled by a term of order ‖α‖2 log(N/δ)
P

).

4. Regression With Random Subspaces

In this section, we describe the construction of the random subspace GP ⊂ F defined as the span

of the random features {ψp}p6P generated from the initial features {ϕi}i>1. This method was

originally described in Maillard and Munos (2009) for the case when F is of finite dimension, and

we extend it here to the non-obvious case of infinite dimensional spaces F , which relies on the fact

that the randomly generated features {ψp}p6P are well-defined Gaussian objects.

The next subsection is devoted to the analysis of the approximation power of the random features

space. We first give a survey of existing results on regression together with the standard hypothesis

under which they hold in section 4.2, then we describe in section 4.4 an algorithm that builds the

proposed regression function and provide excess risk bounds for this algorithm.

4.1 Construction of Random Subspaces

Assumption on initial features. In this paper we assume that the set of features {ϕi}i>1 are con-

tinuous and satisfy the assumption that,

sup
x∈X

‖ϕ(x)‖2 < ∞, where ‖ϕ(x)‖2 def
= ∑

i>1

ϕi(x)
2. (3)

Note that all examples in Section 3 satisfy this condition.
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Random features. The random subspace GP is generated by building a set of P random fea-

tures {ψp}16p6P defined as linear combinations of the initial features {ϕi}1>1 weighted by random

coefficients:

ψp(x)
def
= ∑

i>1

Ap,iϕi(x), for 1 6 p 6 P ,

where the (infinitely many) coefficients Ap,i are drawn i.i.d. from a centered distribution with vari-

ance 1/P. Here we explicitly choose a Gaussian distribution N (0,1/P). Such a definition of

the features ψp as an infinite sum of random variable is not obvious (this is an expansion of a

Gaussian object) and we refer to the Section 3 for elements of theory about Gaussian objects and

Lemma 5 for the expansion of a Gaussian object. It is shown that under Assumption (3), the ran-

dom features are well defined. Actually, they are random samples of a centered Gaussian process

indexed by the space X with covariance structure given by 1
P
〈ϕ(x),ϕ(x′)〉, where we use the notation

〈u,v〉 def
= ∑i uivi for two square-summable sequences u and v. Indeed, EAp

[ψp(x)] = 0, and

CovAp
(ψp(x),ψp(x

′)) = EAp
[ψp(x)ψp(x

′)] =
1

P
∑
i>1

ϕi(x)ϕi(x
′) =

1

P

〈
ϕ(x),ϕ(x′)

〉
.

The continuity of each of the initial features {ϕi}i>1 guarantees that there exists a continuous version

of the process ψp that is thus a Gaussian process.

Random subspace. We finally define GP ⊂ F to be the (random) vector space spanned by those

features, that is,

GP
def
=

{
gβ(x)

def
=

P

∑
p=1

βpψp(x),β ∈ R
P
}
.

We now want to compute a high probability bound on the excess risk of an estimator built using

the random space GP. To this aim, we first quickly review known results in regression and see

what kind of estimator can be considered and what results can be applied. Then we compute a high

probability bound on the approximation error of the considered random space w.r.t. to initial space

F . Finally, we combine both bounds in order to derive a bound on the excess risk of the proposed

estimate.

4.2 Reminder of Results on Regression

Short review of existing results. For the sake of completeness, we now review other existing

results in regression that may or may not apply to our setting. Indeed it seems natural to apply

existing results for regression to the space GP. For that purpose, we focus on the randomness

coming from the data points only, and not from the Gaussian entries. We will thus consider in this

subsection only a space G that is the span over a deterministic set of P functions {ψp}p6P, and we

will write, for a convex subset Θ ⊂ R
P,

GΘ
def
=

{
gθ ∈ G ;θ ∈ Θ

}
.

Similarly, we write g⋆
def
= argmin

g∈G
R(g) and g⋆Θ

def
= argmin

g∈GΘ

R(g). Examples of well studied estimates

are:
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• ĝols def
= argming∈G RN(g), the ordinary least-squares (ols) estimate.

• ĝerm def
= argming∈GΘ

RN(g) the empirical risk minimizer (erm) that coincides with the ols when

Θ = R
P.

• ĝridge def
= argming∈G RN(g)+λ‖θ‖, ĝlasso def

= argming∈G RN(g)+λ‖θ‖1.

We also introduce for convenience gB, the truncation at level ±B of some g ∈ G , defined by gB(x)
def
=

TB[g(x)], where TB(u)
def
=

{
u if |u|6 B,
B sign(u) otherwise.

There are at least 9 different theorems that one may want to apply in our setting. Since those

theorems hold under some assumptions, we list them now. Unfortunately, as we will see, these

assumptions are usually slightly too strong to apply in our setting, and thus we will need to build

our own analysis instead.

Assumptions Let us list the following assumptions.

• Noise assumptions: (for some constants B,B1,σ,ξ)

(N1) |Y |6 B1,

(N2) supx∈X E(Y |X = x)6 B,

(N3) supx∈X V(Y |X = x)6 σ2,

(N4) ∀k > 3 supx∈X E(|Y |k|X = x)6 σ2k!ξk−2 .

• Moment assumptions: (for some constants σ,a,M)

(M1) supx∈X E([Y −g⋆Θ(X)]2|X = x)6 σ2,

(M2) supx∈X E(exp[a|Y −g⋆Θ(X)|]|X = x)6 M,

(M3) ∃g0 ∈ GΘ supx∈X E(exp[a|Y −g0(X)|]|X = x)6 M .

• Function space assumptions for G : (for some constant D)

(G1) supg1,g2∈GΘ
‖g1 −g2‖∞ 6 D,

(G2) ∃g0 ∈ GΘ, known, such that ‖g0 −g⋆Θ‖∞ 6 D .

• Dictionary assumptions:

(D1) L = max
16p6P

‖ψp‖∞ < ∞,

(D2) L = supx∈X ‖ψ(x)‖2 < ∞,

(D3) esssup‖ψ(X)‖2 6 L,

(D4) L = inf
{ψ′

p}p6P

sup
θ∈Rd−{0}

‖∑P
p=1 θpψ′

p‖∞

‖θ‖∞
< ∞ where the infimum is over all orthonormal ba-

sis of G w.r.t. to L2,PX (X ;R) .

• Orthogonality assumptions:

(O1) {ψp}p6P is an orthonormal basis of G w.r.t. to L2,PX (X ;R),
(O2) det(Ψ)> 0 , where Ψ = E(ψ(X)ψ(X)T ) is the Gram matrix.

• Parameter space assumptions:

(P1) supθ∈Θ ‖θ‖∞ < ∞,

(P2) ‖θ⋆‖1 6 S where θ⋆ is such that gθ⋆ = g⋆Θ and S is known,

(P3) supθ∈Θ ‖θ‖2 6 1 .
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Theorem 10 (Györfi et al. 2002) Let Θ = R
P. Under assumption (N2) and (N3), the truncated

estimator ĝL = TL(ĝ
ols) satisfies

ER(ĝL)−R( f (reg))6 8[R(g∗)−R( f (reg))]+κ
(σ2 ∨B2)P log(N)

N
,

where κ is some numerical constant and f (reg)(x)
def
= E(Y |X = x).

Theorem 11 (Catoni 2004) Let Θ ⊂ R
P. Under assumption (M3), (G1) and (O2), there exists

constants C1,C2 > 0 (depending only on a, M and D) such that with probability 1−δ, provided that

{
g ∈ G ; RN(g)6 RN(ĝ

ols)+C1

P

N

}
⊂ GΘ ,

then the ordinary least squares estimate satisfies

R(ĝols)−R(g⋆Θ)6C2

P+ log(δ−1)+ log( detΨ̂
detΨ)

N
,

where Ψ̂ = 1
N ∑N

i=1 ψ(Xi)ψ(Xi)
T is the empirical Gram matrix.

Theorem 12 (Audibert and Catoni 2010 from Alquier 2008) Let Θ=R
P. Under assumption (N1)

and (G2), there exists a randomized estimate ĝ that only depends on g0,L,C, such that for all δ > 0,

with probability larger than 1−δ w.r.t. all sources of randomness,

R(ĝ)−R(g⋆)6 κ(B2
1 +D2)

P log(3ν−1
min)+ log(log(N)δ−1)

N
,

where κ does not depend on P and N, and νmin is the smallest eigenvalue of Ψ.

Theorem 13 (Koltchinskii 2006) Let Θ ⊂ R
P. Under assumption (N1), (D3) and (P3), ĝerm satis-

fies, for any δ > 0 with probability higher than 1−δ,

R(ĝerm)−R(g⋆Θ)6 κ(B1 +L)2 rank(Ψ)+ log(δ−1)

N
,

where κ is some constant.

Theorem 14 (Birgé and Massart 1998) Let Θ ⊂ R
P. Under assumption (M3), (G1) and (D4), for

all δ > 0 with probability higher than 1−δ,

R(ĝerm)−R(g⋆Θ)6 κ(a−2 +D2)
P log(2+(L2/N)∧ (N/P))+ log(δ−1)

N
,

where κ is some constant depending only on M.

Theorem 15 (Tsybakov 2003) Let Θ = R
P. Under assumption (N2), (N3) and (O1), the projection

estimate ĝpro j satisfies

E(R(ĝpro j))−R(g⋆)6
(σ2 +B2)P

N
.
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Theorem 16 (Caponnetto and De Vito 2007) Under assumption (M2) and (D2), for all δ > 0 for

λ = PL2 log2(δ−1)/N 6 νmin, with probability higher than 1−δ,

R(ĝridge)−R(g⋆Θ)6 κ(a−2 +
λL2‖θ⋆‖2 log2(δ−1)

νmin

)
P log2(δ−1)

N
,

where κ is some constant depending only on M.

Theorem 17 (Alquier and Lounici 2011) Let Θ=R
P and define for all α∈ (0,1) the prior πα(J)=

α|J|

∑N
i=0 αi

(
P
|J|
)−1

for all J ⊂ 2P. Under assumption (N2),(N3), (N4), (D1) and (P2), by setting λ = N
2C

where

C
def
= max{64σ2 +(2B+L(2S+

1

N
))2,64[ξ+2B+L(2S+

1

N
)]L(2S+

1

N
)} ,

the randomized aggregate estimator ĝ defined in Alquier and Lounici (2011) based on prior πα

satisfies, for any δ > 0 with probability higher than 1−δ,

R(ĝ)−R(g⋆Θ)6C
S⋆ log( (S+c)eNP

αS⋆
)+ log(2δ−1/(1−α))

N
+

3L2

N2
,

where S⋆ = ‖θ⋆‖0.

Theorem 18 (Audibert and Catoni 2010) Let Θ ⊂ R
P. Under assumption (M1), (G1) and (P1) so

that one can define the uniform probability distribution over Θ, there exists a random estimator ĝ

(drawn according to a Gibbs distribution π̂) that satisfies, with probability higher than 1− δ w.r.t.

all source of randomness,

R(ĝ)−R(g⋆Θ)6 (2σ+D)2 16.6P+12.5log(2δ−1)

N
.

Note that Theorem 10 and Theorem 15 provide a result in expectation only, which is not enough

for our purpose, since we need high probability bounds on the excess risk in order to be able to

handle the randomness of the space GP.

Assumptions satisfied by the random space GP

We now discuss the assumptions that are satisfied in our setting where G is a random space GP

built from the random features {ψp}p6P, in terms of assumptions on the underlying initial space F .

• The noise assumptions (N) do not concern G .

• The moment assumptions (M) are not restrictive. By combining similar assumptions on F ,

the results on approximation error of Section 4.3 can be shown to hold (with different con-

stants).

• Assumptions (P) are generally too strong. For (P1), the reason is that there is no high prob-

ability link between ‖Aα‖∞ and ‖α‖ for usual norms. Now even if α⋆ is sparse or has low

l1-norm, this does not imply this is the case for β⋆ = argminβ∈RP R(gβ) or Aα⋆ in general, thus

(P2) cannot be assumed either. Finally (P3) may be assumed in some cases: Let us assume

that we know that ‖α⋆‖2 6 1. Then ‖Aα⋆‖2 6 1+ε with high probability, thus it is enough to

consider the space GP(Θ) with parameter space Θ = {β;‖β‖2 6 (1+ ε)}, and thus Aα⋆ ∈ Θ

with high probability.
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• Assumptions (G) are strong assumptions. The reason is that it is difficult to relate the vector

coefficient β⋆ or even Aα⋆ to the vector coefficient α⋆ of f ⋆ = fα⋆ in l∞ norm. Thus even if

we know some f0 close to f ⋆ in ℓ∞-norm, this does not imply that we can build a function g0

close to g⋆ = gβ⋆ .

• Assumptions (D) will not be valid a.s. w.r.t. the law of the Gaussian variables. The assump-

tions (D1) and (D4) are difficult to satisfy since they concern ‖.‖∞. For assumption (D2) and

(D3), we have the property that for each x, ‖ψ(x)‖2
2 is close to ‖ϕ(x)‖2

2 with high probability.

However, we need here a uniform result over x ∈ X which seems difficult to get since the

space F is actually big (not of finite dimension).

• Assumptions (O), which are typically strong assumptions for specific features ϕ appear to be

almost satisfied. The reason is due to the covariance structure of the random features. Indeed

whatever the distribution PX (independent of PG ), we have that 〈ψp,ψq〉 concentrates around

EPG 〈ψp,ψq〉=
1

P
‖∑

i>1

ϕi‖2
PX

δp,q ,

where δp,q is the Kronecker symbol between p and q. Thus the orthogonality assumption

is satisfied with high probability. Note that the knowledge of PX is still needed in order to

rescale the features and obtain orthonormality. Similar argument shows that (O2) is also valid.

As a consequence, only Theorems 10 and 15 would apply safely, but unfortunately these Theo-

rems do not give results in high probability.

In the next two sections, we derive similar results but in high probability with assumptions that

correspond to our setting. We provide a hand-made Theorem that makes use of the technique intro-

duced in Györfi et al. (2002) and that can be applied without too restrictive assumptions, although

not being optimal in terms of constant and logarithmic factors.

4.3 Approximation Power of Random Spaces

We assume from now on that we are in the case when f ⋆ = fα⋆ ∈ F .

Theorem 19 (Approximation error with deterministic design) For all P > 1, for all δ ∈ (0,1)
there exists an event of PG -probability higher than 1−δ such that on this event,

inf
g∈GP

‖ f ⋆−g‖2
N 6 12

log(4N/δ)

P
‖α⋆‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 .

Theorem 20 (Approximation error with random design) Under assumption (N2),
then for all P > 1, for all δ ∈ (0,1), the following bound holds with PG -probability higher than

1−δ:

inf
g∈GP

‖ f ⋆−TB(g)‖2
PX

6 25
‖α⋆‖2 supx ‖ϕ(x)‖2

P

(
1+

1

2
log

(P log(8P/γ2δ)

18γ2δ

))
,

where γ
def
= 1

B
‖α⋆‖supx ‖ϕ(x)‖ and TB is the truncation operator at level B.
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The result is not trivial because of the randomness of the space GP. Thus in order to keep

the explanation simple, the proof (detailed in the Appendix) makes use of Hoeffding’s Lemma

only, which relies on the bounded assumption of the features (which can be seen either as a nice

assumption, since it is simple and easy to check, or as a too strong assumption for some cases).

Note that this result can be further refined by making use, for instance, of moment assumptions on

the feature space instead.

4.4 Excess Risk of Random Spaces

In this section, we analyze the excess risk of the random projection method. Thus for a proposed

random estimate ĝ, we are interested in bounding R(ĝ)−R( f ⋆) in high probability with respect to

any source of randomness.

4.4.1 REGRESSION ALGORITHM

From now on we consider the estimate ĝ to be the least-squares estimate g
β̂
∈ GP that is the function

in GP with minimal empirical error, that is,

g
β̂

def
= arg min

gβ∈GP

RN(gβ), (4)

and that is the solution of a least-squares regression problem, that is, β̂ = Ψ†Y ∈ R
P with matrix-

wise notations, where Y ∈ R
N is here the vector of observations (not to be confused with the random

variable Y that shares the same notation), Ψ is the N ×P-matrix composed of the elements: Ψn,p
def
=

ψp(xn), and Ψ† is the Moore-Penrose pseudo-inverse2 of Ψ. The final prediction function ĝ(x) is

the truncation (at level ±B) of g
β̂
, that is, ĝ(x)

def
= TB[gβ̂

(x)].

In the next subsection, we provide excess risk bounds w.r.t. f ⋆ in GP.

4.4.2 REGRESSION WITH DETERMINISTIC DESIGN

Theorem 21 Under assumption (N1), then for all P > 1, for all δ ∈ (0,1) there exists an event of

PY ×PG -probability higher than 1−δ such that on this event, the excess risk of the estimator g
β̂

is

bounded as

‖ f ⋆−g
β̂
‖2

N 6
12log(8N/δ)

P
‖α⋆‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 +κB2
1

P+ log(2/δ)

N
,

for some numerical constant κ > 0.

Note that from this theorem, we deduce (without further assumptions on the features {ϕi}i>1)

that for instance for the choice P =
√

N
log(N/δ) then

‖ f ⋆−g
β̂
‖2

N 6 κ′
[
‖α⋆‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2

√
log(N/δ)

N
+

log(1/δ)

N

]
,

for some positive constant κ′. Note also that whenever an upper-bound on the square terms

‖α⋆‖2 1
N ∑N

n=1 ‖ϕ(xn)‖2 is known, this can be used in the definition of P in order to improve this

bound.

2. In the full rank case when N > P, Ψ† = (ΨT Ψ)−1ΨT .
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4.4.3 REGRESSION WITH RANDOM DESIGN

In the regression problem with random design, the analysis of the excess risk of a given method is

not straightforward, since the assumptions to apply standard techniques may not be satisfied without

further knowledge on the structure of the features. In a general case, we can use the techniques

introduced in Györfi et al. (2002), which yields to the following (not optimal) result:

Theorem 22 Under assumption (N1) and (N2), provided that N log(N) >
4
P

(thus whenever

min(N,P)> 2), then with PG ×P -probability at least 1−δ,

R(TB(gβ̂
))−R( f ⋆) 6 κ

[ log(12N/δ)

P
‖α⋆‖2 sup

x∈X
‖ϕ(x)‖2

+ max{B2
1,B

2}P+P log(N)+ log(3/δ)

N

]
,

for some positive constant κ.

Let us now provide some intuition about the proof of this result. We first start by explaining

what does not work. A natural idea in order to derive this result would be to consider the following

decomposition:

R(TB(gβ̂
))−R( f ⋆)6 [R(TB(g

⋆
B))−R( f ⋆)]+ [R(TB(gβ̂

))−R(TB(g
⋆
B))] ,

where g⋆B ∈ argmin
g∈G

R(TB(g))−R( f ⋆) .

Indeed the first term is controlled on an event ΩG of high PG -probability by Theorem 20, and

since R(g
β̂
)−R(g⋆B) 6 R(g

β̂
)−R(g⋆), the second term is controlled for each fixed ωG ∈ ΩG with

high P -probability by standard Theorems for regression, provided that we can relate R(TB(gβ̂
))−

R(TB(g
⋆
B)) to R(g

β̂
)−R(g⋆B). Thus by doing the same careful analysis of the events involved, this

should lead to the desired result.

However, the difficulty lies first in ensuring that the conditions of application of standard Theo-

rems are satisfied with high PG -probability and then in relating the excess risk of the truncated func-

tion to that of the non-truncated ones, since it is not true in general that R(TB(gβ̂
))−R(TB(g

⋆
B)) 6

R(g
β̂
)−R(g⋆B). Thus we resort to a different decomposition in order to derive our results. The sketch

of proof of Theorem 22 actually consists in applying the following lemma.

Lemma 23 The following decomposition holds for all C > 0

‖TB(gβ̂
)− f ⋆‖2

PX
6 C‖ f ⋆−gβ̃‖2

N +C‖gβ̃ −g
β̂
‖2

N

+ sup
g∈G

(
‖ f ⋆−TB(g)‖2

PX
−C‖ f ⋆−TB(g)‖2

N

)
,

where gβ̃ = Π‖.‖N
( f ⋆,G) and g

β̂
= Π‖.‖N

(Y,G) are the projections of the target function f ⋆ and

observation Y onto the random linear space G with respect to the empirical norm ‖.‖N .

We then call the first term ‖ f ⋆− gβ̃‖2
N an approximation error term, the second ‖gβ̃ − g

β̂
‖2

N a

noise error term and the third one supg∈G

(
‖ f ⋆−TB(g)‖2

PX
−C‖ f ⋆−TB(g)‖2

N

)
an estimation of the

error term.
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In order to prove Theorem 22, we then control each of these terms: We apply Lemma 19 to the

first term, Lemma 24 below to the second term and finally Theorem 11.2 of Györfi et al. (2002) to

the last term with C = 8, and the result follows by gathering all the bounds.

Let us now explain the contribution to each of the three terms in details.

Approximation error term The first term, ‖ f ⋆−gβ̃‖2
N , is an approximation error term in empirical

norm, it contains the number of projections as well as the norm of the target function. This term

plays the role of the approximation term that exists for regression with penalization by a factor

λ‖ f‖2. This term is controlled by application of Theorem 19 conditionally on the random samples,

and then w.r.t. all source of randomness by independence of the Gaussian random variables with

the random samples.

Noise error term The second term, ‖gβ̃ − g
β̂
‖2

N , is an error term due to the observation noise η.

This term classically decreases at speed Dσ2

N
where σ2 is the variance of the noise and D is related

to the log entropy of the space of function G considered. Without any more assumption, we only

know that this is a linear space of dimension P, so this term finally behaves like Pσ2

N
, but note that

this dependency with P may be improved depending on the knowledge about the functions ψ (for

instance, if G is included in a Sobolev space of order s, we would have P1/2s instead of P).

Lemma 24 Under assumption (N1), then for each realization of the Gaussian variables, with P -

probability higher than 1−δ, the following holds true:

‖gβ̃ −g
β̂
‖2

N 6 6B2
1

1616P+200log(6/δ)+ log(3/δ)

N
.

Note that we may consider different assumptions on the noise term. Here we considered only

that the noise is upper-bounded as ‖η‖∞ 6 B1, but another possible assumption is that the noise has

finite variance σ2 or that the tail of the distribution of the noise behaves nicely, for example, that

‖η‖ψα 6 B, where ψα is the Orlicz norm or order α, with α = 1 or 2.

Estimation error term The third term, supg∈GP
(‖ f ⋆ − TB(g)‖2

PX
−C‖ f ⋆ − TB(g)‖2

N), is an esti-

mation of the error term due to finiteness of the data. This term also depends on the log entropy

of the space of functions, thus the same remark applies to the dependency with P as for the noise

error term. We bound the third term by applying Theorem 11.2 of Györfi et al. (2002) to the class of

functions G0 = { f ⋆−TB(g),g ∈ GP}, for fixed random Gaussian variables. Note that for all f ∈ G0,

‖ f‖∞ 6 2B. The precise result of Györfi et al. (2002) is the following :

Theorem 25 Let F be a class of functions f : R
d → R bounded in absolute value by B. Let ε > 0.

Then

P(sup
f∈F

‖ f‖PX −2‖ f‖N > ε)6 3E(N (

√
2

24
ε,F ,‖.‖2N))exp(− Nε2

288B2
).

We now have the following lemma whose proof is given in the Appendix:

Lemma 26 Assuming that N log(N)> 4
P

, then for each realization of the Gaussian variables, with

P -probability higher than 1−δ, the following holds true:

sup
g∈GP

‖ f ⋆−TB(g)‖2
PX

−8‖ f ⋆−TB(g)‖2
N 6 (24B)2 4log(3/δ)+2P log(N)

N
.
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5. Discussion

In this section, we now provide more insights about the main results of this paper by reminding some

closely related existing works, showing some numerical illustration of the method and discussing

some numerical issues.

5.1 Non-linear Approximation

In the work of Barron et al. (2008), the authors provide excess risk bounds for greedy algorithms

(i.e., in a non-linear approximation setting). The precise result they derive in their Theorem 3.1 is

reported now, using the notations of section 4.2:

Theorem 27 (Barron et al. 2008) Consider spaces {GP}P>1 generated respectively by the span of

features {ep}p6P with increasing dimension P (thus Θ = R
P for each P). For each GP we compute

a corresponding greedy empirical estimate ĝP ∈ GP provided by some algorithm (see Barron et al.,

2008), then we define P̂ = argmin‖y−TB1
f̂P‖2

N +κ P log(N)
N

for some constant κ, and finally define

ĝ = TB1
(ĝ

P̂
), and fix some P0.

Under assumption (N1), there exists κ0 depending only on B1 and a where P0 = xNay such that

if κ > κ0, then for all P > 0 and for all functions gθ in GP0
, the estimator ĝ satisfies

ER(ĝ)−R( f (reg))6 2[R(gθ)−R( f (reg))]+8
‖θ‖2

1

P
+C

P logN

N
,

where the constant C only depends on κ, B1 and a.

The bound is thus similar to that of Theorem 22 in Section 4.4. One difference is that this bound

contains the l1 norm of the coefficients θ∗ while the ℓ2 norm of the coefficients α⋆ appears in our

setting. We leave as an open question to understand whether this difference is a consequence of the

non-linear aspect of their approximation or if it results from the different assumptions made about

the approximation spaces, in terms of rate of decrease of the coefficients.

The main difference is actually about the tractability of the proposed estimator, since the result

of Theorem 27 relies on greedy estimation that is computationally heavy while on the other hand,

random projection is cheap (see Subsection 5.4).

5.2 Adaptivity

Randomization enables to define approximation spaces such that the approximation error, either in

expectation or in high probability on the choice of the random space, is controlled, whatever the

measure P that is used to assess the performance. This is specially interesting in the regression

setting where P is unknown. As mentioned in the introduction, because the choice of the subspace

GP within which we perform the least-squares estimate is random, we avoid (with high probability)

degenerated situations where the target function f ⋆ cannot be well approximated with functions in

GP. Indeed, in methods that consider a given deterministic finite-dimensional subspace G of the big

space F (such as linear approximation using a predefined set of wavelets), it is often possible to

find a target function f ⋆ such that infg∈GP
‖ f ⋆−g‖N is large, whereas using the random projection

method, the random choice of GP implies that for any f ⋆ ∈F , the approximation error infg∈GP
‖ f ⋆−

g‖N can be controlled (by the first term of the bound (2)) in high probability. We now illustrate this

property on a simple example.
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Example Let us consider a very peaky (a spot) distribution P . Regular linear approximation,

say with wavelets (see, e.g., DeVore, 1997), will most probably miss the specific characteristics

of f ⋆ at the spot, since the first wavelets have large support. On the contrary, the random features

{ψp}p6P that are functions that contain (random combinations of) all wavelets, will be able to detect

correlations between the data and some high frequency wavelets, and thus discover relevant features

of f ⋆ at the spot. This is illustrated in the numerical experiment below.

Here P is a very peaky Gaussian distribution and f ⋆ is a 1-dimensional periodic function. We

consider as initial features {ϕi}i>1 the set of hat functions defined in Section 3.2.2. Figure 3 shows

the target function f ⋆, the distribution P , and the data (xn,yn)16n6100 (left plots). The middle

plots represents the least-squares estimate ĝ using P = 40 scrambled objects {ψp}16p640 that are

here Brownian motions. The right plots shows the least-squares estimate using the initial features

{ϕi}16i640. The top figures represent a high level view of the whole domain [0,1]. No method is

able to learn f ⋆ on the whole space (this is normal since the available data are only generated from

a peaky distribution). The bottom figures shows a zoom [0.45,0.51] around the data. Least-squares

regression using scrambled objects is able to learn the structure of f ⋆ in terms of the measure P ,

while least-squares regression with the initial features completely fails.

5.3 Other Related Work

In Rahimi and Recht (2008, 2007), the authors consider, for a given parameterized function Φ :

X ×Θ → R bounded by 1, and a probability measure µ over Θ, the space F of functions f (x) =∫
Θ α(θ)Φ(x,θ)dθ such that ‖ f‖µ = supθ |α(θ)

µ(θ) | < ∞. They show that this is a dense subset of the

RKHS with kernel k(x,y) =
∫

Θ µ(θ)Φ(x,θ)Φ(y,θ)dθ, and that if f ∈ F , then with high probability

over {θp}p6P
i.i.d∼ µ, there exist coefficients {cp}p6P such that f̂ (x) = ∑P

p=1 cpΦ(x,θp) satisfies ‖ f̂ −
f‖2

2 6 O(
‖ f‖µ√

P
). The method is analogous to the construction of the empirical estimates gAα ∈ GP of

function fα ∈K in our setting. Indeed we may formally identify Φ(x,θp) with ψp(x) =∑i Ap,iϕi(x),
θp with the sequence (Ap,i)i, and the distribution µ with the distribution of this infinite sequence.

However, in our setting we do not require the condition supx,θ Φ(x,θ)6 1 to hold and the fact that Θ

is a set of infinite sequences makes the identification tedious without the Gaussian random functions

theory used here. Anyway, we believe that this link provides a better mutual understanding of both

approaches (i.e., Rahimi and Recht 2008 and this paper).

5.4 Tractability

In practice, in order to build the least-squares estimate, one needs to compute the values of the

random features {ψp}16p6P at the data points {xn}16n6N , that is, the matrix Ψ = (ψp(xn))p6P,n6N .

Moreover, due to finite memory and precision of computers, numerical implementations can only

handle a finite number F of initial features {ϕi}16i6F .

Approximation error Using a finite F introduces an additional approximation (squared) error term

in the final excess risk bounds. This additional error that is due to the numerical approximation is

of order O(F− 2s
d ) for a wavelet basis adapted to Hs([0,1]d) and can be made arbitrarily small, for

example, o(N−1/2), whenever the depth of the wavelet dyadic-tree is bigger than
logN

d
. Our main

concern is thus about efficient computation.

2758



LINEAR REGRESSION WITH RANDOM PROJECTIONS

Figure 3: Least squares estimates of f ⋆, using N = 100 data generated from a peaky distribution P
(dashed line in top plots), using 40 Brownian motions {ψp} (middle plots) and using 40

hat functions {ϕi} (bottom plots). The target function f ⋆ is plotted with thick line while

the two estimates are plotted with thin line. The right column shows a zoom around the

data.
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Numerical complexity In Maillard and Munos (2009) it was mentioned that the computation of

Ψ, which makes use of the random matrix A = (Ap,i)p6P,i6F , has a complexity O(FPN).

In the multi-resolution schemes described now, provided that the mother function has compact

support (such as the hat functions), we can significantly speed up the computation of the matrix

Ψ by resorting to a tree-based lazy expansion, that is, where the expansion of the random features

{ψp}p6P is built only when needed for the evaluation at the points {xn}n. Note that in the specific

case of wavelets, we can even think to combine random projection with tools like fast wavelet trans-

form which would be even faster (which we do not do here for simplicity and generality purpose).

Example: Consider the example of the scrambled wavelets. In dimension 1, using a wavelet

dyadic-tree of depth H (i.e., F = 2H+1), the numerical cost for computing Ψ is O(HPN) (using one

tree per random feature). Now, in dimension d the classical extension of one-dimensional wavelets

uses a family of 2d − 1 wavelets, thus requires 2d − 1 trees each one having 2dH nodes. While the

resulting number of initial features F is of order 2d(H+1), thanks to the lazy evaluation (notice that

one never computes all the initial features), one needs to expand at most one path of length H per

training point, and the resulting complexity to compute Ψ is O(2dHPN). Thus the method is linear

with N and reduces the amount of computation by an exponential factor (from 2dH to 2dH).

Note that one may alternatively use the so-called sparse-grids instead of wavelet trees, which

have been introduced by Griebel and Zenger (see Zenger, 1990; Bungartz and Griebel, 2004). The

main result is that one can reduce significantly the total number of features to F = O(2HHd) (while

preserving a good approximation for sufficiently smooth functions). Similar lazy evaluation tech-

niques can be applied to sparse-grids.

Thus, using P = O(
√

N) random features, we deduce that the complexity of building the matrix

Ψ is at most O(2dN3/2 logN). Then in order to solve the least squares system, one has to compute

ΨT Ψ, that has cost at most O(P2N), and then solve the system by inversion, which has numerical

cost O(P2.376) by Coppersmith and Winograd (1987). Thus, with P=O(
√

N), the overall cost of the

algorithm is at most O(2dN3/2 logN+N2), without using any fancy computations designed for ran-

dom matrices, and the numerical complexity to make a new prediction is at most O(2dN1/2 log(N)).
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Appendix A. Technical Details

In this technical section we gathered the proofs of the important Lemmas and of the main Theo-

rems 19, 20, 21 and 22.
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A.1 Proof of Lemma 9

Proof Step 1. First, we derive a result similar to Lemma 7 that holds for dot products, by polarisation

of the Euclidean norm. The precise statement for our purpose is the following one.

Lemma 28 Let A be a P×F matrix of i.i.d. elements drawn from one of the previously defined

distributions. Let (un)16n6N and v be N +1 vectors of R
F .

Then for any ε ∈ (0,1), with probability at least 1− 4Ne−P(ε2/4−ε3/6), simultaneoulsy for all

n 6 N,

|Aun ·Av−un · v|6 ε‖un‖‖v‖ .

We apply Lemma 7 to any couple of vectors u+w and u−w, where u and w are vectors of norm 1.

By polarisation, we have that

4Au ·Aw = ‖Au+Aw‖2 −‖Au−Aw‖2

6 (1+ ε)‖u+w‖2 − (1− ε)‖u−w‖2

= 4u ·w+ ε(‖u+w‖2 +‖u−w‖2)

= 4u ·w+2ε(‖u‖2 +‖w‖2) = 4u ·w+4ε ,

fails with probability 2e−P(ε2/4−ε3/6) (we applied the previous lemma twice at line 2).

Thus for each n 6 N, we have with same probability:

Aun ·Av 6 un · v+ ε‖un‖‖v‖.

Now the symmetric inequality holds with the same probability, and using a union bound for consid-

ering all (un)n6N , we have that

|Aun ·Av−un · v|6 ε‖un‖‖v‖,

holds for all n 6 N, with probability 1−4Ne−P(ε2/4−ε3/6).

Step 2. We now extend this Lemma to the case of infinite sequences. This is made possible thanks

to the measurability properties of Gaussian Objects. Indeed, for any given F , Lemma 28 applies to

the two truncated sequences αF = (α1, . . . ,αF) and ϕF(xn) = (ϕ1(xn), . . . ,ϕF(xn)); this gives that

for all n simultaneoulsy,

|
F

∑
i=1

αiϕi(xn)−
1

P

P

∑
p=1

( F

∑
i=1

ξi,pαi

)( F

∑
i=1

ξi,pϕi(xn)
)
|6 ε‖αF‖‖ϕF(xn)‖ ,

happens with probability higher than 1− 4Ne−P(ε2/4−ε3/6), where we introduced ξi,p
def
=

√
PAi,p ∼

N (0,1) in order to avoid confusion with the section on Gaussian objects. Now by the assumption

that α ∈ ℓ2(R) and ϕ(x) ∈ ℓ2(R) for all x, then the Gaussian objects ∑∞
i=1 ξi,pαi and ∑∞

i=1 ξi,pϕi(xn)
are well-defined square integrable random variables. Thus, taking the limit of the above inequality

when F tends to ∞ yields that with same probability, for all n 6 N

| fα(xn)−gAα(xn)| 6 ε‖α‖‖ϕ(xn)‖ .
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A.2 Proof of Lemma 24

Proof We can bound the noise term ‖gβ̃ − g
β̂
‖2

N using a simple Chernoff bound together with a

chaining argument. Indeed, by definition of gβ̃ and g
β̂
, if we introduce the noise vector η defined by

η = Y − f , we have

‖gβ̃ −g
β̂
‖2

N = 〈gβ̃ −g
β̂
,η〉N

=
1

N

N

∑
i=1

ηi(gβ̃ −g
β̂
)(Xi)

6

(
sup
g∈G

1
N ∑N

i=1 ηig(Xi)

‖g‖N

)
‖gβ̃ −g

β̂
‖N

6

(
sup
g∈G

1
N ∑N

i=1 ηig(Xi)

‖g‖N

)2

.

Thus, we focus on the set G1 = {g ∈ G ;‖g‖N = 1}. Note that since G1 is a sphere in a space

of dimension P, its ε-packing number in empirical norm is bounded above by M (ε,G1,‖.‖N) 6
N (ε/2,G1,‖.‖N) 6 N (ε/2,{g ∈ G ;‖g‖N 6 1},‖.‖N) 6 ( 4

ε + 1)P 6 max( 5
ε ,5)

P, where N refers

here to the covering number.

We now introduce for convenience the following notation, for fixed Gaussian random variables

and data points (Xi)i=1..n:

ρ(t)
def
= PY

(
∃g ∈ G

1
N ∑N

i=1 ηig(Xi)

‖g‖N

> t
)

= PY

(
∃g ∈ G1 1

N

N

∑
i=1

ηig(Xi)> t
)
.

For j = 0...∞, let us consider ε j-packings C j of G1 for the empirical norm ‖.‖N , with C0 = g0,

such that C j+1 is a refinement of C j and ε j 6 ε j−1. Then for a given g ∈ G1, we define g j = Π(g,C j)

the projection of g into C j, for the norm ‖g‖N . Thus, g−g0 = (g−gJ)+
J

∑
j=1

(g j −g j−1). Note that

since by definition of G1 we have ‖g−g0‖N 6 2, we need to consider ε0 > 2.

Thus if we now introduce real numbers γ and (γ j) j>1 such that
J

∑
j=1

γ j 6 γ, then we have

ρ(γt1 + t2 + t3) 6 P

(
∃g ∈ G1 1

N

N

∑
i=1

ηi(g−g0)(Xi)> γt1 + t2

)
+exp(− t2

3 N

2B2
1

)

6 P

(
g ∈ ∃G1 1

N

N

∑
i=1

ηi(g−gJ)(Xi)+

J

∑
j=1

1

N

N

∑
i=1

ηi(g j −g j−1)(Xi)>
J

∑
j=1

γ jt1 + t2

)
+exp(− t2

3 N

2B2
1

) ,

where we applied Hoeffding’s inequality in the first line. We further have:

2762



LINEAR REGRESSION WITH RANDOM PROJECTIONS

ρ(γt1 + t2 + t3) 6

J

∑
j=1

P

(
∃g ∈ G1 1

N

N

∑
i=1

ηi(g j −g j−1)(Xi)> t1γ j

)

+exp(− t2
2 N

2B2
1ε2

J

)+ exp(−t2
3 N2B2

1)

6 E

J

∑
j=1

M jM j−1P

( 1

N

N

∑
i=1

ηi(g j −g j−1)(Xi)> t1γ j

)

+exp(− t2
2 N

2B2
1ε2

J

)+ exp(− t2
3 N

2B2
1

) ,

where we introduced for convenience the notation M j
def
= M (ε j,G1,‖.‖N). Now, note that since

ε j 6 ε j−1, then M j−1 6 M j. Note also that ‖g j − g j−1‖N 6 η j since C j is a refinement of C j−1.

Finally, we can bound the packing number by M j 6 N j = max( 5
ε j
,5)P where P is the dimension of

G . Thus we deduce that:

ρ(γt1 + t2 + t3) 6

J

∑
j=1

N2
j exp(−

t2
1 Nγ2

j

2B2
1ε2

j

)+ exp(− t2N

2B2
1ε2

J

)+ exp(− t2
3 N

2B2
1

).

Now, we define γ j =
2ε jB1

t1

√
2log(N j)

N
, t2 = B1εJ

√
2log(1/δ2)

N
and t3 = B1

√
2log(1/δ3)

N
, for some δ2,δ3 ∈

(0,1]. Thus, we get:

ρ(ηt1 + t2 + t3) 6

J

∑
j=1

1

N2
j

+δ2 +δ3.

Thus, it remains to define ε j. Since N j = max( 5
ε j
,5)P, we define the covering radius ε j to be ε j =

2− j5δ
1/2P

1 (22P − 1)1/2P for some δ1 ∈ (0,1], which entails that ∑J
j=1

1
N2

j

6 δ1. Now since ε j → 0

when j → ∞, we can make the sum goes to infinity. We deduce that:

ρ(γt1 +B1

√
2log(1/δ3)

N
)6 δ1 +δ2 +δ3.
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Now, in order to bound the term γt1 + t2 + t3,we look at the following term:

γt1 = 2
∞

∑
j=1

ε jB1

√
2log(N j)

N

6
20B1√

N

∞

∑
j=1

2− j
√

2 jP log(2)+ log(1/δ1)− log(22P −1)

6
20B1√

N

∞

∑
j=1

2− j
√

2( j−1)P log(2)+ log(2/δ1)

6
20B1√

N

( ∞

∑
j=1

2− j
√

2( j−1)P log(2)+
√

log(2/δ1)
)

6
20B1√

N

(
(1+

√
2)
√

2P log(2)+
√

log(2/δ1)
)
.

where we use the fact that ∑∞
j=1 2− j 6 1, and that ∑∞

j=1 2− j
√

( j−1)6 1+
√

2.

Using the inequalities
√

a+
√

b+
√

c 6
√

3(a+b+ c), we thus deduce the following bound:

γt1 + t2 + t3 6
B1√

N

(
20(1+

√
2)
√

2P log(2)+20
√

log(2/δ1)+
√

2log(1/δ3)
)

6

√
6B1√
N

√
400log(2)(1+

√
2)2P+200log(2/δ1)+ log(1/δ3).

Thus, by setting δ1 = δ2 = δ3 = δ/3, we deduce that with P -probability higher than 1−δ,

sup
g∈GP

1
N ∑N

i=1 εig(Xi)

‖g‖N

6
B1

√
6√

N

√
400log(2)(1+

√
2)2P+200log(6/δ)+ log(3/δ) .

A.3 Proof of Lemma 26

Proof Indeed, let us introduce the space of functions G0 = { f ⋆−TB(g),g ∈ GP}. Then we have for

g ∈ G0, ‖g‖N 6 ‖g‖∞ 6 2B. Thus Theorem 11.2 of Györfi et al. (2002) gives the following bound:

P( sup
g∈GP

‖ f ⋆−TB(g)‖PX −2‖ f ⋆−TB(g)‖N > ε)6 3E(N (

√
2

24
ε,G0,‖.‖2N))exp

(
− Nε2

288(2B)2

)
.

Then, since G0 = f ⋆+TB(GP), we bound the entropy number by:

N (

√
2

24
ε,G0,‖.‖2N)6 N (

√
2

24
ε,TB(GP),‖.‖2N)6 (

2(2B).24√
2ε

+1)P.

Thus we deduce that if ε > 24.4B√
2

u, then with probability higher than 1−δ w.r.t P, for fixed random

Gaussian variables,

sup
g∈GP

‖ f ⋆−TB(g)‖PX −2‖ f ⋆−TB(g)‖N 6 ε = 24B

√
log(3/δ)+P log(

1

u
+1)

√
2

N
.
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Thus,we consider u = 1
N−1

, and deduce that, provided that N log(N)> 4
P

, then with probability

higher than 1−δ w.r.t P, for fixed random Gaussian variables (i.e., conditionally on them),

sup
g∈GP

‖ f ⋆−TB(g)‖PX −2‖ f ⋆−TB(g)‖N 6 24B

√
2log(3/δ)+P log(N)

N
.

Thus, we deduce that on this event, for all g ∈ GP

‖ f ⋆−TB(g)‖2
PX

6 (2‖ f ⋆−TB(g)‖N +24B

√
2log(3/δ)+P log(N)

N
)2

6 8‖ f ⋆−TB(g)‖2
N +(24B)2 4log(3/δ)+2P log(N)

N
.

This gives the following upper bound, that holds with probability higher than 1−δ:

sup
g∈GP

‖ f ⋆−TB(g)‖2
PX

−8‖ f ⋆−TB(g)‖2
N 6 (24B)2 4log(3/δ)+2P log(N)

N
.

A.4 Proof of Theorem 19

Proof Since by assumption f ⋆ = fα⋆ for some α⋆, we have by direct application of Lemma 9

inf
g∈G

‖ f ⋆−g‖2
N 6 ‖ fα⋆ −gAα⋆‖2

N .

Now let us define for some N > 1 the quantity ε = εN(δ) that appears in Lemma 9, such that

log(4N/δ)

P
=

ε2

4
− ε3

6
.

Thus, since ε ∈ (0,1), this means in particular that we have

ε2

3
6 4

log(4N/δ)

P
6 ε2 .

A.5 Proof of Theorem 20

Proof By assumption, we consider that f ⋆ ∈ F . Thus there exists a sequence α⋆ ∈ R
N such that

one can write:

f ⋆ = fα⋆ = ∑
i>1

α⋆
i ϕi ,

Thus we consider in the sequel one such α⋆. This enables to derive the following upper bound:

inf
g∈G

‖ f ⋆−TL(g)‖2
PX

6 ‖ fα∗ −TL(gAα∗)‖2
PX
.

where we applied the gaussian operator A to the sequence α⋆.
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Step 1. Applying Johnson-Lindenstrauss’ Lemma. Let us introduce m ghost samples (X ′
j) j6m

i.i.d. according to PX , and thus consider the following associated norm

‖ fα∗ −TL(gAα∗)‖2
m =

1

m

m

∑
j=1

( fα∗ −TL(gAα∗))2(X ′
j) .

We now make explicit the probability spaces corresponding to the different sources of random-

ness. Consider the probability space defined over the product sample space ΩX ×ΩG , where ΩX

consists of all the possible realizations of J states X ′
1, . . . ,X

′
m drawn i.i.d. from PX , and ΩG is the set

of all possible realizations of the random elements (Ap,i)16p6P,i>1 (which define the random feature

space GP).

Let us fix some ωG ∈ ΩG (which defines the random subspace GP(ωG )). Since for all j, we

have that ( fα∗ −TL(gAα∗))2(X ′
j) ∈ [0,4L2] PX -a.s., then Hoeffding’s inequality applies; we deduce

that there exists an event ΩX (ωG ) of PX -probability higher than 1−δX such that on this event

‖ fα∗ −TL(gAα∗)‖2
PX

6 ‖ fα∗ −TL(gAα∗)‖2
m +(2L)2

√
log(1/δ)

2m
.

Now by independence between the Gaussian random variables and the sample, the same in-

equality is valid on the event

Ω1 = {ωX ×ωG ;ωG ∈ ΩG ,ωX ∈ ΩX (ωG )} ,

and this event has PX ×PG -probability higher than 1−δX .

In order to bound the first term of the right hand side of this inequality, we first notice that since

‖ fα∗‖∞ 6 L, then

‖ fα∗ −TL(gAα∗)‖2
m 6 ‖ fα∗ −gAα∗‖2

m ,

then for some fixed ωX ∈ ΩX , that last term is bounded by ε2‖α⋆‖2 supx ‖ϕ(x)‖2 on an event

ΩG (ωX ) of PG -probability higher than 1−4me−P(ε2/4−ε3/6) by application of Lemma 9.

Thus still by independence, the same inequality is valid on the event

Ω2 = {(ωX ,ωG);ωX ∈ ΩX ,ωG ∈ ΩG (ωX )} ,

and this event has PX ×PG -probability higher than 1−4me−P(ε2/4−ε3/6).

Thus, we deduce, by a union bound that for all ε ∈ (0,1) and m > 1 there exists an event Ω1∩Ω2

of PX ×PG -probability higher than 1−δX −4me−P(ε2/4−ε3/6) such that on this event,

inf
g∈G

‖ f ⋆−TL(g)‖2
PX

6 ε2‖α⋆‖2 sup
x

‖ϕ(x)‖2 +(2L)2

√
log(1/δ)

2m
.

Finally in order to get a bound in high PG -probability only, we introduce for any ωG ∈ ΩG the

event Ω′
X (ωG )

def
= {ωX ∈ ΩX ;(ωX ,ωG) ∈ Ω1 ×Ω2} and then define for all λ > 0 the event

Λ
def
= {ωG ∈ ΩG ;PX (Ω

′
X (ωG ))> 1−λ} .
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Using this notation, we deduce that for all ωG ∈ Λ, the following bound holds

inf
g∈GP(ωG )

‖ f ⋆−TL(g)‖2
PX

6

∫
Ω′

X (ωG )
inf

g∈GP(ωG )
‖ f ⋆−TL(g)‖2

PX
dωX

+
∫

Ω′
X (ωG )c

inf
g∈GP(ωG )

‖ f ⋆−TL(g)‖2
PX

dωX

6 ε2‖α⋆‖2 sup
x

‖ϕ(x)‖2 +(2L)2

√
log(1/δ)

2m
+(2L)2λ .

Moreover, since PX×G (Ω1 ∩Ω2)> 1−δX −4me−P(ε2/4−ε3/6) and on the other side

PX×G (Ω1 ∩Ω2) =
∫

ΩG

PX (Ω
′
X (ωG ))dωG

6

∫
ΩG

IPX (Ω
′
X (ωG ))>1−λdωG +(1−λ)

∫
ΩG

IPX (Ω
′
X (ωG ))<1−λdωG

6 PG (Λ)+(1−λ)(1−PG(Λ)) ,

then we deduce that PG (Λ))> 1− δX +4me−P(ε2/4−ε3/6)

λ .

Step 2. Tuning the parameters ε. Now let us introduce δG and define for some m > 1 the quantity

ε = εm(δG ) such that

log(4m/δG)

P
=

ε2

4
− ε3

6
.

Thus, since ε ∈ (0,1), this means in particular that we have

ε2

3
6 4

log(4m/δG )

P
6 ε2 .

Now by rewriting the bound using δ =
δX +δG

λ , we deduce that for all δ, for all m and λ, there

exists an event of PG -probability higher than 1−δ such that

inf
g∈G

‖ f ⋆−TL(g)‖2
PX

6 12
log( 8m

λδ )

P
‖α⋆‖2 sup

x

‖ϕ(x)‖2 +(2L)2
(
√

log( 2
λδ)

2m
+λ

)
.

Step 3. Optimizing over λ and m. Now, it remains to optimize the free parameter m and λ in this

last bound; the optimal value for m is given by

mopt =
P2L4 log( 2

λδ)

72‖α‖4 supx ‖ϕ(x)‖4
,

and the corresponding bound is thus

inf
g∈G

‖ f ⋆−TL(g)‖2
PX

6 24
‖α⋆‖2 supx ‖ϕ(x)‖2

P

(
1+ log

(PL2
√

log(2/λδ)/λδ

3‖α⋆‖2 supx ‖ϕ(x)‖2

))
+(2L)2λ .

Now one can take λ
def
=

‖α⋆‖2 supx ‖ϕ(x)‖2

(2L)2P
and deduce the final bound.
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A.6 Proof of Theorem 21

Proof We make use of the following decomposition:

‖ f ⋆−g
β̂
‖2

N 6 ‖ f ⋆−gβ̃‖2
N +‖gβ̃ −g

β̂
‖2

N ,

and introduce the sets ΩG that consists of all possible realizations of the random elements

(Ap,i)16p6P,i>1, and ΩY that corresponds to the observation variables Y .

High PY ×PG -probability bound. We again make explicit the probability spaces. For the first

term on right hand side, an application of Theorem 19 ensures that there exists an event Ω′
G ⊂ ΩG

of PG -probability higher than 1−δ such that for all ωG ∈ Ω′
G ,

‖ f ⋆−gβ̃‖2
N 6 12

log(4N/δ)

P
‖α⋆‖2 1

N

N

∑
n=1

‖ϕ(xn)‖2 .

Since no random variable Y appears in this term, this is also true on the event

Ω1
def
= {(ωY ,ωG) ∈ ΩY ×ΩG ;ωG ∈ Ω′

G} ,

and Ω1 has PY ×PG -probability higher than 1−δ.

For the second term, let us fix some ωG ∈ ΩG . Then Lemma 24 below shows that there exists

an event ΩY (ωG )⊂ ΩG of PY -probability higher than 1−δ′ such that for all ωY ∈ ΩY (ωG ),

‖gβ̃ −g
β̂
‖2

N 6 κB2 P+ log(1/δ′)
N

,

for some numerical constant κ > 0. Thus by independence of the noise term with the Gaussian

variables, we deduce that a similar bound holds on the event

Ω2
def
= {(ωY ,ωG ) ∈ ΩY ×ΩG ;ωY ∈ ΩY (ωG )} ,

and that Ω2 has PY ×PG -probability higher than 1−δ′. Thus, we conclude by a simple union bound

in order te get a result in high PY ×PG -probability.

A.7 Proof of Theorem 22

Proof

Similarly to the proof of Theorem 20, we introduce the sets ΩX ,Ωη and ΩG that consist of

all possible realizations of the input, noise and Gaussian random variables. We then define Ω
def
=

ΩX ×Ωη ×ΩG .

Step 1. High P ×PG -probability bound. In order to get a high probability bound, we use the

decomposition given by Lemma 23. Now let us consider some fixed ωG ∈ ΩG . One can apply

Lemma 24 and Lemma 26 below for the noise and estimation term.

Thus when N log(N)> 4
P

, there exists an event Ω1(ωG ) of P -probability higher than 1−δ1 and

an event Ω2(ωG ) of P -probability higher than 1−δ2 such that for all (ωX ,ωη) ∈ Ω1(ωG ) we have

‖gβ̃ −g
β̂
‖2

N 6 6B2 (1616P+200log(6/δ)+ log(3/δ))

N
,
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and for all (ωX ,ωη) ∈ Ω2(ωG ) we have

sup
g∈GP

‖ f ⋆−TL(g)‖2
PX

−8‖ f ⋆−TL(g)‖2
N 6 (24L)2 4log(3/δ)+2P log(N)

N
.

On the other hand, by application of Theorem 19, for any given (ωX ,ωη), there exists an event

ΩG (ωX ,ωη)⊂ ΩG of PG -probability higher than 1−δ3 such that on this event

‖ f ⋆−gβ̃‖2
N 6 12

log(4N/δ3)

P
‖α⋆‖2 sup

x∈X
‖ϕ(x)‖2 .

Thus by independence of the noise, data points and Gaussian variables, the three previous in-

equalities are valid respectively on the events

Ω1 = {(ωX ,ωη,ωG) ∈ Ω;(ωX ,ωη) ∈ Ω1(ωG )} ,
Ω2 = {(ωX ,ωη,ωG) ∈ Ω;(ωX ,ωη) ∈ Ω2(ωG )} ,

Ω3 = {(ωX ,ωη,ωG ) ∈ Ω;ωG ∈ ΩG (ωX )} .

Moreover Ω1 has P ×PG -probability higher than 1− δ1, Ω2 has P ×PG -probability higher than

1− δ2, and Ω1 has P ×PG -probability higher than 1− δ3. We thus conclude by a simple union

bound, and then by some cosmetic simplifications introducing some constant κ.
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