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Abstract—We study localized waves in chains of oscil-

lators coupled by Hertzian interactions and trapped in local

potentials. This problem is originally motivated by New-

ton’s cradle, a mechanical system consisting of a chain of

touching beads subject to gravity and attached to inelastic

strings. We consider an unusual setting with local oscil-

lations and collisions acting on similar time scales, a sit-

uation corresponding e.g. to a modified Newton’s cradle

with beads mounted on stiff cantilevers. Such systems sup-

port static and traveling breathers with unusual properties,

including double exponential spatial decay, almost van-

ishing Peierls-Nabarro barrier and spontaneous direction-

reversing motion. We prove analytically the existence of

surface modes and static breathers for anharmonic on-site

potentials and weak Hertzian interactions.

Granular media are known to display a rich dynami-

cal behavior originating from their complex spatial struc-

ture and different sources of nonlinearity (Hertzian con-

tact interactions between grains, friction, plasticity). In

the case of granular crystals (i.e. for grains organized on

a lattice), nonlinear contact interactions lead to different

types of localized wave phenomena that could be poten-

tially used for the design of smart materials such as acous-

tic diodes [1]. Among the most studied types of excita-

tions, solitary waves can be easily generated by an impact

at one end of a chain of touching beads (see [7, 8] and ref-

erences therein). In the absence of an original compression

in the chain (the so-called precompression), these solitary

waves differ from the classical KdV-type solitary waves,

since they are highly-localized (with super-exponential de-

cay) and their width remains unchanged with amplitude

(see e.g. [12]). These properties originate from the fully

nonlinear character of the Hertzian interaction potential

V(r) = 2
5
γ (−r)

5/2
+ (with γ > 0 and (a)+ = max(a, 0)),

which yields a vanishing sound velocity in the absence of

precompression.

Discrete breathers (i.e. intrinsic localized modes) form

another interesting class of excitations consisting of time-

periodic and spatially localized waveforms [6, 3]. These

waves exist in diatomic granular chains under precom-

pression [2, 13] (with their frequency lying between the

acoustic and optic phonon bands) and can be generated

e.g. through modulational instabilities. However, because

precompression suppresses the fully nonlinear character of

Hertzian interactions, these excitations inherit the usual

properties of discrete breathers, i.e. their spatial decay is

exponential and their width diverges at vanishing amplitude

(for frequencies close to the bottom of the optic band).

The situation is sensibly different for granular systems

without precompression. In that case, localized oscillations

can be generated on short transients in the form of transi-

tory defect modes induced by a mass impurity (see [11]

and references therein) but never occur time-periodically

as proved in [5]. Indeed, uncompressed granular chains are

described by the Fermi-Pasta-Ulam lattice with Hertzian

interactions

ÿn = V ′(yn+1 − yn) − V ′(yn − yn−1) (1)

(or spatially inhomogeneous variants thereof), where yn(t)

denotes the nth bead displacement from its reference posi-

tion. For all T -periodic solutions of (1), the average inter-

action forces
∫ T

0
V ′(yn+1 − yn) dt are independent of n (this

is immediate by integrating (1)). Consequently, localized

oscillations would yield a vanishing average interaction

force between grains, which is impossible since Hertzian

interactions are repulsive under contact and vanish other-

wise.

In contrast to the above picture, we have numerically

established in [5] the existence of time-periodic localized

oscillations in Hertzian chains with symmetric local poten-

tials described by the system

ÿn +W′(yn) = V ′(yn+1 − yn) − V ′(yn − yn−1) (2)

where W(y) = 1
2

y2 + s
4

y4 and s ∈ R measures the local an-

harmonicity. System (2) describes small amplitude waves

in a Newton’s cradle [4] (figure 1, left) or other mechanical

systems consisting of beads mounted e.g. on an elastic ma-

trix [10] or cantilevers [5] (figure 1, right). In the last two



cases, local oscillations and collisions between beads can

occur on similar time scales for realistic material parameter

values, which allows for breathing dynamics to take place.

Static and moving breathers can be generated from stan-

dard initial conditions such as a localized impact [5, 10] or

perturbations of unstable periodic traveling waves [4].

Figure 1: Left : prototypical Newton’s cradle consisting

of a chain of beads attached to pendula. Right : array of

clamped cantilevers decorated by spherical beads.

Let us summarize the results of [5]. Two fami-

lies of static breather solutions of (2) (parametrized by

their frequency ωb > 1) have been computed using the

Gauss-Newton method and path-following. The first one

consists of bond-centered breathers satisfying yn(t) =

−y−n+1(t) := S1yn(t), and the second corresponds to site-

centered breathers with yn(t) = −y−n(t + Tb/2) := S2yn(t),

where Tb denotes the breather period (each solution fam-

ily is invariant by a symmetry Si of (2)). Profiles of both

breather types are given in figure 2 for a particular fre-

quency close to unity (i.e. the linear frequency of lo-

cal oscillators), a limit where the breather amplitude van-

ishes. Near this limit, quasi-continuum approximations of

the breather profiles can be derived [5], namely

y(1)
n (t) = 2ǫ (−1)n [g(n) + g(n − 1)] cos (ωbt) (3)

for bond-centered breathers and

y(2)
n (t) = 2ǫ (−1)n [g(n +

1

2
) + g(n −

1

2
)] cos (ωbt) (4)

for site-centered ones, where ωb = 1 + ǫ
1/2

2τ0
(τ0 ≈ 1.545),

g(x) =
(

3
10

)3
cos6
(

x
3

)

for |x| ≤ 3π
2

and g = 0 elsewhere.

Figure 2 compares the numerical solutions with the above

approximations for ωb ≈ 1, showing excellent agreement.

Obviously discrepancies appear at larger amplitude, since

approximations (3) and (4) retain only one Fourier mode

and are independent of the local anharmonicity (which is

dominated by the Hertzian nonlinearity at small ampli-

tude). The above approximations possess compact supports

(with a width independent of ωb), but the breathers com-

puted numerically do not share this property strictly speak-

ing and instead display super-exponential localization (this

is in analogy with the case of homogeneous polynomial in-

teraction potentials, see section 4.1.3 of [3]).

Dynamical simulations of [5] indicate that extremely

small perturbations of the static breathers can lead to

their translational motion (generating a so-called traveling

breather), for anharmonic on-site potentials, but more criti-

cally even in the harmonic case. This phenomenon is linked

with an extremely small difference between the energies

H of site- and bond-centered breathers having the same

frequency (the so-called approximate Peierls-Nabarro bar-

rier). Typical values of breather energies are given in figure

3, whereH =
∑

n en and en =
1
2

ẏ2
n +W(yn) + V(yn+1 − yn).

Another manifestation of the high breather mobility is the

systematic formation of a travelling breather after an im-

pact at one end of the oscillator chain (see figure 4).
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Figure 2: Bond-centered (left plot) and site-centered (right

plot) breather solutions of (2) for ωb = 1.01 (potential pa-

rameters are γ = 1 and s = 0). The numerical solutions

(marks) are compared to the quasi-continuum approxima-

tions y
(1)
n , y

(2)
n (continuous lines).
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Figure 3: Breather energies versus frequency ωb, when the

on-site potential is harmonic (s = 0, left plot) or anhar-

monic (s = −1/6, right plot) and γ = 1. The red curves

give the energy Hbc of bond-centered breathers, the blue

curves the approximate Peierls-Nabarro barrier EPN (en-

ergy difference bewteen site- and bond-centered breathers)

and the black curves the relative energy ratio EPN/Hbc. For

small amplitude breathers (i.e. ωb ≈ 1), the different values

of s yield comparable values of EPN . Clearly EPN increases

with breather amplitude but remains very small in this pa-

rameter range (e.g. EPN is close to 10−4 for ωb = 1.5 and

s = −1/6). The harmonic case yields even smaller barriers,

by 3 − 4 orders of magnitude for ωb = 1.3.

Different phenomena have been identified in [5] depend-

ing on the softening or hardening character of the local

potential W. Firstly, the stability of both site-centered

and bond-centered breathers is critically dependent on the

strength (and sign) of the anharmonicity (we refer to [5] for

more details). Secondly, depending whether s < 0 or s > 0,



the occurence of surface mode excitations (i.e. oscillations

localized near a boundary) or direction-reversing traveling

breathers was observed after an impact. Both phenomena

are illustrated by figures 4 and 5. The origin of direction

reversal is still unclear at the present stage, although we

think it might originate from the interaction between the

traveling breather and nonlinear waves confined between

the breather and the boundary (figure 5, right plot).
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Figure 4: Space-time diagrams showing the interaction

forces fn = −(yn − yn+1)
3/2
+ in system (2) with γ = 1 and

free end boundary conditions. Forces are represented in

grey levels, white corresponding to vanishing interactions

(beads not in contact) and black to a minimal negative value

of the contact force. The initial condition is yn(0) = 0 for

n ≥ 1, ẏn(0) = 0 for n ≥ 2, ẏ1(0) = 0.94. For an harmonic

local potential (s = 0, left plot), a traveling breather is gen-

erated. For a soft local potential (s = −0.7, right plot), one

observes in addition the excitation of a surface mode.
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Figure 5: Left : space-time diagram of the energy density

en for system (2) with γ = 1 and a hard anharmonic local

potential (s = 1). The initial condition is the same as in

figure 4 except ẏ1(0) = 1.9. Right : corresponding particle

velocities close to direction-reversing (t ≈ 241).

In order to understand the absence of surface mode ex-

citation observed in figure 5 for s = 1, we now analyze

the properties of surface modes computed by the Gauss-

Newton method (all numerical computations are performed

for γ = 1). The results are shown in figure 6 (left column).

For s = 1, surface modes exist for frequencies ωs lying

above a critical frequency ωmin ≈ 1.96, where a pair of

Floquet eigenvalues converges towards unity (spectra not

shown here). For ωs ≈ ωmin these solutions are spectrally

stable and one can observe an energy threshold. This ex-

plains why a surface mode is not observed in figure 5 where

the energy of the initial excitation is well below the excita-

tion threshold. This situation contrasts with the case of soft

local potentials illustrated in figure 6 (right column). For

s = −0.7, surface modes exist for ωs ∈ [0.705, 1). They

are spectrally stable for ωs ≈ 1 but oscillatory instabili-

ties appear at smaller frequencies (spectra not shown here).

When ωs → 1, their energy and amplitude vanish, opening

the possibility of exciting such modes for arbitrarily small

initial velocities of the first particle.
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Figure 6: Top : profile of a surface mode at the instant

of maximal amplitude, for a hard local potential (s = 1,

ωs = 2, left plot) and a soft one (s = −0.7, ωs = 0.99,

right plot). Bottom : energy of the surface mode versus

frequencyωs, for s = 1 (left plot) and s = −0.7 (right plot).

Having numerically analyzed the properties of surface

modes of (2) when γ (the stiffness constant of Hertzian

interactions) equals unity, we now prove the existence of

time-periodic and spatially localized solutions when γ is

small. The small coupling (anticontinuum) limit was in-

troduced in reference [6] (and considerably generalized in

[9]) and applies both to breathers and surface modes. From

a physical point of view, this parameter regime can be re-

alized with an array of clamped cantilevers (see figure 1)

decorated by spherical beads made from a sufficiently soft

material (e.g. rubber). In addition, the anticontinuum limit

requires an anharmonic local potential W, i.e. s , 0.

We consider system (2) for n ∈ Γ, with Γ = Z for discrete

breathers (case of a doubly infinite chain) and Γ = N0 for

surface modes (semi-infinite chain, with free-end bound-

ary conditions at n = 0). For γ = 0, system (2) admits

localized periodic solutions satisfying yn = 0 ∀n , 0,

ÿ0 + W′(y0) = 0 and y0(t + T0) = y0(t). Setting ẏ0(0) = 0,

a := y0(0) > 0 and T0 ≡ T0(a), it is a classical result that

s T ′
0
(a) < 0. Consequently, the time periodic oscillations

y0 can be parametrized by their period T0, with T0 < 2π

for s > 0 and T0 > 2π for s < 0. We shall denote by

Y0,T0
:= (yn)n the even T0-periodic solution constructed



above for γ = 0. Now let us assume T0 < 2πN (this

condition is automatically satisfied for s > 0). Thanks to

this nonresonance condition, one can apply the persistence

theorem for normally non-degenerate discrete breathers

proved in reference [9] (section 3.5), which readily applies

to system (2) since V ∈ C2(R) has sufficient smoothness.

More precisely, for γ small enough in system (2), this re-

sult ensures the existence of a family of localized solutions

Yγ,T (. + φ) parametrized by their period T ≈ T0 (since

T ′
0
, 0) and an arbitrary phase φ. In addition the per-

turbed and unperturbed solutions are close when γ is small,

i.e. one has Yγ,T = Y0,T + O(γ) in C2(S 1; ℓ2(Γ)) (we de-

note S 1 = R/(TZ)). Note that the corresponding breather

solutions are site-centered, due to the local uniqueness of

γ 7→ Yγ,T and the invariance of (2) by the symmetry S2.

Similarly, starting from a bond-centered breather for γ = 0

(with y1 = −y0, yn = 0 elsewhere) allows one to obtain

bond-centered breathers for γ ≈ 0. More generally, multi-

breathers having many excited sites can be constructed in

the same way at small coupling.

Now let us estimate the spatial decay of breathers and

surface modes. Consider a T -periodic solution of (2) sat-

isfying the nonresonance condition T < 2πN. We assume

this solution is spatially localized, i.e. its supremum norm

vn = ‖yn‖∞ := supt∈[0,T ] |yn(t)| satisfies lim|n|→+∞ vn = 0. In

order to estimate vn, we rewrite (2) in the form

yn = L−1
(

γ (yn−1 − yn)
3/2
+ − γ (yn − yn+1)

3/2
+ − s y3

n

)

, (5)

where L = ∂2
t + I : C2(S 1;R) → C0(S 1;R) is invertible

thanks to the nonresonance assumption. By using (5), there

exists C > 0 and m ∈ N0 such that for |n| ≥ m + 1 we

have vn ≤
C
3

(v
3/2

n+1
+ v

3/2
n + v

3/2

n−1
). Introducing the sequence

ǫ j = sup|k|≥ j vk, it follows that ǫ j ≤ Cǫ
3/2

j−1
for j ≥ m + 1,

hence one obtains by induction

ǫ j ≤ C−2 λ(3/2) j

, λ =
(

C2 ǫm
)(2/3)m

, j ≥ m. (6)

Since lim j→+∞ ǫ j = 0, we can fix m such that λ < 1. Esti-

mate (6) implies ‖yn‖∞ ≤ ǫ|n| ≤ C−2 λ(3/2)|n| for |n| ≥ m, i.e.

the solution decays doubly exponentially at infinity.

As a conclusion, we have reviewed recent results of

[5] on the numerical observation of breathers and sur-

face modes in granular chains with stiff local potentials.

We have found the existence of an energy threshold for

hard surface modes, which explains their non-excitation by

moderate impacts reported in [5]. We have obtained dou-

bly exponential decay estimates for breathers and surface

modes and proved their existence for anharmonic local po-

tentials when γ ≈ 0. The persistence of these solutions for

larger values of γ is numerically observed (for γ = 1) but

remains an open question from an analytical point of view.

In addition, the spontaneous direction-reversing motion of

discrete breathers occuring for hard local potentials and the

smallness of their Peierls-Nabarro energy barrier has yet to

be understood.
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