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I. INTRODUCTION

In recent decades the identification of closed loop systems has received much interest as shown by the following references: [START_REF] Söderström | System identification[END_REF], [START_REF] Van Den | An indirect method for transfer function estimation from closed loop data[END_REF] [START_REF] Ljung | System identification: theory for the user[END_REF], [START_REF] Forssell | Closed-loop identification revisited[END_REF], [START_REF] Codrons | Closed loop identification with an unstable or nonminimum phase controller[END_REF], [START_REF] Gilson | Instrumental variable methods for closed loop system identification[END_REF]. The interest is motivated because for many industrial processes open loop experiments are prohibited (safety, stability, efficiency of operation, etc.) but also for reasons of supervision (the desired performance are met?). All practical identification algorithms have to deal with measurements corrupted by noise and to the best of our knowledge, most of the works in the closed loop identification literature consider the stochastic noise assumption. In some cases (unknown probability distribution of the disturbances, modeling inaccuracy) such assumption cannot be done and the bounded noise assumption seems to be more appropriate.

To address this identification problem we will take inspiration from the identification method CLOE (Closed Loop Output Error) presented in [START_REF] Landau | An output error recursive algorithm for unbiased identification in closed loop[END_REF], [START_REF] Landau | Recursive algorithms for identification in closed loop: a unified approach and evaluation[END_REF] and [START_REF] Landau | Adaptive control[END_REF]. This method will be adapted by considering the Set Membership Identification (SMI) algorithms (see [START_REF] Milanese | Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors; linear families of models and estimators[END_REF], [START_REF] Lozano-Leal | Reformulation of the parameter identification problem for systems with bounded disturbances[END_REF], [START_REF] Vicino | Sequential approximation of parameter sets for identification with parametric and nonparametric uncertainty[END_REF], [START_REF] Garulli | Error bounds for conditional algorithms in restricted complexity set membership identification[END_REF], [START_REF] Garulli | Conditional central algorithms for worst-case set membership indentification and filtering[END_REF] and [START_REF] Casini | On input design in l1 conditional set membership identification[END_REF]) and particularly the Optimal Bounding Ellipsoid (OBE) algorithms. The computational complexity of these algorithms is low and they are appropriated to handle the identification problem in presence of bounded disturbances. Their principle consists in the estimation of a feasible set of parameters which must be consistent with the measurement data and the model structure. Important contributions have been presented in [START_REF] Fogel | On the value of informaton in system identification -bounded noise case[END_REF], [START_REF] Dasgupta | Asymptotically convergent modified recursive least square with data-dependent updating and forgetting factor for systems with bounded noise[END_REF], [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF] and [START_REF] Tan | Identification for systems with bounded noise[END_REF]. The paper will focus on the extension of some stability and convergence results ( [START_REF] Canudas-De-Wit | A modified EW-RLS algorithm for systems with bounded noise[END_REF], [START_REF] Tan | Identification for systems with bounded noise[END_REF], [START_REF] Pouliquen | Output error identification for multi-input multi-output systems with bounded disturbances[END_REF]) to closed loop output error model.

The paper is organized as follows: in section II the identification problem is posed. In section III, recursive estimation algorithms are derived and and their convergence analysis are addressed. Some simulation results are given in section IV. Finally, section V concludes the paper.

II. PROBLEM FORMULATION AND NOTATION

Consider the closed loop depicted in Fig. 1 where the plant is a linear system which can be described by the transfer function G o (q). r t , u t and y t are respectively an exogenous input, the system input and the system output. w t denotes the output disturbances and C(q) a linear controller. The underlying output behavior is given by:

y t = G o (q) 1 + G o (q)C(q) r t + 1 1 + G o (q)C(q) w t (1)
Here, it is assumed that there exists a discret time transfer function G(q) stabilizing the closed loop and such that the output y t is given by

y t = G(q) 1 + G(q)C(q) r t + v t (2)
where v t is an unknown and bounded disturbing term (noise measurement, state disturbances, modeling inaccuracy, etc.):

v t = G o (q) 1 + G o (q)C(q) - G(q) 1 + G(q)C(q) r t + 1 1 + G o (q)C(q) w t
We assume that an upper bound is supposed to be available on v t :

|v t | ≤ δ v t (3) 
The model G(q) is defined by

G(q) = q -d B(q) A(q) (4) with B(q) = b 0 + b 1 q -1 + • • • + b n b q -n b A(q) = 1 + a 1 q -1 + • • • + a n a q -n a
and the identification problem treated in this paper is stated as: estimate the parameters {b i } and {a i } of the model by using the available data {r t , y t }, the knowledge of the controller C(q) and the upper bound δ v t . The presented identification algorithms are similar to the CLOE algorithm described in [START_REF] Landau | An output error recursive algorithm for unbiased identification in closed loop[END_REF], [START_REF] Landau | Recursive algorithms for identification in closed loop: a unified approach and evaluation[END_REF] and [START_REF] Landau | Adaptive control[END_REF]. Here, the difference lies in the nature of the noise component: the noise is not modeled as a stochastic process, the only information is the known upper bound δ v t . This will have a strong impact on the stability analysis. The one-step-ahead output predictor is defined bearing in mind the optimal predictor structure (see [START_REF] Ljung | System identification: theory for the user[END_REF]), namely

ŷt = y t -v t = φ T t θ * with θ * T = a 1 • • • a n a b 0 • • • b n b θ * ∈ R n
is the unknown parameters vector to be identified with n = n a + n b + 1 the number of parameters. φ t is defined by

φ T t = -ŷt-1 • • • -ŷt-na ût-d • • • ût-d-n b
where ût = r t -C(q) ŷt and

C(q) = R(q) S(q)
A key observation is that the output predictor ŷt is not linear in the system parameters, this will determine the stability of the identification algorithm.

III. IDENTIFICATION ALGORITHMS

A. The CLOE-OBE (Closed Loop Output Error -OBE) algorithm.

This paper focuses on the design of a recursive identification algorithm for the system described by (2), (3) and (4). Before introducing the parameter adaptation algorithm, let us define the well known a priori and a posteriori predictors as ŷt/t-1 = φ T t θt-1 ŷt/t = φ T t θt θt represents the estimation of the parameters vector at the actual time t while φt is an estimate of the prediction data vector φ t which is simply obtained by replacing the unknown components ŷt-i by their a posteriori estimates ŷt-i/t-i and ût-d-i by their a posteriori estimates ût-d-i/t-d-i :

φ T t = -ŷt-1/t-1 • • • -ŷt-na/t-na ût-d/t-d • • • ût-d-n b /t-d-n b with ût-i/t-i = r t-i -C(q) ŷt-i/t-i --C(q) wt yt ut rt plant - - - - ? ? --C(q) ŷt ût Ĝ(q) - - - ? ? 6 -ỹt + - + + +

Fig. 2. Closed loop identification scheme

From these adjustable predictors we get the following closed loop a priori and a posteriori prediction errors:

ε t/t = y t -ŷt/t-1 ε t/t-1 = y t -ŷt/t
A key observation is that the a posteriori prediction error ε t/t can be expressed as:

ε t/t = y t -φ T t θt ε t/t = φ T t θ * + v t -φ T t θt + ( φ T t θ * -φ T t θ * )
Bearing in mind structures of φ t and φt this gives

ε t/t = S(q) A(q)S(q) + q -d B(q)R(q) φ T t θt + v t ( 5 
)
with θt = θ * -θt .

It will be seen later that this relationship is fundamental for establishing the stability and convergence properties of the identification algorithm.

The estimated parameters vector θt has to maintain the closed loop output error below a bound defined from the upper bound on the disturbance v t . Under some conditions presented below, the following Closed Loop Output Error -OBE algorithm provides such estimation:

         θt = θt-1 + Γ t ε t/t-1 Γ t = P t-1 φt σ t λ + φ T t P t-1 φt σ t P t = 1 λ I n -Γ t φ T t P t-1 ε t/t-1 = y t -φ T t θt-1 (6) 
where 0 < λ ≤ 1 is a design parameter forgetting factor that will be used to monitor the parameter adaptation dynamics. σ t is a switching flag given by:

σ t =      λ φ T t P t-1 φt ε t/t-1 δ t -1
if ε t/t-1 > δ t and φ T t P t-1 φt > 0 0 otherwise [START_REF] Garulli | Error bounds for conditional algorithms in restricted complexity set membership identification[END_REF] δ t is a user defined positive scalar.

From (6) the a posteriori prediction error ε t/t can be written as ε t/t = (1 -φ T t Γ t )ε t/t-1 which can also be rewritten, by using the expression for Γ t , as:

ε t/t = λ λ + φ T t P t-1 φt σ t ε t/t-1 (8)
Using the value of σ t for σ t = 0 (8) yields:

|ε t/t | = δ t
Provided that the persistent excitation condition is satisfied (i.e. φ T t P t-1 φt > 0), this clearly shows that the CLOE-OBE algorithm ensures the following key property:

if |ε t/t-1 | > δ t then σ t = 0 and |ε t/t | = δ t if |ε t/t | ≤ δ t then σ t = 0 and |ε t/t | ≤ δ t δ t is
then a bound on the a posteriori adaptation error which has to be specified taking into account the bound δ v t .

The results of the stability analysis are presented in the following theorem. These results are similar to the stability analysis of the Output Error -OBE algorithm used for plant model identification in open loop and presented in [START_REF] Pouliquen | Output error identification for multi-input multi-output systems with bounded disturbances[END_REF].

Result 1: Consider the class of systems defined in section II and the CLOE-OBE algorithm given by ( 6) and [START_REF] Garulli | Error bounds for conditional algorithms in restricted complexity set membership identification[END_REF]. Assume that

• G(q) is such that 1 - A(q)S(q) + q -d B(q)R(q) S(q) 1 < 1 (9)
where . 1 is the l 1 induced norm; • δ t is such that:

δ t ≥ A(q)S(q)+q -d B(q)R(q) S(q) 1 1 -1 -A(q)S(q)+q -d B(q)R(q) S(q) 1 δ v t ( 10 
)
then for all initial conditions

• θt 2 ≤ γ 1 θ0 2 (11) with γ 1 = λ max( P -1 0 ) λ min( P -1 0 )
.

where λ max P -1 0 and λ min P -1 0 are respectively the maximum and the minimum eigenvalues of P -1 0 .

If, furthermore, { φt } is a persistently exciting sequence of order o e ≥ n, i.e there exist α > 0 and β > 0 such that for all t αI n ≤

o e -1 ∑ i=0 φt+i σ t+i φ T t+i ≤ β I n ( 12 
)
Then the following properties hold:

• for all t ≥ o e + 1 θt 2 ≤ γ 2 λ t θ0 2 [START_REF] Ljung | System identification: theory for the user[END_REF] with

γ 2 =        λ max P -1 0 α λ -o e -1 λ -1 -1 if λ < 1 λ max P -1 0 α if λ = 1 • For λ < 1 one has lim t→∞ |ε t/t-1 | ≤ δ t ( 14 
)
Proof: For lack of space we do not detail the proof. The form of the adaptation algorithm and the relation ( 5) between ε t/t and θt allows to use results established in [16].

In a first part of the proof, it is shown that the Lyapounov function 9) and ( 10) are satisfied.

V t = θ T t P -1 t θt is such that V t ≤ λ t V 0 if conditions (
In a second part property ( 11) is obtained using the fact that P -1 t ≥ λ t P -1 0 . Finally, the persistent excitation condition is used to get an other bound on P -1 t , this gives properties ( 13) and ( 14).

Remark 1: The conditions ( 9) and ( 10) are only sufficient conditions and we have observed the algorithm to work well in some cases where these conditions are not satisfied.

Remark 2: The condition (9) implies the asymptotic stability of the controller used during the identification step.

Remark 3:

The ability to reach the true parameters vector depends on the threshold δ t , thus its specification proves to be particularly crucial. The design of this threshold is influenced by the system throughout the polynomials A(q) and B(q) (which are unknown objects), by the controller and by the disturbances effects throughout the bound δ v t . A dichotomy-based procedure could be used to get an appropriate value for δ t using all the a priori knowledge on the system. In the next subsection a modified algorithm is proposed to relax conditions ( 9) and [START_REF] Landau | An output error recursive algorithm for unbiased identification in closed loop[END_REF].

B. The F-CLOE-OBE (Filtered -CLOE-OBE) algorithm.

Here the idea is to remove the condition (9) required for stability, to this end we use an adaptation filter F(q). Let first define the a priori and a posteriori adaptation errors as η t/t-1 = ε t/t-1 + (F(q) -1)ε t/t η t/t = F(q)ε t/t F(q) is a monic adaptation filter designed by the user. These definitions allow us to propose a filtered parameter adaptation algorithm by simply substituting in ( 6) and ( 7):

• ε t/t-1 by η t/t-1 and ε t/t by η t/t ; • y t by y F t such that F(q)y F t = y t and φt by φ F t such that F(q) φ F t = φt .

The idea is to compensate the effect of S(q) A(q)S(q)+q -d B(q)R(q) in ( 9) and [START_REF] Landau | An output error recursive algorithm for unbiased identification in closed loop[END_REF].

Taking into account these adjustments, the two following equations sets summarize the proposed Filtered CLOE-OBE algorithm:

                 θt = θt-1 + Γ t η t/t-1 Γ t = P t-1 φ F t σ t λ + φ F T t P t-1 φ F t σ t P t = 1 λ I n -Γ t φ F T t P t-1 ε t/t-1 = y F t -φ F T t θt-1 (15) 
with

σ t =          λ φ F T t P t-1 φ F t η t/t-1 δ t -1 if η t/t-1 > δ t and φ F T t P t-1 φ F t > 0 0 otherwise (16) 
It can easily be established that if the persistent excitation condition is satisfied then the following key property holds:

∀σ t |η t/t | ≤ δ t
bearing in mind that δ t is a now a bound on the a posteriori adaptation error η t/t .

Here the equation of the a posteriori prediction error is:

ε t/t = S(q) A(q)S(q) + q -d B(q)R(q) φ F T t θt + 1 F(q) v t
which gives η t/t = F(q) S(q) A(q)S(q) + q -d B(q)R(q) φ F T t θt + v t Using this last equation, the following result presents an analysis of the proposed F-CLOE-OBE algorithm.

Result 2: Consider the class of systems defined in section II and the F-CLOE-OBE algorithm given by ( 15) and ( 16). Assume that F(q) and G(q) are such that

• 1 - A(q)S(q) + q -d B(q)R(q) S(q) 1 F(q) 1 < 1 (17)
• δ t is such that:

δ t ≥ A(q)S(q)+q -d B(q)R(q) S(q) 1 F(q) 1 1 -1 -A(q)S(q)+q -d B(q)R(q) S(q) 1 F(q) 1 δ v t ( 18 
)
then for all initial conditions

• θt 2 ≤ γ 1 θ0 2 (19)
If, furthermore, { φ F t } is a persistently exciting sequence of order o e ≥ n, then the following properties hold:

• for all t ≥ o e + 1 θt 2 ≤ γ 2 λ t θ0 2 (20) • For λ < 1 one has lim t→∞ |η t/t-1 | ≤ δ t ( 21 
)
Proof: The proof of this result follows the same scheme that the proof of result 1, the difference lies in the relation between η t/t and θt .

The ideal filter is F(q) = A(q)S(q)+q -d B(q)R(q) S(q)

. Thus, conditions ( 17) and ( 18) are much milder than conditions ( 9) and ( 10) if a reasonable estimated model is available. This remark leads to the following iterative identification scheme:

1) Choose a high threshold δ t and apply the CLOE-OBE algorithm to get G(q); 2) Given this first estimation, design a filter

F(q) = A(q)S(q) + q -d B(q)R(q) S(q)
and choose a lower δ t ; 3) Apply the F-CLOE-OBE algorithm to get a new G(q); 4) Repeat steps 2 and 3 until convergence of step 3. The first step is an initialization step: an initial estimate of the model is necessary so as to implement this F-CLOE-OBE algorithm. It is difficult to make a general discussion on the behavior of that iterative scheme and no global convergence results are available (not more than for the recursive maximum likelihood algorithm [START_REF] Ljung | System identification: theory for the user[END_REF]), however it is successfully applied on a numerical example in the next section.

Note that if F(q) ≃ A(q)S(q)+q -d B(q)R(q) S(q) it is possible to choose δ t = δ v t . In that case, from [START_REF] Vicino | Sequential approximation of parameter sets for identification with parametric and nonparametric uncertainty[END_REF] we have lim t→∞ θt = θ where θ is such that

|η t | ≤ δ v t with η t = F(q)ε t = F(q) y F t -φ F T t θ = y t -φ T t θ .
Then the contribution of the filter F(q) is twofold: it relaxes stability condition of the algorithm and it allows the estimation of a model G(q) such that:

y t - G(q) 1 + G(q)C(q) r t ≤ δ v t ( 22 
)
which is coherent with (2), ( 3) and (4).

IV. SIMULATION RESULTS

Numerical data have been generated according to (2), ( 3) and (4). The system and the controller are the following: Let notice that the plant is unstable and condition (9) in result 1 is violated in this example. The exogenous input r t is a random binary sequence of length N = 4000. v t is a noise generated in the following manner:

G o (q) = q -1 + 0.1q -2 1 -1.8q -1 + 0.7q -2 C(q) = 0.1 1 -0.4q -1
θ (2) θ (3) θ (4) real value b 0 = 1 b 1 = 0.1 a 1 = -1.8 a 2 = 0.
v t = δ v t 1 2 (e t + sin(πt/10))
where e t is a white noise uniformly distributed in [-1; 1] and δ v t = 5 (this corresponds to a signal to noise ratio of 9.12dB).

The first half of the data has been used in the estimation step, the second half has been used in the validation step.

It can easily be shown that condition [START_REF] Gilson | Instrumental variable methods for closed loop system identification[END_REF] in result 1 is not satisfied in this example. However two identification procedures have been used:

• Procedure 1: even if condition ( 9) is not satisfied, we can try to use the CLOE-OBE algorithm to identify the system. This is the first identification procedure. • Procedure 2: this second identification procedure is our iterative scheme. This scheme uses the F-CLOE-OBE algorithm and has been applied over 10 iterations (on this example the time required to obtain the convergence of the estimates).

For each procedure we have chosen the threshold δ t as follows:

• Procedure 1: δ t = δ v t .

• Procedure 2: δ t : we have chosen a decreasing threshold.

At iteration i we have δ

(i) t = δ (ini) t -δ ( f in) t e -i + δ ( f in) t with δ (ini) t = 5δ v t and δ ( f in) t = δ v t .
The following results correspond to the estimates made on a single data series. Fig. 3 presents the improvement of the estimated vector at the end of each iteration in the iterative scheme. It appears that the iterative procedure allows a clear convergence of the estimated parameters to their true value. This is confirmed by Fig. 4 which gives the ideal filter F(q) and its successive estimates. Fig. 5 shows the convergence of the estimated models towards the nominal system. Note that on other applications, it is possible that the number of iterations required for convergence is different from 10.

The table I confirms the good performance of the proposed iterative scheme compared to the algorithm CLOE-OBE: the Fig. 4. Bode diagrams of ideal filter F(q) = A(q)S(q)+q -d B(q)R(q) S(q) and its estimates use of the filter F(q) in the algorithm improve the quality of the estimated parameters. The closeness of the estimated parameters to real parameters depends on the noise level δ v t . Fig. 6 allows the comparison between G o (q)

1+G o (q)C(q) and its estimates

G(q) 1+ G(q)C(q)
with procedure 1 and procedure 2. One can conclude from these Bode diagrams that the developed iterative method works well. This is confirmed by Fig. 7 which presents thresholds ±δ v t and the output errors y t -G(q) 1+ G(q)C(q) r t for each estimated model (model for procedure 1 and final model for procedure 2 at the 10 th iteration). It appears that the model obtained with the iterative scheme using the F-CLOE-OBE is the only one satisfying (22).

V. CONCLUSION

In this study, we have proposed two algorithms allowing the identification of a system operating in closed loop and subject to bounded disturbances. The second algorithm is a filtered adaptation of the first one, the introduced filter is used to relax some sufficient conditions for stability and convergence. Using the second algorithm in an iterative scheme has lead to a significant improvement of the estima- 1+Go(q)C(q) and its estimates G(q) 1+ G(q)C(q) with procedure 1 and 2 Fig. 7. Closed loop output error with estimated models tion in a numerical example. In terms of perspective, some comparisons with other methods will be presented. Moreover it might be interesting to analyze the set membership of the estimated parameters compared to the true values and it might also be interesting to propose alternative solutions to relax stability and convergence conditions.
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