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Abstract— The problem of closed loop system identification
in presence of bounded disturbances is considered. In this
paper two recursive algorithms are proposed to solve this
identification problem. Stability and convergence properties
are demonstrated. Simulation results validate the proposed
solutions.

I. INTRODUCTION

In recent decades the identification of closed loop systems
has received much interest as shown by the following refer-
ences: [18], [20] [13], [6], [3], [9]. The interest is motivated
because for many industrial processes open loop experiments
are prohibited (safety, stability, efficiency of operation, etc.)
but also for reasons of supervision (the desired performance
are met?). All practical identification algorithms have to
deal with measurements corrupted by noise and to the
best of our knowledge, most of the works in the closed
loop identification literature consider the stochastic noise
assumption. In some cases (unknown probability distribution
of the disturbances, modeling inaccuracy) such assumption
cannot be done and the bounded noise assumption seems to
be more appropriate.

To address this identification problem we will take inspi-
ration from the identification method CLOE (Closed Loop
Output Error) presented in [10], [11] and [12]. This method
will be adapted by considering the Set Membership Iden-
tification (SMI) algorithms (see [15], [14], [21], [7], [8]
and [2]) and particularly the Optimal Bounding Ellipsoid
(OBE) algorithms. The computational complexity of these
algorithms is low and they are appropriated to handle the
identification problem in presence of bounded disturbances.
Their principle consists in the estimation of a feasible setof
parameters which must be consistent with the measurement
data and the model structure. Important contributions have
been presented in [5], [4], [1] and [19]. The paper will focus
on the extension of some stability and convergence results
([1], [19], [16]) to closed loop output error model.

The paper is organized as follows: in section II the identi-
fication problem is posed. In section III, recursive estimation
algorithms are derived and and their convergence analysis are
addressed. Some simulation results are given in section IV.
Finally, section V concludes the paper.

II. PROBLEM FORMULATION AND NOTATION

Consider the closed loop depicted in Fig. 1 where the plant
is a linear system which can be described by the transfer
function Go(q). rt , ut and yt are respectively an exogenous
input, the system input and the system output.wt denotes
the output disturbances andC(q) a linear controller. The
underlying output behavior is given by:

yt =
Go(q)

1+ Go(q)C(q)
rt +

1
1+ Go(q)C(q)

wt (1)

Here, it is assumed that there exists a discret time transfer
function G(q) stabilizing the closed loop and such that the
outputyt is given by

yt =
G(q)

1+ G(q)C(q)
rt + vt (2)

wherevt is an unknown and bounded disturbing term (noise
measurement, state disturbances, modeling inaccuracy, etc.):

vt =

(
Go(q)

1+ Go(q)C(q)
−

G(q)

1+ G(q)C(q)

)
rt +

1
1+ Go(q)C(q)

wt

We assume that an upper bound is supposed to be available
on vt :

|vt | ≤ δvt (3)

The modelG(q) is defined by

G(q) = q−d B(q)

A(q)
(4)

with {
B(q) = b0 + b1q−1 + · · ·+ bnbq−nb

A(q) = 1+ a1q−1 + · · ·+ anaq−na

and the identification problem treated in this paper is stated
as: estimate the parameters{bi} and {ai} of the model
by using the available data{rt ,yt}, the knowledge of the
controllerC(q) and the upper boundδvt .

The presented identification algorithms are similar to the
CLOE algorithm described in [10], [11] and [12]. Here, the
difference lies in the nature of the noise component: the noise
is not modeled as a stochastic process, the only information
is the known upper boundδvt . This will have a strong impact
on the stability analysis.
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Fig. 1. Closed loop system

The one-step-ahead output predictor is defined bearing in
mind the optimal predictor structure (see [13]), namely

ŷt = yt − vt = φT
t θ∗

with
θ∗ T =

(
a1 · · · ana b0 · · · bnb

)

θ∗ ∈ R
n is the unknown parameters vector to be identified

with n = na + nb +1 the number of parameters.
φt is defined by

φT
t =
(

−ŷt−1 · · · −ŷt−na ût−d · · · ût−d−nb

)

where
ût = rt −C(q)ŷt

and

C(q) =
R(q)

S(q)

A key observation is that the output predictor ˆyt is not linear
in the system parameters, this will determine the stabilityof
the identification algorithm.

III. IDENTIFICATION ALGORITHMS

A. The CLOE-OBE (Closed Loop Output Error - OBE)
algorithm.

This paper focuses on the design of a recursive identifica-
tion algorithm for the system described by (2), (3) and (4).
Before introducing the parameter adaptation algorithm, let
us define the well known a priori and a posteriori predictors
as {

ŷt/t−1 = φ̂T
t θ̂t−1

ŷt/t = φ̂T
t θ̂t

θ̂t represents the estimation of the parameters vector at the
actual timet while φ̂t is an estimate of the prediction data
vectorφt which is simply obtained by replacing the unknown
components ˆyt−i by their a posteriori estimates ˆyt−i/t−i and
ût−d−i by their a posteriori estimates ˆut−d−i/t−d−i:

φ̂T
t =
(

−ŷt−1/t−1 · · · −ŷt−na/t−na ût−d/t−d · · · ût−d−nb/t−d−nb

)

with
ût−i/t−i = rt−i −C(q)ŷt−i/t−i
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Fig. 2. Closed loop identification scheme

From these adjustable predictors we get the following
closed loop a priori and a posteriori prediction errors:

{
εt/t = yt − ŷt/t−1
εt/t−1 = yt − ŷt/t

A key observation is that the a posteriori prediction errorεt/t
can be expressed as:

εt/t = yt − φ̂T
t θ̂t

εt/t = φT
t θ∗ + vt − φ̂T

t θ̂t +(φ̂T
t θ∗− φ̂T

t θ∗)

Bearing in mind structures ofφt and φ̂t this gives

εt/t =
S(q)

A(q)S(q)+ q−dB(q)R(q)
φ̂T

t θ̃t + vt (5)

with θ̃t = θ∗− θ̂t .
It will be seen later that this relationship is fundamental

for establishing the stability and convergence propertiesof
the identification algorithm.

The estimated parameters vectorθ̂t has to maintain the
closed loop output error below a bound defined from the
upper bound on the disturbancevt . Under some conditions
presented below, the following Closed Loop Output Error -
OBE algorithm provides such estimation:






θ̂t = θ̂t−1 +Γtεt/t−1

Γt =
Pt−1φ̂tσt

λ +φ̂T
t Pt−1φ̂tσt

Pt = 1
λ
(
In −Γtφ̂T

t

)
Pt−1

εt/t−1 = yt − φ̂T
t θ̂t−1

(6)

where 0< λ ≤ 1 is a design parameter forgetting factor that
will be used to monitor the parameter adaptation dynamics.
σt is a switching flag given by:

σt =






λ
φ̂T

t Pt−1φ̂t

(∣∣∣ εt/t−1
δt

∣∣∣−1
)

if
(∣∣εt/t−1

∣∣> δt
)

and
(
φ̂T

t Pt−1φ̂t > 0
)

0 otherwise

(7)



δt is a user defined positive scalar.

From (6) the a posteriori prediction errorεt/t can be
written as

εt/t = (1− φ̂T
t Γt)εt/t−1

which can also be rewritten, by using the expression forΓt ,
as:

εt/t =
λ

λ + φ̂T
t Pt−1φ̂tσt

εt/t−1 (8)

Using the value ofσt for σt 6= 0 (8) yields:

|εt/t | = δt

Provided that the persistent excitation condition is satisfied
(i.e. φ̂T

t Pt−1φ̂t > 0), this clearly shows that the CLOE-OBE
algorithm ensures the following key property:

{
if |εt/t−1| > δt thenσt 6= 0 and|εt/t | = δt

if |εt/t | ≤ δt thenσt = 0 and|εt/t | ≤ δt

δt is then a bound on the a posteriori adaptation error which
has to be specified taking into account the boundδvt .

The results of the stability analysis are presented in the
following theorem. These results are similar to the stability
analysis of the Output Error - OBE algorithm used for plant
model identification in open loop and presented in [16].

Result 1: Consider the class of systems defined in section
II and the CLOE-OBE algorithm given by (6) and (7).
Assume that

• G(q) is such that
∥∥∥∥1−

A(q)S(q)+ q−dB(q)R(q)

S(q)

∥∥∥∥
1

< 1 (9)

where‖.‖1 is the l1 induced norm;
• δt is such that:

δt ≥

∥∥∥A(q)S(q)+q−dB(q)R(q)
S(q)

∥∥∥
1

1−
∥∥∥1− A(q)S(q)+q−dB(q)R(q)

S(q)

∥∥∥
1

δvt (10)

then for all initial conditions

• ∣∣θ̃t
∣∣2 ≤ γ1

∣∣θ̃0
∣∣2 (11)

with γ1 =
λmax(P−1

0 )
λmin(P−1

0 )
.

whereλmax
(
P−1

0

)
andλmin

(
P−1

0

)
are respectively the maxi-

mum and the minimum eigenvalues ofP−1
0 .

If, furthermore,{φ̂t} is a persistently exciting sequence of
order oe ≥ n, i.e there existα > 0 andβ > 0 such that for
all t

α In ≤
oe−1

∑
i=0

φ̂t+iσt+iφ̂T
t+i ≤ βIn (12)

Then the following properties hold:

• for all t ≥ oe +1
∣∣θ̃t
∣∣2 ≤ γ2 λ t

∣∣θ̃0
∣∣2 (13)

with

γ2 =






λmax
(
P−1

0

)

α

(
λ −oe −1
λ −1−1

)
if λ < 1

λmax
(
P−1

0

)

α
if λ = 1

• For λ < 1 one has

lim
t→∞

|εt/t−1| ≤ δt (14)

�

Proof: For lack of space we do not detail the proof.
The form of the adaptation algorithm and the relation (5)
betweenεt/t and θ̃t allows to use results established in [16].

In a first part of the proof, it is shown that the Lyapounov
function Vt = θ̃T

t P−1
t θ̃t is such thatVt ≤ λ tV0 if conditions

(9) and (10) are satisfied.
In a second part property (11) is obtained using the fact

thatP−1
t ≥ λ tP−1

0 . Finally, the persistent excitation condition
is used to get an other bound onP−1

t , this gives properties
(13) and (14).

Remark 1: The conditions (9) and (10) are only sufficient
conditions and we have observed the algorithm to work well
in some cases where these conditions are not satisfied.

Remark 2: The condition (9) implies the asymptotic sta-
bility of the controller used during the identification step.

Remark 3: The ability to reach the true parameters vector
depends on the thresholdδt , thus its specification proves
to be particularly crucial. The design of this threshold is
influenced by the system throughout the polynomialsA(q)
and B(q) (which are unknown objects), by the controller
and by the disturbances effects throughout the boundδvt .
A dichotomy-based procedure could be used to get an
appropriate value forδt using all the a priori knowledge on
the system. In the next subsection a modified algorithm is
proposed to relax conditions (9) and (10).

B. The F-CLOE-OBE (Filtered - CLOE-OBE) algorithm.

Here the idea is to remove the condition (9) required for
stability, to this end we use an adaptation filterF(q). Let
first define the a priori and a posteriori adaptation errors as

{
ηt/t−1 = εt/t−1 +(F(q)−1)εt/t

ηt/t = F(q)εt/t

F(q) is a monic adaptation filter designed by the user. These
definitions allow us to propose a filtered parameter adaptation
algorithm by simply substituting in (6) and (7):

• εt/t−1 by ηt/t−1 andεt/t by ηt/t ;

• yt by yF
t such thatF(q)yF

t = yt andφ̂t by φ̂F
t such that

F(q)φ̂F
t = φ̂t .



The idea is to compensate the effect of S(q)

A(q)S(q)+q−dB(q)R(q)
in (9) and (10).

Taking into account these adjustments, the two following
equations sets summarize the proposed Filtered CLOE-OBE
algorithm:






θ̂t = θ̂t−1 +Γtηt/t−1

Γt =
Pt−1φ̂F

tσt

λ +φ̂F
T
t Pt−1φ̂F

tσt

Pt = 1
λ

(
In −Γtφ̂F

T

t

)
Pt−1

εt/t−1 = yF
t − φ̂F

T

t θ̂t−1

(15)

with

σt =






λ
φ̂F

T
t Pt−1φ̂F

t

(∣∣∣ηt/t−1
δt

∣∣∣−1
)

if
(∣∣ηt/t−1

∣∣> δt
)

and

(
φ̂F

T

t Pt−1φ̂F
t > 0

)

0 otherwise
(16)

It can easily be established that if the persistent excitation
condition is satisfied then the following key property holds:

∀σt |ηt/t | ≤ δt

bearing in mind thatδt is a now a bound on the a posteriori
adaptation errorηt/t .

Here the equation of the a posteriori prediction error is:

εt/t =
S(q)

A(q)S(q)+ q−dB(q)R(q)
φ̂F

T

t θ̃t +
1

F(q)
vt

which gives

ηt/t = F(q)
S(q)

A(q)S(q)+ q−dB(q)R(q)
φ̂F

T

t θ̃t + vt

Using this last equation, the following result presents an
analysis of the proposed F-CLOE-OBE algorithm.

Result 2: Consider the class of systems defined in section
II and the F-CLOE-OBE algorithm given by (15) and (16).
Assume thatF(q) andG(q) are such that

•
∥∥∥∥1−

A(q)S(q)+ q−dB(q)R(q)

S(q)

1
F(q)

∥∥∥∥
1

< 1 (17)

• δt is such that:

δt ≥

∥∥∥A(q)S(q)+q−dB(q)R(q)
S(q)

1
F(q)

∥∥∥
1

1−
∥∥∥1− A(q)S(q)+q−dB(q)R(q)

S(q)
1

F(q)

∥∥∥
1

δvt (18)

then for all initial conditions

• ∣∣θ̃t
∣∣2 ≤ γ1

∣∣θ̃0
∣∣2 (19)

If, furthermore,{φ̂F
t} is a persistently exciting sequence

of orderoe ≥ n, then the following properties hold:

• for all t ≥ oe +1
∣∣θ̃t
∣∣2 ≤ γ2 λ t

∣∣θ̃0
∣∣2 (20)

• For λ < 1 one has

lim
t→∞

|ηt/t−1| ≤ δt (21)

�

Proof: The proof of this result follows the same scheme
that the proof of result 1, the difference lies in the relation
betweenηt/t and θ̃t .

The ideal filter isF(q) = A(q)S(q)+q−dB(q)R(q)
S(q)

. Thus, con-
ditions (17) and (18) are much milder than conditions (9)
and (10) if a reasonable estimated model is available. This
remark leads to the following iterative identification scheme:

1) Choose a high thresholdδt and apply the CLOE-OBE
algorithm to getĜ(q);

2) Given this first estimation, design a filter

F(q) =
Â(q)S(q)+ q−dB̂(q)R(q)

S(q)

and choose a lowerδt ;
3) Apply the F-CLOE-OBE algorithm to get a neŵG(q);
4) Repeat steps 2 and 3 until convergence of step 3.

The first step is an initialization step: an initial estimateof
the model is necessary so as to implement this F-CLOE-
OBE algorithm. It is difficult to make a general discussion
on the behavior of that iterative scheme and no global
convergence results are available (not more than for the
recursive maximum likelihood algorithm [13]), however it
is successfully applied on a numerical example in the next
section.

Note that if F(q) ≃ A(q)S(q)+q−dB(q)R(q)
S(q) it is possible to

chooseδt = δvt . In that case, from (21) we have limt→∞ θ̂t =
θ̂ whereθ̂ is such that

|ηt | ≤ δvt

with ηt = F(q)εt = F(q)

(
yF

t − φ̂F
T

t θ̂
)

= yt − φ̂T
t θ̂. Then the

contribution of the filterF(q) is twofold: it relaxes stability
condition of the algorithm and it allows the estimation of a
modelĜ(q) such that:

∣∣∣∣∣

(
yt −

Ĝ(q)

1+ Ĝ(q)C(q)
rt

)∣∣∣∣∣≤ δvt (22)

which is coherent with (2), (3) and (4).

IV. SIMULATION RESULTS

Numerical data have been generated according to (2), (3)
and (4). The system and the controller are the following:

Go(q) =
q−1 +0.1q−2

1−1.8q−1+0.7q−2 C(q) =
0.1

1−0.4q−1



TABLE I

NUMERICAL VALUES OF THE TRUE PARAMETERS AND THE ESTIMATED

PARAMETERS

parameter θ (1) θ (2) θ (3) θ (4)

real value b0 = 1 b1 = 0.1 a1 = −1.8 a2 = 0.7

Procedure 1 0.6498 1.2544 −1.4893 0.2952

Procedure 2 0.7412 0.4164 −1.7398 0.6351

Let notice that the plant is unstable and condition (9) in result
1 is violated in this example.

The exogenous inputrt is a random binary sequence of
length N = 4000. vt is a noise generated in the following
manner:

vt = δvt

1
2
(et + sin(πt/10))

whereet is a white noise uniformly distributed in[−1;1] and
δvt = 5 (this corresponds to a signal to noise ratio of 9.12dB).
The first half of the data has been used in the estimation step,
the second half has been used in the validation step.

It can easily be shown that condition (9) in result 1 is
not satisfied in this example. However two identification
procedures have been used:

• Procedure 1: even if condition (9) is not satisfied, we
can try to use the CLOE-OBE algorithm to identify the
system. This is the first identification procedure.

• Procedure 2: this second identification procedure is our
iterative scheme. This scheme uses the F-CLOE-OBE
algorithm and has been applied over 10 iterations (on
this example the time required to obtain the convergence
of the estimates).

For each procedure we have chosen the thresholdδt as
follows:

• Procedure 1:δt = δvt .
• Procedure 2:δt : we have chosen a decreasing threshold.

At iteration i we have

δ(i)
t =

(
δ(ini)

t −δ( f in)
t

)
e−i +δ( f in)

t

with δ(ini)
t = 5δvt andδ( f in)

t = δvt .
The following results correspond to the estimates made on a
single data series.

Fig. 3 presents the improvement of the estimated vector at
the end of each iteration in the iterative scheme. It appears
that the iterative procedure allows a clear convergence of the
estimated parameters to their true value. This is confirmed
by Fig. 4 which gives the ideal filterF(q) and its successive
estimates. Fig. 5 shows the convergence of the estimated
models towards the nominal system. Note that on other
applications, it is possible that the number of iterations
required for convergence is different from 10.

The table I confirms the good performance of the proposed
iterative scheme compared to the algorithm CLOE-OBE: the
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Fig. 3. Convergence of parameters
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Fig. 4. Bode diagrams of ideal filterF(q) = A(q)S(q)+q−d B(q)R(q)
S(q)

and its
estimates

use of the filterF(q) in the algorithm improve the quality
of the estimated parameters. The closeness of the estimated
parameters to real parameters depends on the noise levelδvt .
Fig. 6 allows the comparison between Go(q)

1+Go(q)C(q) and its

estimates Ĝ(q)

1+Ĝ(q)C(q)
with procedure 1 and procedure 2. One

can conclude from these Bode diagrams that the developed
iterative method works well.

This is confirmed by Fig. 7 which presents thresholds±δvt

and the output errorsyt −
Ĝ(q)

1+Ĝ(q)C(q)
rt for each estimated

model (model for procedure 1 and final model for procedure
2 at the 10th iteration). It appears that the model obtained
with the iterative scheme using the F-CLOE-OBE is the only
one satisfying (22).

V. CONCLUSION

In this study, we have proposed two algorithms allowing
the identification of a system operating in closed loop and
subject to bounded disturbances. The second algorithm is
a filtered adaptation of the first one, the introduced filter
is used to relax some sufficient conditions for stability and
convergence. Using the second algorithm in an iterative
scheme has lead to a significant improvement of the estima-
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Fig. 7. Closed loop output error with estimated models

tion in a numerical example. In terms of perspective, some
comparisons with other methods will be presented. Moreover
it might be interesting to analyze the set membership of
the estimated parameters compared to the true values and
it might also be interesting to propose alternative solutions
to relax stability and convergence conditions.
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[18] T. Söderström and P. Stoica. ”System identification”. Prentice Hall,
1989.

[19] G. Tan and C. Wen and Y.C. Soh. ”Identification for systems with
bounded noise”.IEEE Transactions on automatic control, 42 (7), 998-
1001, 1997.

[20] P.M.J. Van Den Hof and R.J.P. Schrama. ”An indirect method for
transfer function estimation from closed loop data”.Automatica, 29,
1523-1527, 1993.

[21] A. Vicino and G. Zappa. ”Sequential approximation of parameter
sets for identification with parametric and nonparametric uncertainty”.
Control and Decision Conference, New York, 1993.


