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Abstract. We realize experimentally a cold atom system equivalent to the 3D

Anderson model of disordered solids where the anisotropy can be controlled

by adjusting an experimentally accessible parameter. This allows us to study

experimentally the disorder vs anisotropy phase diagram of the Anderson metal-

insulator transition. Numerical and experimental data compare very well with each

other and a theoretical analysis based on the self-consistent theory of localization

correctly discribes the observed behavior, illustrating the flexibility of cold atom

experiments for the study of transport phenomena in complex quantum systems.
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1. Introduction

The interplay of disorder and quantum interference has been an important subject in

physics for more than 50 years. Quantum interferences, which are at the heart of

most quantum effects, rely on precise relative phases between quantum trajectories,

which are strongly sensitive to perturbations like decoherence (i.e. coupling with a large

environment) and scattering of the wave function in potential wells. This last effect

becomes particularly difficult to describe theoretically in a disordered system, in which

these scattering processes have a random character. Intuitively, one easily understands

that such kind of effect shall play an important role for example in the low-temperature

electric conductance of solids. In fact, Anderson showed in 1958 that the presence

of disorder might produce a spatial localization of the wavefunction, which suppresses

conductivity [1] thus the name of “strong” localization.

Laser cooling opened the possibility of realizing very clean experiments in disordered

systems, which generated a burst of interest on the subject. In adequate conditions,

ultracold atoms placed in spatially structured laser beams feel this radiation as a

mechanical potential acting on the center of mass variables of the atoms. Disordered

potentials created in such a way allowed the realization of spatially disordered systems

in one dimension [2, 3] and three dimensions [4, 5]. Despite these progresses, the

Anderson metal-insulator transition (which manifests itself in 3 or more dimensions)

is still very difficult to study in such systems, because Anderson localization requires

a very strong disorder and – the cold atomic samples being prepared in the absence

of disorder – the energy distribution of the atoms unavoidably spreads across the so-

called mobility edge, an energy threshold separating localized and extended eigenstates.

This in turn implies that the localized fraction, which can be directly measured in cold-

atom experiments from the temporal evolution of the spatial probability distributions,

remains small. Fortunately, one can find other systems also described by the Anderson

localization physics, which are not a direct transposition of the condensed matter system,

but rely on the profound analogy between quantum chaotic systems and disordered

systems [6]. Using the quasiperiodic kicked rotor (QpKR) [7], an effectively 3D variant

of the paradigmatic system of quantum chaos [8], the Anderson transition has been

observed, its critical exponent measured experimentally [9, 10], its critical wavefunction

characterized [11], and its class of universality firmly established [12], making this system

an almost ideal environment to study Anderson type quantum phase transitions.

One advantage of this cold atom chaotic system as compared to other disordered

systems is that the disorder can be controlled very precisely: the mean free path and

the anisotropy are two experimentally tunable parameters. This allows us to present

in this work an experimental study of the disorder vs anisotropy phase diagram of the

Anderson transition, as well as an analytical description of these properties based on the

self-consistent theory of Anderson localization, which brings another important brick to

our detailed knowledge on the Anderson metal-insulator transition.
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2. Controlled disorder and anisotropy within a cold atom system

The quasiperiodic kicked rotor is described by the one-dimensional time dependent

Hamiltonian

Hqpkr =
p2

2
+K cosx (1 + ε cosω2t cosω3t)

∑

n

δ(t− n). (1)

Experimentally, it is realized by placing laser-cooled atoms (of mass M) in a standing

wave (formed by counterpropagating beams of intensity I0 and wavenumber kL) which

generates an effective sinusoidal mechanical potential – nicknamed “optical potential”

– cosx acting on the center of mass position x of the atom. The standing wave is

modulated by an acousto-optical modulator in order to form a periodic (of period T1)

train of short square pulses whose duration τ is short enough that, at the time scale

of atom center of mass dynamics, they can be assimilated to Dirac δ- functions. The

amplitude of such pulses is further modulated with frequencies ω2 and ω3, proportionally

to 1 + ε cosω2t cosω3t. Lengths are measured in units of (2kL)
−1, time in units of T1,

momenta in units of M/2kLT1; note that [x, p] = ik̄ with k̄ = 4~k2
LT1/M playing the

role of a reduced Planck constant. The pulse amplitude is K = k̄τΩ2/8∆L, where Ω is

the resonance Rabi frequency between the atom and the laser light and ∆L the laser-

atom detuning. Fixed parameters used throughout the present work are k̄ = 2.885,

ω2 = 2π
√
5, ω3 = 2π

√
13 ‡.

If ε = 0 one obtains the standard kicked rotor, which is known to display fully

chaotic classical dynamics for K ≥ 6 [16]. At long time, the dynamics is a so-called

chaotic diffusion in momentum space, which is – although perfectly deterministic –

characterized by a diffusive increase of the r.m.s. momentum: 〈p(t) − p(t = 0)〉 =

0, 〈[p(t) − p(0)]2〉 ∼ 2Dt (which D the classical diffusion constant) where the average

〈〉 is performed over an ensemble of trajectories associated with neighbouring initial

conditions. The statistical distribution of p(t) has the characteristic Gaussian shape of

a diffusion process, whose width increases like
√
t. Quantum mechanically, this system

displays the phenomenon of dynamical localization, that is, an asymptotic saturation of

the average square momentum 〈p2〉 [8] at long time, that is localization in momentum

space instead of chaotic diffusion, which has been proved to be a direct analog of the

Anderson localization in one dimension [17, 18, 19].

If 2π/T1, ω2, ω3, k̄ are incommensurable and ε 6= 0 one obtains the QpKR, which can

be proven to be equivalent to the Anderson model in 3 dimensions [7, 10, 20, 21]. In a

nutshell, the QpKR which is a 1-dimensional system with a time-dependent Hamiltonian

depending on 3 different quasi-periods, can be mapped on a kicked “pseudo”-rotor, a 3-

dimensional system with a time periodic Hamiltonian. As shown in detail in [10], both

‡ Rational values of ω2/2π, ω3/2π produce a periodically – instead of quasiperiodically – kicked rotor,

with different long time behaviour[13, 14, 15]. We chose “maximally irrational ratios” to avoid this

problem.
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systems share the same temporal dynamics. The Hamiltonian of the pseudo-rotor is:

H =
p21
2

+ ω2p2 + ω3p3 +K cosx1 [1 + ε cosx2 cosx3]
∑

n

δ(t− n) , (2)

with an initial condition taken as a planar source in momentum space (completely

delocalized along the transverse directions p2 and p3). Note that the kinetic energy has

a different dependence on the momentum in each direction: standard (quadratic) in

direction 1, but linear in directions 2 and 3; hence, the name pseudo-rotor.

The Hamiltonian (2) is periodic in configuration space. It can thus be expanded in

a discrete momentum basis composed of states |p〉 = |p = k̄p〉, where the pi are integers

§. In this basis, the evolution operator over one temporal period writes as the product

U = JV of an on-site operator: V (p) = e−iφp with phases φp =
k̄p2

1

2
+ ω2p2 + ω3p3 and

of a hopping operator J such that:

〈pf |J |pi〉 =
∫

dx

(2π)3
exp

[

−i
K cosx1 (1 + ε cosx2 cosx3)

k̄

]

exp
[

−i(pi − pf )x
]

. (3)

The phases V (p) are different on each site of the momentum lattice, and, although

perfectly deterministic, constitute a pseudo-random sequence completely analogous to

the true random on-site energies of the Anderson model. This makes it possible to

identify V as the disorder operator for the QpKR. The parameter K controls the hopping

amplitudes, that is the transport properties in the absence of disorder. The larger K,

the larger distance the system propagates in momentum space (with the operator J)

before being scattered by the disorder operator V . As shown below, the associated

mean free path in momentum space is of the order of K/k̄. Rather counter-intuitively,

the weak disorder limit then corresponds to the large K limit, that is strong pulses, while

the strong disorder limit where Anderson localization is expected corresponds to small

K. It should also be stressed that, for very small K, (very strong disorder), the system

remains frozen close to its initial state, with a trivial on-site Anderson localization. This

is not really surprizing as the classical dynamics is then regular instead of chaotic and

even the classical chaotic diffusion is suppressed.

In the following, we will concentrate on the role of the ε parameter, which drives

the anisotropy between the transverse directions and the longitudinal direction, showing

the analogy of (2) with a system of weakly coupled disordered chains as considered in

[22].

With such a system, we experimentally observed and characterized the Anderson

transition [9, 10], which manifests itself by the fact that the momentum distribution is

§ This implies periodic boundary conditions. In general – especially for an ”unfolded“ rotor for x1 is a

position in real space as realized in the experiment – one should use the Bloch theorem which guarantees

the existence of states whose wavefunction take a phase factor after translation by 2π. This amounts

at considering not integer pi values, but rather pi = ni + βi with ni an integer and βi a fixed quantity

called quasimomentum. All conclusions obtained in the simplest case βi = 0 can be straightforwardly

extended in the general case.
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Figure 1. Schematic phase diagram of the metal-insulator Anderson transition for the

quasi-periodic kicked rotor. The color plot corresponds to growth rate α of 〈p2(t)〉 ∝ tα

at long time (1000 kicks for this plot), estimated from numerical simulations. Blue color

represents localization (α = 0), red represents diffusive dynamics (α = 1). The black

line corresponds to α = 2/3, that is the critical line of the Anderson transition. Paths

(white dashed lines) form the grid used for the determination of Kc(ε).

exponentially localized Π(p; t) ∼ exp (− |p| /ploc) (with ploc the localization length) if K

is smaller than a critical value Kc(ε) and Gaussian diffusive Π(p; t) ∼ exp (−p2/4Dt)

(where D is the diffusion coefficient) for K > Kc(ε) after a sufficiently long time. At

criticality, K = Kc(ε), the localization length diverges, the diffusion constant vanishes,

and the critical state is found [11] to have a characteristic Airy shape

Π(p; t) ≈ 3

2

α
√

Λc(ε)t2/3
Ai

[

α

√

|p|2
Λc(ε)t2/3

]

(4)

following the anomalous diffusion at criticality: 〈p2〉 = Λc(ε)t
2/3 (here α =

31/6Γ(2/3)−1/2). The fundamental quantities characterizing the threshold of the

transition are therefore Kc(ε) and Λc(ε), and we will consider in the following their

dependence as a function of the anisotropy parameter ε.

3. Experimental determination of the anisotropy phase diagram

In our experience, we measure the population of the zero velocity class Π(0; t) using

Raman velocimetry [24, 25, 26]. This quantity is proportional to 〈p2(t)〉, with a
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Figure 2. Determination of the critical point from experimental data at two different

anisotropy ε. The finite-time scaling method (see text) applied to the experimental

data Λ(t) ∝ Π(p = 0; t)−2t−2/3 allows for a determination of the scaling function F

(Eq. (6)) represented in a and c and the scaling parameter ξ(K) shown in b and d. The

critical point corresponds to the tip at the right of the scaling function (see a and c),

at the intersection of the diffusive (top) and localized branch (bottom). The marked

maximum of ξ(K) gives a precise determination of Kc. The parameters are: ε = 0.4

for a and b; ε = 0.8 for c and d. t varies up to 120 kicks.

ε K1 −K2 Kc (exp) Kc (num) ln Λc(exp) ln Λc(num)

0.2 7.0-14.0 8.85 ± 0.1 8.84 ± 0.47 2.1 ± 0.1 2.71 ± 0.44

0.3 5.2-9.2 7.46 ± 0.05 7.71 ± 0.42 2.05 ± 0.08 2.22 ± 0.34

0.4 4.5-8.5 6.75 ± 0.04 6.77 ± 0.52 1.95 ± 0.05 1.81 ± 0.47

0.5 4.0-8.0 6.00 ± 0.04 5.93 ± 0.37 1.85 ± 0.05 1.36 ± 0.46

0.6 3.4-7.4 5.59 ± 0.04 5.27 ± 0.35 1.75 ± 0.05 1.10 ± 0.30

0.7 2.9-6.9 5.27 ± 0.03 4.99 ± 0.34 1.60 ± 0.05 0.94 ± 0.40

0.8 2.8-6.8 4.84 ± 0.03 4.70 ± 0.43 1.52 ± 0.04 0.98 ± 0.31

Table 1. Experimental results on the determination of the critical point of the

metal-insulator Anderson transition, for various values of the parameter ε of the quasi-

periodic kicked rotor. The second column indicates the range of K where data has been

taken. The experimentally measured values of both Kc and Λc are compared to the

numerically calculated values. The uncertainties on the experimental data are rather

small. The numerical data (with times up to 1000 kicks) have similar uncertainties, but

also incorporate systematic shifts of (Kc,Λc) as a function of time [23] which cannot

be estimated in the experimental data due to the restricted range of observation times

t ≤ 120 kicks.
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Figure 3. (a) Position of the critical point Kc(ε) , and (b) value of the critical Λc(ε).

Numerical results (black diamonds) and experimental measurements (red circles) are

represented with their associated error bars. The uncertainties on the experimental

data are rather small, as can be directly seen in fig. 2. The numerical data (with

times up to 1000 kicks) have similar uncertainties, but also incorporate systematic

deviations of (Kc,Λc) when estimated over various temporal ranges. These systematic

deviations cannot be easily measured in the experiment (limited to 120 kicks). In plot

(a) one observes a very good agreement between numerical and experimental results.

The agreement is good in plot (b), except in the region of low ε where decoherence is

expected to have a significant impact on the results and in the region of large ε where

the finite variance of the initial momentum distribution tends to increase Λc at 120

kicks but has only small effect on Kc.

proportionality factor which depends on the specific shape of Π(p). This factor varies

smoothly across the Anderson transition, so that the transition can be studied using

either 〈p2(t)〉 or Π(0; t). The scaling theory of localization [27, 10] predicts that 〈p2〉 has

characteristic asymptotic behaviors in tα, with α = 0 in the localized regime, α = 2/3

in the critical regime, and α = 1 in the diffusive regime. This prediction has been

fully confirmed by the experimental observations [11]. One can then define the scaling

variable [9, 10]:

Λ(t) ≡ 〈p2(t)〉
t2/3

∝ 1

Π(p = 0; t)2 t2/3
. (5)

Asymptotically, Λ(t) ∝ t−2/3, t0, t1/3 in the localized, critical and diffusive regimes,

respectively, so that ln Λ(t) vs ln t1/3 displays a positive slope 1 in the diffusive regime,

zero slope at the critical point and negative slope −2 in the localized regime, which allows

one to unambiguously identify the critical point. However, experimental limitations

prevent us from performing measurements at large enough times (in our experiments

typically tmax = 120) to distinguish precisely between the localized and diffusive

behaviors in the vicinity of the transition ‖. The main causes of this limitation is the

falling (under gravity action) of the cold atoms out of the standing wave and decoherence

‖ Note however that for the parameters used here, tmax/tloc ∼ 10 where tloc is the localization time for

the lowest K value used in each series at fixed ε, so that thoe lowest point is clearly in the localized

regime.
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induced by spontaneous emission.

Fortunately, a technique known as finite size scaling (which is finite time scaling in

our case), based on arguments derived from the so-called one parameter scaling theory

of the Anderson transition [27] allows us to overcome this limitation. The application of

this technique to our problem has been discussed in details in previous works [10, 20, 28];

let us just say here that it relies on the verified hypothesis that Λ can be written as a

one-parameter scaling function:

Λ = F

(

ξ(K)

t1/3

)

, (6)

with the scaling parameter ξ(K) which plays the role of the localization length ploc in the

localized regime and of the inverse of the diffusive constant in the diffusive regime. This

method produces a rather precise determination of the critical parameters Kc(ε) and

Λc(ε) and of the critical exponent of the Anderson transition [12] even from experimental

signals limited to a hundred of kicks or so. An example of such a determination is

presented in Fig. 2. The critical point corresponds to the tip at the right of the curve in

Fig. 2a and c, at the intersection of the two clearly defined branches: A diffusive (top)

and a localized branch (bottom). By construction, in principle ξ(K) should diverge

at the critical point, but the finite duration of the experiment and decoherence effects

produce a cutoff; however, it still presents, as shown in Fig. 2b and d a marked maximum

at the transition, and a careful fitting procedure taking these effects into account [12]

allows a precise determination of Kc. Once the value of Kc has been determined

according to the above technique, we measure the full momentum distribution, which is

found to be in excellent agreement with the predicted Airy shape, eq. (4), as shown in

[11]. A simple fit of the experimental data by an Airy function allows to measure 〈p2〉,
hence Λc.

We have measured the value of the critical parameters Kc(ε) and Λc(ε) [Eq. (5)]

for a grid of 7 paths at constant ε in the parameter plane (K, ε) (see Fig. 1) For each

path, 50 uniformly spaced values of K are used and the values of Π(0; t) measured for

each K value; the initial and final values or K are chosen symmetrically with respect to

the critical point. For each value of K, an average of 20 independent measurements is

performed, a full path thus corresponds to more than seven hours of data acquisition.

Table 1 gives the details of each path and the results obtained.

Figure 3 displays the experimental and numerical results. Plot (a) indicates the

position of the critical point Kc(ε) and plot (b) the critical value Λc(ε). In both plots,

experimental measurements are indicated by red circles, numerical simulation results

by black diamonds and are represented along with their error bars. The uncertainty

of the numerical data (see the following for a discussion of the numerical method) is

evaluated from data up to t = 1000 kicks and thus incorporates systematic shifts of

(Kc,Λc) as a function of time [23] which cannot be estimated in the experimental data

due to the restricted range of observation times t ≤ 120 kicks. This results in larger

numerical error bars than experimental ones. Note also that a small uncertainty in Kc
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implies a much larger error in Λc due to its rapid variation as a function of K. In plot

(a), one observes a very good agreement between numerical and experimental results.

In plot (b), the agreement is good, except in the region of low ε which corresponds to

high values of K and are thus more sensitive to decoherence effects. In the region of

large ε, the finite variance of the initial momentum distribution tends to increase the

experimental Λc, an effect which is not present in the numerical data.

4. Self-consistent theory of the anisotropy phase diagram

We shall now try to describe theoretically the observed anisotropy dependences of

the two critical parameters Kc(ε) and Λc(ε). The approach we shall follow is based

on the self-consistent theory of localization [29] which has been used successfully to

predict numerous properties of the Anderson transition, and in particular the disorder

vs energy [30] and disorder vs anisotropy [22] phase diagrams of the 3D Anderson model.

Moreover, the self-consistent theory of localization has been transposed to the case

of the kicked rotor [31, 32]. We will use in the following a simple generalization of

this latter approach adapted to the case of the 3D anisotropic kicked pseudo-rotor (2)

corresponding to the quasiperiodic 1D kicked rotor.

The starting point is to consider the probability to go from a site pi to a site pf

in N steps, P (pi,pf , t = N) ≡ |〈pf |UN |pi〉|2. It consists in propagations mediated

by the hopping amplitudes 〈pn+1|J |pn〉 and by collisions on the disorder represented

by V (p) = e−iφp . Two important points are the following: (i) one can consider in

a first approximation the φp as completely random phases [17, 33, 34] and we will

consider quantities averaged over those phases, for example P (pi,pf , t = N) where the

line over the quantity represents this averaging; (ii) 〈pn+1|J |pn〉 plays the role of the

disorder averaged Green’s function (in the usual language of diagrammatic theory of

transport in disordered systems [35]), that is the propagation between two scattering

events. Indeed, when ε = 0 and in the direction p1, this is just a Bessel function which

decreases exponentially fast for |pn+1 − pn| ≫ K/k̄ and one can thus see K/k̄ as the

analog of the mean free path, with the limit of small disorder corresponding to K/k̄ ≫ 1.

One can attack the problem of the calculation of P by looking for propagation

terms – including of course interference patterns – which survive the disorder averaging.

At lowest order, the contribution containing no interference term to the probability P

is called the Diffuson [35]. It corresponds to the classical chaotic diffusion and can be

shown to have a diffusive kernel expressed in the reciprocal space (q, ω) (conjugated to

(p, t)) as [31, 32, 20]:

PD(q, ω) =
1

−iω +
∑

j Djjq2j
. (7)

Here, the diffusive tensor D – computed in [36] for large K – is anisotropic, but diagonal,
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with:

D11 =
K2

4k̄2

(

1 +
ε2

4

)

,

D22 = D33 =
K2ε2

16 k̄2
.

(8)

This anisotropic diffusive kernel is valid at long times and on large scale in momentum

space, that is in the so-called hydrodynamic limit ω ≪ 1 and qjkj ≪ 1, with kj the mean

free path along direction j which is such that Djj = k2
j/4. Equation (7) means that in

the regime of long times and large distances (in momentum space), we should have a

diffusive transport with 〈p2j〉 = 2Djjt. This is certainly not the case near the Anderson

transition, which implies that we must go beyond the Diffuson approximation.

The simplest interferential correction – known as weak localization correction –

is due to the constructive interference between pairs of time-reversed paths ¶, or

equivalently to the maximally crossed diagrams, or Cooperon. The net effect of these

interferential contributions is to increase the return probability at the initial point and

to decrease the diffusion constant. It is possible to compute perturbatively the weak

localization correction as an integral (see below) depending on the diffusion constant

itself. Contributions from higher orders are extremely complicated and there is no

systematic way of summing them all.

The self-consistent theory of localization is a simple attempt at approximately

summing the most important contributions: instead of computing the weak localization

correction using the raw diffusion constant, one uses the one renormalized because of

weak localization. The whole thing must of course be self-consistent, so that the diffusion

constant computed taking into account the weak localization correction is equal to the

one input in the calculation of this correction. The price to pay is that one can no longer

define a single diffusion constant – or, in the anistropic case, a single diffusion tensor

– but must introduce a frequency-dependent diffusion constant (or diffusion tensor).

This is nevertheless quite natural if one wants to describe the transition from a diffusive

behaviour as short time (large frequency) when interference terms are small to a localized

behaviour at long time (small frequency). The intensity propagator P takes then the

approximate form: P (q, ω) = 1
−iω+

∑
j Djj(ω)q2j

with the frequency dependent diffusion

constant following the self-consistent equation [20, 29, 31]:

Dii(ω) = Dii − 2Dii(ω)

∫

d3q

(2π)3
1

−iω +
∑

j Djj(ω)q2j
. (9)

Quite remarkably, this approach is able to account for a certain number of observed

features: it predicts a transition between a metallic phase of diffusive transport for

K > Kc(ε) where Dii(ω) ∼
ω→0

Dii(0) > 0, to a localized phase for K < Kc(ε) where

Dii(ω) ∼
ω→0

−iω ploc
2
i with ploci the localization length along direction i. At the threshold,

¶ The quasi-periodic kicked rotor or the equivalent periodic 3D pseudo-rotor is not invariant by time

reversal. However, the Hamiltonian, eq. (2), is invariant by the product of time reversal and parity.

The existence of such an anti-unitary symmetry is sufficient for the system to belong to the Orthogonal

universality class, and consequently for the existence of the weak localization correction.
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the transport is predicted to follow an anomalous diffusion with Dii(ω) ∼ (−iω)1/3 and

this implies the Airy shape of the critical state observed experimentally [11]. In the

following, we will calculate explicitly the critical parameters Kc(ε) and Λc(ε) from (9)

and show that it also complies well with the experimental observations.

One shall evaluate the integral on the right hand side of equation (9). It is important

to remark that, although the system is anistropic and thus 3 different equations (9) have

to be solved simultaneously, they in fact follow exactly the same renormalization scheme:

dividing eq. (9) by Dii produces the same equation in all 3 dimensions. In other words,

there is no anomaly in the anisotropic character at the critical point.

It is well known [29] that in dimension d ≥ 2, the results of the self-consistent

theory are cutoff dependent. Indeed, the integral in (9) diverges at large q and must be

limited to qj < qmax

j , where qmax

j is a cutoff on the order of k−1
j , i.e. the inverse of the

mean free path. In the following, we will take [22] qmax

j ≡ C1k
−1
j = C1/(2

√

Djj) with

C1 a numerical constant of the order of one. We make the following change of variables:

Yj =
√

Djj(ω)

−iω
qj and define the rescaled cutoff: ℓ(ω) ≡

√

Djj(ω)

−iω
qmax

j (from Eq. (9) it is

clear that the ratio Djj(ω)/Djj is isotropic, thus ℓ(ω) is isotropic). One obtains:

Dii(ω)

Dii
= 1− C1

2π2

1√
D11D22D33

[

1− tan−1 ℓ(ω)

ℓ(ω)

]

. (10)

The threshold Kc(ε) of the Anderson transition is then approached from the

diffusive regime, which is caracterized by Dii(ω)
Dii

→
ω→0

Dii(0)
Dii

→
K→Kc

0 and ℓ(ω) →
ω→0

∞.

Therefore, Kc(ε) is such that:

D11D22D33 =
C1

2

4π4
. (11)

From the above expressions (8) for the diffusion tensor, one deduces the following

dependence of the threshold vs anisotropy:

Kc(ε) =

(

24C1

π2

)1/3
k̄

(ε2
√

1 + ε2/4)1/3
. (12)

The self-consistent theory allows also for a determination of Λc(ε). In fact, at

finite but sufficiently small ω (i.e. at sufficiently large times), ℓ(ω) is large and one can

evaluate the right hand side of (10) at the lowest order in 1/ℓ(ω) which gives:

Dii(ω)

(−iω)1/3
=

1

(2π)2/3
D11

(D11D22D33)1/3
. (13)

We know from the study of the critical state of the Anderson transition [11] that
D11(ω)

(−iω)1/3
= Γ(2/3)

3
Λc which allows us to write:

Λc(ε) =
3

Γ(2/3)

(

1

2π

)2/3(
D2

11

D22D33

)1/3

. (14)
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Using the diffusion tensor relations (8), one obtains finally:

Λc(ε) =
3

Γ(2/3)

(

2

π

)2/3 (
1 + ε2/4

ε2

)2/3

. (15)

Equations (12) and (15) are the most important results of this section. They predict

that the threshold Kc(ε) and the critical anomalous diffusion parameter Λc(ε) diverge

at large anisotropy as Kc(ε) ∼ ε−2/3 and Λc(ε) ∼ ε−4/3. Therefore, when ε = 0 we

recover the case of the 1D periodic kicked rotor which is always localized whatever the

kicking amplitude K.

5. Experimental and numerical tests of the self-consistent theory of the

anisotropy phase diagram

In order to test the predictions of the self-consistent theory, we have performed numerical

simulations of the dynamics of the quasi-periodic kicked rotor (1). We have determined

the critical parameters Kc(ε) and Λc(ε) from the crossing of the curves ln Λ = ln 〈p2〉

t2/3
vs

K at different times (see figure 4). At the critical point, Λ(t) is a constant Λ(t) = Λc(ε)

corresponding to the critical anomalous diffusion 〈p2〉 ∼ t2/3 and the crossing of the

curves in fig. 4, whereas for K < Kc(ε) (K > Kc(ε), resp.), Λ(t) decreases (increases,

resp.) as time increases. We have evaluated the uncertainty of the parameters (Kc,Λc)

by the region where the evolution of Λ(t) is not monotonous (due to systematic shifts of

(Kc,Λc) as a function of time [23]). The results are represented in fig. 5 for Kc(ε) and in

fig. 6 for Λc(ε) by the white filled region between the blue filled region where the system

is localized and pink filled region where the dynamics is diffusive. The data seem to

follow an algebraic increase as the anisotropy parameter ε decreases (linear dependence

in log-log scale as in figs. 5 and 6), on top of which oscillations are also clearly seen.

The self-consistent theory discussed in the previous section predicts that the critical

regime of the Anderson transition is given by Eq. (11). Various approximations – leading

to slightly different predictions for the position of the critical point – can be used for

the values of the components of the diffusion tensor:

• (i) The simplest approximation is to use eq. (8), valid asymptotically for large

K. This results in the simple analytic predictions (12) and (15), represented by

black lines in figures 5 and 6. The algebraic dependences of Kc(ε) and Λc(ε) are

well accounted for by these simple predictions, however they fail to reproduce the

oscillating corrections observed in the numerical data.

• (ii) The theoretical prediction (8) for the diffusion tensor D miss the oscillations of

the diffusion tensor of the 3D kicked pseudo-rotor (2) vs K and k̄. Such oscillations

are well known in the case of the 1D periodic kicked rotor [37, 33] and arise due to

subtle temporal correlation effects. In our case, we have checked that they could be

described approximately by the known oscillating form [33], but only along direction
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11
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33

Figure 4. Method of determination of the threshold Kc(ε). Upper panel: Numerical

data for ln Λ = ln 〈p2〉

t2/3
vs K at different times ranging from t = 36 to 956. The threshold

corresponds to the crossing of these lines where we have the critical anomalous diffusion

〈p2〉 ∼ t2/3, whereas for K < Kc(ε), Λ(t) decreases at long time (localized regime)

and for K > Kc(ε) Λ(t) increases at long time (metallic regime). The uncertainty

region (between the orange and violet dash-dotted lines) corresponds to the region

where the evolution of Λ(t) is not monotonous. Lower panel: The different degrees of

approximation for 16π4D11D22D33. According to Eq. (11) (with C1 = 1/2, see text),

this quantity should be equal to unity at the critical point. The black line corresponds

to the simple analytic prediction (8) for the diffusion tensor. The red line shows the

theoretical prediction incorporating oscillating corrections for the diffusion tensor (see

Eq. (16) and text). The green line with points shows numerical data for the diffusion

tensor D of the 3D kicked rotor (2), at short time. The parameters are: k̄ = 2.89,

ω2 = 2π
√
5 and ω3 = 2π

√
13, ε = 0.036.

1:
D̃11 ≈ D11 × {1− 2J2(K̃)[1− J2(K̃)]} ,

D̃22 = D̃33 = D22 = D33 .
(16)

with K̃ ≡ K sin k̄/2
k̄/2

and J2 the usual Bessel function. The use of the above equation

for the diffusion tensor allows for a better analytical description of the anisotropy

phase diagram, see the red lines in figures 5 and 6.

• (iii) The third type of approximation relies on a direct numerical calculation of

the diffusion tensor D of the 3D kicked rotor (2) at short time by a linear fitting

procedure over the first ten kicks of 〈p2i 〉 = 2Diit. This gives a numerical prediction

of the self-consistent theory for the anisotropy phase diagram represented by the
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Figure 5. Threshold of the Anderson transition vs anisotropy (log-log scale). The

anisotropy dependence of Kc(ε) with the associated uncertainty is determined from

numerical simulations of the dynamics of the quasi-periodic kicked rotor and is

represented by the white filled region between the blue (localized) and pink (metallic)

filled regions. The three degrees of approximation of the self-consistent theory

prediction (11) (with C1 = 1/2) are shown: (i) the black line corresponds to the

simple analytic prediction (12), (ii) the red line incorporates oscillating corrections

for the diffusion tensor (see Eq. (16) and text) while (iii) the green line with points

corresponds to numerical data for the diffusion tensor D of the 3D kicked rotor (2),

at short time. The blue points represent the experimental data. The parameters are:

k̄ = 2.89, ω2 = 2π
√
5 and ω3 = 2π

√
13.

0.02 0.05 0.10 0.20 0.50 1.00
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50
100

500
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Figure 6. Critical parameter Λc vs anisotropy (log-log scale). The anisotropy

dependence of Λc(ε) with the associated uncertainty is determined from numerical

simulations of the dynamics of the quasi-periodic kicked rotor and is represented by

the white filled region between the blue (localized) and pink (metallic) filled regions.

The prediction (14) of the self-consistent theory is shown with the three different

degrees of approximations considered: (i) the simple analytic prediction (15) is shown

in black line, (ii) the red lines is based on the analytic prediction Eq. (16) for the

diffusion tensor incorporating oscillating corrections in K and k̄ and (iii) numerical

data for the diffusion tensor D of the 3D kicked rotor at short time (2) give the green

line with points. The blue points represent the experimental data. The parameters

are: k̄ = 2.89, ω2 = 2π
√
5 and ω3 = 2π

√
13.
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green lines with points in figures 5 and 6. They clearly show oscillations around

the power law behaviors of Kc(ε) and Λc(ε), and are in very good agreement with

the numerical data.

Last but not least, we clearly see in fig. 5 and 6 that the predictions of the self-

consistent theory agree also very well with the experimental data represented by blue

points. Therefore, the self-consistent theory appears to be a powerful way to describe

the Anderson transition with the quasi-periodic kicked rotor.

6. Conclusion

In conclusion, we presented in this work a rather complete study of the anisotropy

phase diagram of the Anderson transition in the quasiperiodic kicked rotor. Numerical

and experimental results were found to be in good agreement with each other, and

theoretical expressions based on the self-consistent theory of the Anderson transition

correctly describe the shape dependence of these functions. These results bring an

important additional brick to our understanding of the Anderson transition, and put

in an even firmer ground the status of the quasiperiodic kicked rotor as one of the

simplest – if not the simplest – cold atom system for experimentally studying Anderson

localization.
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