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In this paper we study the realizability of a given smooth periodic gradient field ∇u defined in R d , in the sense of finding when one can obtain a matrix conductivity σ such that σ∇u is a divergence free current field. The construction is shown to be always possible locally in R d provided that ∇u is non-vanishing. This condition is also necessary in dimension two but not in dimension three. In fact the realizability may fail for non-regular gradient fields, and in general the conductivity cannot be both periodic and isotropic. However, using a dynamical systems approach the isotropic realizability is proved to hold in the whole space (without periodicity) under the assumption that the gradient does not vanish anywhere. Moreover, a sharp condition is obtained to ensure the isotropic realizability in the torus. The realizability of a matrix field is also investigated both in the periodic case and in the laminate case. In this context the sign of the matrix field determinant plays an essential role according to the space dimension.

Introduction

The mathematical study of composite media has grown remarkably since the seventies through the asymptotic analysis of pde's governing their behavior (see, e.g., [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF], [START_REF] Bakhvalov | Homogenisation: Averaging Processes in Periodic Media, Mathematical Problems in the Mechanics of Composite Materials, translated from the Russian by D. Le?tes[END_REF], [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals, translated from the Russian[END_REF], [START_REF] Milton | The Theory of Composites[END_REF]). In the periodic framework of the conductivity equation, the derivation of the effective (or homogenized) properties of a given composite conductor in R d , with a periodic matrix-valued conductivity σ, reduces to the cell problem of finding periodic gradients ∇u solving div (σ∇u) = 0 in R d , (1.1) which gives the effective conductivity σ * via the average formula

σ * ∇u = σ∇u . (1.2)
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Note that the periodicity condition is not actually a restriction, since by [START_REF] Raitums | On the local representation of G-closure[END_REF] (see also [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF], Theorem 1.3.23) any effective matrix can be shown to be a pointwise limit of a sequence of periodic homogenized matrices. In equation (1.1) the vector-valued function ∇u represents the electric field, while σ∇u is the current field according to Ohm's law. Alternatively we can consider a vector-valued potential U with gradient DU where each component of U satisfies (1.1). In this case the components of U represent the potentials obtained for different applied fields, and DU will be referred to as the matrix-valued electric field. Going back to the original conductivity problem it is then natural to characterize mathematically among all periodic gradient fields those solving the conductivity equation (1.1) for some positive definite symmetric periodic matrix-valued function σ. In other words the question is to know which electric fields are realizable. On the other hand, this work is partly motivated by the search for sharp bounds on the effective moduli of composites. This search has led investigators to derive as much information as possible about fields in composites. A prime example is given by the positivity of the determinant of periodic matrix-valued electric fields in two dimensions obtained by Alessandrini and Nesi [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF]. This led to sharp bounds on effective moduli for three phase conducting composites (see, e.g., [START_REF] Nesi | Bounds on the effective conductivity of two-dimensional composites made of n ≥ 3 isotropic phases in prescribed volume fraction: the weighted translation method[END_REF][START_REF] Cherkaev | Optimal anisotropic three-phase conducting composites: Plane problem[END_REF]). Therefore, a natural question to ask, which we address here, is: what are the conditions on a gradient to be realizable as an electric field?

In Section 2 we focus on vector-valued electric fields. First of all, due to the rectification theorem we prove (see Theorem 2.2) that any non-vanishing smooth gradient field ∇u is isotropically realizable locally in R d , in the sense that in the neighborhood of each point equation (1.1) holds for some isotropic conductivity σI d . Two examples show that the regularity of the gradient field is essential, and that the periodicity of σ is not satisfied in general. Conversely, in dimension two the realizability of a smooth periodic gradient field ∇u implies that ∇u does not vanish in R 2 . This is not the case in dimension three as exemplified by the periodic chain-mail of [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF]. Again in dimension two a necessary and sufficient condition for the (at least anisotropic) realizability is given (see Theorem 2.7). Then, the question of the global isotropic realizability is investigated through a dynamical systems approach. On the one hand, considering the trajectories along the gradient field ∇u which cross a fixed hyperplane, we build (see Proposition 2.10) an admissible isotropic conductivity σ in the whole space. The construction is illustrated with the potential u(x) := x 1 -cos(2πx 2 ) in dimension two. On the other hand, upon replacing the hyperplane by the equipotential {u = 0}, a general formula for the isotropic conductivity σ is derived (see Theorem 2.14) for any smooth gradient field in R d . Finally, a sharp condition for the isotropic realizability in the torus is obtained (see Theorem 2.16), which allows us to construct a periodic conductivity σ.

Section 3 is devoted to matrix-valued fields. The goal is to characterize those smooth potentials U = (u 1 , . . . , u d ) the gradient DU of which is a realizable periodic matrix-valued electric field. When the determinant of DU has a constant sign, it is proved to be realizable with an anisotropic matrix-valued conductivity σ. This can be achieved in an infinite number of ways using Piola's identity coming from mechanics (see Theorem 3.2 and Proposition 3.5). This yields a necessary and sufficient realizability condition in dimension two due to the determinant positivity result of [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF]. However, the periodic chain-mail example of [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF] shows that this condition is not necessary in dimension three. We extend (see Theorem 3.7) the realizability result to (nonregular) laminate matrix fields having the remarkable property of a constant sign determinant in any dimension (see [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF], Theorem 3.3).

Notations

• (e 1 , . . . , e d ) denotes the canonical basis of R d .

• I d denotes the unit matrix of R d×d , and R ⊥ denotes the 90 • rotation matrix in R 2×2 .

• For A ∈ R d×d , A T denotes the transpose of the matrix A.

• For ξ, η ∈ R d , ξ ⊗ η denotes the matrix [ξ i η j ] 1≤i,j≤d .

• Y denotes any closed parallelepiped of R d , and

Y d := [0, 1] d . • • denotes the average over Y . • C k ♯ (Y ) denotes the space of k-continuously differentiable Y -periodic functions on R d . • L 2 ♯ (Y ) denotes the space of Y -periodic functions in L 2 (R d ), and H 1 ♯ (Y ) denotes the space of functions ϕ ∈ L 2 ♯ (Y ) such that ∇ϕ ∈ L 2 ♯ (Y ) d .
• For any open set Ω of R d , C ∞ c (Ω) denotes the space of smooth functions with compact support in Ω, and D ′ (Ω) the space of distributions on Ω.

• For u ∈ C 1 (R d ) and U = (U j ) 1≤j≤d ∈ C 1 (R d ) d , ∇u := ∂u ∂x i 1≤i≤d and DU := ∇U 1 , . . . , ∇U d = ∂U j ∂x i 1≤i,j≤d . (1.3) 
The partial derivative ∂u ∂x i will be sometimes denoted ∂ i u.

• For Σ = [Σ ij ] 1≤i,j≤d ∈ C 1 (R d ) d×d , Div (Σ) := d i=1 ∂Σ ij ∂x i 1≤j≤d
and Curl (Σ) := ∂Σ ik ∂x j -∂Σ jk ∂x i 1≤i,j,k≤d .

(1.4)

• For ξ 1 1 , . . . , ξ d-1 in R d , the cross product ξ 1 × • • • × ξ d-1 is defined by ξ • ξ 1 × • • • × ξ d-1 = det ξ, ξ 1 , . . . , ξ d-1 , for any ξ ∈ R d , (1.5) 
where det is the determinant with respect to the canonical basis (e 1 , . . . , e d ), or equivalently, the k th coordinate of the cross product is given by

ξ 1 × • • • × ξ d-1 • e k = (-1) k+1 ξ 1 1 ••• ξ d-1 1 . . . . . . . . . ξ 1 k-1 ••• ξ d-1 k-1 ξ 1 k+1 ••• ξ d-1 k+1 . . . . . . . . . ξ 1 d ••• ξ d-1 d . (1.6)
2 The vector field case 

(x) := x 2 -x 1 + ˆx1 0 χ(t) dt, for any x = (x 1 , x 2 ) ∈ R 2 .
(2.4)

The function u is Lipschitz continuous, and

∇u = χ e 2 + (1 -χ) (e 2 -e 1 ) a.e. in ∈ R 2 .
(2.5)

The discontinuity points of ∇u lie on the lines {x

1 = 1/2 (1 + k)}, k ∈ Z. Let Q := (-r, r) 2
for some r ∈ (0, 1/2).

Assume that there exists a positive function σ ∈ L ∞ (Q) such that σ∇u is divergence free in Q. Let v be a stream function such that σ∇u = R ⊥ ∇v a.e. in Q. The function v is unique up to an additive constant, and is Lipschitz continuous. On the one hand, we have 0 = ∇u • ∇v = (e 2 -e 1 ) • ∇v a.e. in (-r, 0) × (-r, r),

(2.6) hence v(x) = f (x 1 + x 2 ) for some Lipschitz continuous function f defined in [-2r, r]. On the other hand, we have 0 = ∇u • ∇v = e 2 • ∇v a.e. in (0, r) × (-r, r),

hence v(x) = g(x 1 ) for some Lipschitz continuous function g in [0, r]. By the continuity of v on the line {x 1 = 0}, we get that f (x 2 ) = g(0), hence f is constant in [-r, r]. Therefore, we have ∇v = 0 a.e. in (-r, 0) × (0, r) and σ∇u = σ (e 2 -e 1 ) = 0 a.e. in (-r, 0) × (0, r), (2.8) which contradicts the equality σ∇u = R ⊥ ∇v a.e. in Q. Therefore, the field ∇u is non-zero a.e. in R 2 , but is not an isotropically realizable electric field in the neighborhood of any point of the lines {x

1 = 1/2 (1 + k)}, k ∈ Z.
Remark 2.5. The singularity of ∇u in Example 2.4 induces a jump of the current at the interface {x 1 = 0}. To compensate this jump we need to introduce formally an additional current concentrated on this line, which would imply an infinite conductivity there. The assumption of bounded conductivity (in L ∞ ) leads to the former contradiction. Alternatively, with a smooth approximation of ∇u around the line {x 1 = 0}, then part i) of Theorem 2.2 applies which allows us to construct a suitable conductivity. But this conductivity blows up as the smooth gradient tends to ∇u.

Example 2.6. Consider the function u defined in R by

u(x) := x 1 -cos (2πx 2 ) , for any x = (x 1 , x 2 ) ∈ R 2 .
(2.9)

The function u is smooth, and its gradient ∇u is Y 2 -periodic, independent of the variable x 1 and non-zero on R 2 . Assume that there exists a smooth positive function σ defined in R 2 , which is a-periodic with respect to x 1 for some a > 0, and such that σ∇u is divergence free in R 2 . Set Q := (0, a)×(-r, r) for some r ∈ (0, 1 2 ). By an integration by parts and taking into account the periodicity of σ∇u with respect to x 1 , we get that

0 = ˆQ div (σ∇u) dx = ˆr -r σ∇u(a, x 2 ) -σ∇u(0, x 2 ) • e 1 dx 2 =0 + ˆa 0 σ∇u(x 1 , r) -σ∇u(x 1 , -r) • e 2 dx 1 = 2π sin (2πr) ˆa 0 σ(x 1 , r) + σ(x 1 , -r) dx 1 > 0,
(2.10) which yields a contradiction. Therefore, the Y 2 -periodic field ∇u is not an isotropically realizable electric field in the torus.

Proof of Theorem 2.2.

i) Let x 0 ∈ R d . First assume that d > 2.
By the rectification theorem (see, e.g., [START_REF] Arnold | Équations Différentielles Ordinaires[END_REF]) there exist an open neighborhood V 0 of x 0 , an open set W 0 , and a C 1 -diffeomorphism Φ : V 0 → W 0 such that DΦ T ∇u = e 1 . Define v i := Φ i+1 for i ∈ {1, . . . , d -1}. Then, we get that ∇v i • ∇u = 0 in V 0 , and the rank of (∇v 1 , . . . , ∇v d-1 ) is equal to (d -1) in V 0 . Consider the continuous function

σ := |∇v 1 × • • • × ∇v d-1 | |∇u| > 0 in V 0 . (2.11)
Since by definition, the cross product ∇v 1 ו • •×∇v d-1 is orthogonal to each ∇v i as is ∇u, then due to the condition (2.3) combined with a continuity argument, there exists a fixed τ 0 ∈ {±1} such that

∇v 1 × • • • × ∇v d-1 = τ 0 σ∇u in V 0 .
(2.12)

Moreover, Theorem 3.2 of [START_REF] Dacorogna | Direct Methods in the Calculus of Variations[END_REF] implies that ∇v 1 × • • • × ∇v d-1 is divergence free, and so is σ∇u. Therefore, ∇u is an isotropically realizable electric field in V 0 . When d = 2, the equality ∇v 1 • ∇u = 0 in V 0 yields for some fixed τ 0 ∈ {±1},

τ 0 R ⊥ ∇v 1 = |∇v 1 | |∇u| σ := ∇u in V 0 , (2.13) 
which also allows us to conclude the proof of (i).

ii) It is a straightforward consequence of [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF] (Proposition 2, the smooth case).

iii) Ancona [START_REF] Ancona | Some results and examples about the behavior of harmonic functions and Green's functions with respect to second order elliptic operators[END_REF] first built an example of potential with critical points in dimension d ≥ 3. The following construction is a regularization of the simpler example of [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF] which allows us to derive a change of sign for the determinant of the matrix electric field. Consider the periodic chainmail

Q ♯ ⊂ R 3 of [8]
, and the associated isotropic two-phase conductivity σ κ which is equal to κ ≫ 1 in Q ♯ and to 1 elsewhere. Now, let us modify slightly the conductivity σ κ by considering a smooth Y 3 -periodic isotropic conductivity σκ ∈ [1, κ] which agrees with σ κ , except within a thin boundary layer of each interlocking ring Q ⊂ Q ♯ , of width κ -1 from the boundary of Q.

Proceeding as in [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF] it is easy to prove that the smooth periodic matrix-valued electric field D Ũκ solution of Div σκ

D Ũκ = 0 in R 3 , with D Ũκ = I 3 , (2.14) 
converges (as κ → ∞) strongly in L 2 (Y 3 ) 3×3 to the same limit DU as the electric field DU κ associated with σ κ . Then, by virtue of [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF] det (DU) is negative around some point between two interlocking rings, so is det D Ũκ for κ large enough. This combined with det D Ũκ = 1 and the continuity of D Ũκ , implies that there exists some point y 0 ∈ Y 3 such that det D Ũκ (y 0 ) = 0. Therefore, there exists ξ ∈ R 3 \ {0} such that the potential u := Ũκ • ξ satisfies ∇u = ξ and ∇u(y 0 ) = D Ũκ (y 0 ) ξ = 0. Theorem 2.2 is thus proved.

Characterization of the anisotropic realizability in dimension two

In dimension two we have the following characterization of realizable electric vector fields:

Theorem 2.7. Let Y be a closed parallelogram of R 2 . Consider a function u ∈ C 1 (R 2 ) satis- fying (2.
2). Then, a necessary and sufficient condition for ∇u to be a realizable electric field associated with a symmetric positive definite matrix-valued conductivity in

C 0 ♯ (Y ) d×d , is that there exists a function v ∈ C 1 (R 2 ) satisfying (2.2) such that R ⊥ ∇u • ∇v = det (∇u, ∇v) > 0 everywhere in R 2 .
(2.15)

Remark 2.8. The result of Theorem 2.7 still holds under the less regular assumption

∇u ∈ L 2 ♯ (Y ) 2 , ∇u = 0 everywhere in R 2 and ∇u = 0. (2.16)
Then, the Y -periodic conductivity σ defined by the formula (2.17) below is only defined almost everywhere in R 2 , and is not necessarily uniformly bounded from below or above in the cell period Y . However, σ∇u remains divergence free in the sense of distributions on R 2 .

Proof of Theorem 2.7.

Sufficient condition: Let u, v ∈ C 1 (R 2 ) be two functions satisfying (2.2) and (2.15). From (2.15) we easily deduce that ∇u does not vanish in R 2 . Then, we may define in R 2 the function

σ := 1 |∇u| 4 ∂ 1 u ∂ 2 u -∂ 2 u ∂ 1 u T R ⊥ ∇u • ∇v -∇u • ∇v -∇u • ∇v |∇u•∇v| 2 +1 R ⊥ ∇u•∇v ∂ 1 u ∂ 2 u -∂ 2 u ∂ 1 u . (2.17)
Hence, σ is a symmetric positive definite matrix-valued function in C 0 ♯ (Y ) d×d with determinant |∇u| -4 . Moreover, a simple computation shows that σ∇u = -R ⊥ ∇v, so that σ∇u is divergence free in R d . Therefore, ∇u is a realizable electric field in R d associated with the anisotropic conductivity σ.

Necessary condition: Let u ∈ C 1 (R) satisfying (2.
2) such that ∇u is a realizable electric field associated with a symmetric positive definite matrix-valued conductivity σ ∈ C 0 ♯ (Y ) d×d in R d . Consider the unique (up to an additive constant) potential v which solves div (σ∇v

) = 0 in R d , with ∇v ∈ H 1 ♯ (Y ) d and ∇v = R ⊥ ∇u , and set U := (u, v). By (2.2) we have det DU = R ⊥ ∇u • ∇v = ∇u 2 > 0. (2.18)
Hence, due to [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF] (Theorem 1) we have det (DU) > 0 a.e. in R 2 . On the other hand, assume that there exists a point y 0 ∈ R 2 such that det (DU) (y 0 ) = 0. Then, there exists ξ ∈ R 2 \ {0} such that the potential u := Uξ satisfies ∇u(y 0 ) = DU(y 0 ) ξ = 0, which contradicts Proposition 2 of [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF] (the smooth case). Therefore, we get that R ⊥ ∇u • ∇v = det (DU) > 0 everywhere in R 2. Consider the function u defined by (2.9), and define the function v by v(x) := x 2 . Then, formula (2.17) yields the smooth conductivity

σ = 1 1 + 4π 2 sin 2 (2πx 2 ) 2 1 + 4π 2 sin 2 (2πx 2 ) 2 + 4π 2 sin 2 (2πx 2 ) -2π sin(2πx 2 ) -2π sin(2πx 2 ) 1 ,
(2.24) This implies that σ∇u = e 1 which is obviously divergence free in R 2 .

Global isotropic realizability

In the previous section we have shown that not all gradients ∇u satisfying (2.2) and (2.3) are isotropically realizable when we assume σ is periodic. In the present section we will prove that the isotropic realizability actually holds in the whole space R d when we relax the periodicity assumption on σ. To this end consider for a smooth periodic gradient field ∇u ∈ C 1 ♯ (Y ) d , the following gradient dynamical system

   dX dt (t, x) = ∇u X(t, x) X(0, x) = x, for t ∈ R, x ∈ R d , (2.25) 
where t will be referred to as the time. First, we will extend the local rectification result of Theorem 2.2 to the whole space involving a hyperplane. Then, using an alternative approach we will obtain the isotropic realizability in the whole space replacing the hyperplane by an equipotential. Finally, we will give a necessary and sufficient for the isotropic realizability in the torus.

A first approach

We have the following result:

Proposition 2.10. Let u be a function in C 2 (R d ) such that ∇u satisfies (2.2) and (2.3). Also assume that there exists an hyperplane is given explicitly by (see figure 1)

H := {x ∈ R d : x • ν = h} such that each trajectory X(•, x) of (2.25), for x ∈ R d , intersects H only at one point z H (x) = X τ H (x),
     dX 1 dt (t, x) = 1, X 1 (0, x) = x 1 , dX 2 dt (t, x) = 2π sin 2πX 2 (t, x) , X 2 (0, x) = x 2 , for t ∈ R, x ∈ R 2 , ( 2 
X(t, x) =    (t + x 1 ) e 1 + n + 1 π arctan e 4π 2 t tan(πx 2 ) e 2 if x 2 ∈ n -1 2 , n + 1 2 (t + x 1 ) e 1 + n + 1 2 e 2 if x 2 = n + 1 2 , (2.27)
where n is an arbitrary integer.

Consider the line {x 1 = 0} as the hyperplane H. Then, we have τ H (x) = -x 1 . Moreover, using successively the explicit formula (2.27) and the semigroup property (2.35), we get that X -X 1 (t, x), X(t, x) = X -t -x 1 , X(t, x) = X(-x 1 , x), for any t ∈ R.

(2.28)

Hence, the function v defined by v(x) := X 2 (-

x 1 , x) satisfies v X(t, x) = X 2 -X 1 (t, x), X(t, x) = X 2 (-x 1 , x) = v(x)
, for any t ∈ R.

(2.29)

The function v is thus a first integral of system (2.25). It follows that

d dt v X(t, x) = 0 = ∇v X(t, x) • dX dt (t, x) = ∇v X(t, x) • ∇u X(t, x) , (2.30) 
which, taking t = 0, implies that ∇u • ∇v = 0 in R 2 . Moreover, putting t = -x 1 in (2.27), we get that for any n ∈ Z,

v(x) = n + 1 π arctan e -4π 2 x 1 tan(πx 2 ) if x 2 ∈ n -1 2 , n + 1 2 n + 1 2 if x 2 = n + 1 2 .
(2.31) Therefore, by (2.13) ∇u is an isotropically realizable electric field in the whole space R 2 , with the smooth conductivity

σ := |∇v| |∇u| =      1 + tan 2 (πx 2 ) e 4π 2 x 1 + e -4π 2 x 1 tan 2 (πx 2 ) if x 2 / ∈ 1 2 + Z e 4π 2 x 1 if x 2 ∈ 1 2 + Z.
(2.32)

It may be checked by a direct calculation that σ∇u is divergence free in R 2 .

Proof of Theorem 2.10. Let (τ 1 , . . . , τ d-1 ) be an orthonormal basis of the hyperplane H. Define for each k ∈ {1, . . . , d -1}, the function v k by

v k (x) := z H (x) • τ k = X τ H (x), x • τ k , for x ∈ R d . (2.33)
We shall prove that the functions v k satisfy the properties of the proof of Theorem 2.2. i).

First, due the transversality of each trajectory across H, we have for any

x ∈ R d , ∂ ∂t X(t, x) • ν t=τ H (x) = ∇u z H (x) • ν = 0. (2.34)
Hence, the implicit functions theorem combined with the C 1 -regularity of (t, x) → X(t, x) (see, e.g., [START_REF] Arnold | Équations Différentielles Ordinaires[END_REF], Theorem T ′ r p. 222) implies that x → τ H (x) defines a function in C 1 (R d ). Therefore, the functions v k defined by (2.33) belong to C 1 (R).

Second, since the trajectories satisfy the identity

X s, X(t, x) = X(s + t, x) ∀ s, t ∈ R, ∀ x ∈ R d , (2.35) 
we get that X τ H (x) -t, X(t, x) = X τ H (x), x , and thus

τ H X(t, x) = τ H (x) -t. (2.36) It follows that for any k ∈ {1, . . . , d -1}, v k X(t, x) = X τ H (x) -t, X(t, x) • τ k = X τ H (x), x) • τ k , for any t ∈ R.
(2.37) Therefore, each function v k is a first integral of the dynamical system (2.25). Third, consider for some

x 0 ∈ Ω, a vector (λ 1 , . . . , λ d-1 ∈ R d-1 such that d-1 k=1 λ k ∇v k (x 0 ) = 0, (2.38) 
and define the function

v 0 := d-1 k=1 λ k v k = z H • τ 0 , where τ 0 := d-1 k=1 λ k τ k . ( 2 

.39)

By the chain rule we have

Dz H (x) = ∇τ H (x) ⊗ ∂X ∂t τ H (x), x + D x X τ H (x), x = ∇τ H (x) ⊗ ∇u z H (x) + D x X τ H (x), x .
(2.40)

This combined with the equality (recall that z H (x) ∈ H)

0 = ∇ z H (x) • ν x=x 0 = Dz H (x 0 ) ν, (2.41) implies that ∇τ H (x 0 ) = -1 ∇u z H (x 0 ) • ν D x X τ H (x 0 ), x 0 ν. (2.42)
Hence, by the equalities (2.38), (2.39) and again using (2.40) together with (2.42), we get that

0 = ∇v 0 (x 0 ) = Dz H (x 0 ) τ 0 = D x X τ H (x 0 ), x 0 τ 0 - ∇u z H (x 0 ) • τ 0 ∇u z H (x 0 ) • ν ν . (2.43)
However, by Lemma 2.12 below, the matrix D x X τ H (x 0 ), x 0 is invertible. This combined with (2.43) yields that τ 0 is proportional to ν. Hence, τ 0 = 0 and (∇v 1 , . . . , ∇v d-1 ) has rank (d -1) everywhere in R d . Therefore, the continuous positive conductivity defined by (2.11) shows that ∇u is isotropically realizable in the whole space R d .

Lemma 2.12. The derivative D x X of the dynamical system (2.25) is invertible in R × R d .

Proof. By the chain rule the matrix field D x X satisfies the variational equation

   d dt D x X(t, x) = D x X(t, x) ∇ 2 u X(t, x) D x X(0, x) = I d , for t ∈ R, x ∈ R d , (2.44)
where ∇ 2 u denotes the Hessian matrix of u and I d is the unit matrix of R d×d . Moreover, due to the multi-linearity of the determinant det (D x X) satisfies Liouville's formula

   d dt det (D x X) (t, x) = tr ∇ 2 u X(t, x) det (D x X) (t, x) det (D x X) (0, x) = 1, for t ∈ R, x ∈ R d , (2.45)
where tr denotes the trace. It follows that

det (D x X) (t, x) = exp ˆt 0 tr ∇ 2 u X(s, x) ds > 0 for any (t, x) ∈ R × R d , (2.46) which shows that D x X(t, x) is invertible.
Remark 2.13. The hyperplane assumption of Theorem 2.10 does not hold in general. Indeed, we have the following heuristic argument: Let H be a line of R 2 , and let Σ be a smooth curve of R 2 having an S-shape across H. Consider a smooth periodic isotropic conductivity σ which is very small in the neighborhood of Σ. Let u be a smooth potential solution of div (σ∇u) = 0 in R 2 satisfying (2.2), (2.3), and let v be the associated stream function satisfying σ∇u = R ⊥ ∇v in R 2 . The potential v is solution of div (σ -1 ∇v) = 0 in R 2 . Then, since σ -1 is very large in the neighborhood of Σ, the curve Σ is close to an equipotential of v and thus close to a current line of u. Therefore, some trajectory of (2.25) has an S-shape across H. This makes impossible the regularity of the time τ H which is actually a multi-valued function.

Isotropic realizability in the whole space

Replacing a hyperplane by an equipotential (see figure 1 above) we have the more general result: Theorem 2.14. Let u be a function in C 3 (R d ) such that ∇u satisfies (2.2) and (2.3). Then, the gradient field ∇u is an isotropically realizable electric field in R d .

Proof. On the one hand, for a fixed x ∈ R d , define the function f : R → R by f (t) := u X(t, x) , for t ∈ R. The function f is in C 3 (R), and

f ′ (t) = dX dt (t, x) • ∇u X(t, x) = ∇u X(t, x) 2 , ∀ t ∈ R. (2.47)
Since ∇u is periodic, continuous and does not vanish in R d , there exists a constant m > 0 such that f ′ ≥ m in R. It follows that

f (t) -f (0) t ≥ m, ∀ t ∈ R \ {0}, (2.48) which implies that lim t→∞ f (t) = ∞ and lim t→-∞ f (t) = -∞. (2.49)
This combined with the monotonicity and continuity of f thus shows that there exists a unique τ (x) ∈ R such that u X(τ (x), x) = 0.

(2.50)

On the other hand, similar to the hyperplane case, we have that for any

x ∈ R d , ∂ ∂t u X(t, x) t=τ (x)
= ∇u X(τ (x), x) 2 > 0.

(2.51)

Hence, from the implicit functions theorem combined with the C 2 -regularity of (t, x) → u X(t, x)

we deduce that x → τ (x) is a function in C 2 (R d ). Now define the function w in R d by w(x) := ˆτ(x) 0 ∆u X(s, x) ds, for x ∈ R d , (2.52) which belongs to C 1 (R d ) since u ∈ C 3 (R d ).
Then, using (2.35), (2.36) and the change of variable r := s + t, we have for any (t, which belongs to C 1 (R d ). Applying (2.54) with t = 0, we obtain that div (σ∇u) = e w (∇w

x) ∈ R × R d , w X(t, x) = ˆτ(x)-t 0 ∆u X(s + t, x) ds = ˆτ(x) t ∆u X(r, x) dr, (2.53) which implies that ∂ ∂t w X(t, x) = ∇w X(t, x) • ∇u X(t, x) = -∆u X(t, x) . ( 2 
• ∇u + ∆u) = 0 in R d , (2.56) 
which concludes the proof.

Remark 2.15. In the proof of Theorem 2.14 the condition that ∇u is non-zero everywhere is essential to obtain both: -the uniqueness of the time τ (x) for each trajectory to reach the equipotential {u = 0}, -the regularity of the function x → τ (x).

Isotropic realizability in the torus

We have the following characterization of the isotropic realizability in the torus:

Theorem 2.16. Let u be a function in C 3 (R d ) such that ∇u satisfies (2.2) and (2.3). Then, the gradient field ∇u is isotropically realizable with a positive conductivity

σ ∈ L ∞ ♯ (Y ), with σ -1 ∈ L ∞ ♯ (Y ), if there exists a constant C > 0 such that ∀ x ∈ R d , ˆτ(x) 0 ∆u X(t, x) dt ≤ C, (2.57) 
where X(t, x) is defined by (2.25) and τ (x) by (2.50).

Conversely, if ∇u is isotropically realizable with a positive conductivity σ ∈ C 1 ♯ (Y ), then the boundedness (2.57) holds.

Example 2.17. For the function u of Example 2.11 and for x = (x 1 , 0), we have by (2.57) and (2.27),

σ 0 (x) = exp 4π 2 ˆτ(x) 0 cos 2πX 2 (s, x) ds = exp 4π 2 τ (x) ,
and by (2.50),

X 1 τ (x), x = τ (x) + x 1 = cos 2πX 2 (τ (x), x) = 1.
Therefore, we get that σ 0 (x 1 , 0) = exp 4π 2 (1-x 1 ) , which contradicts the boundedness (2.57). This is consistent with the negative conclusion of Example 2.6.

Proof of Theorem 2.16. Sufficient condition: Without loss of generality we may assume that the period is Y = [0, 1] d . Define the function σ 0 by

σ 0 (x) := exp ˆτ(x) 0 ∆u X(t, x) dt , for x ∈ R d , (2.58) 
and consider for any integer n ≥ 1, the conductivity σ n defined by the average over the (2n+1) d integer vectors of [-n, n] d :

σ n (x) := 1 (2n + 1) d k∈Z d ∩[-n,n] d σ 0 (x + k), for x ∈ R d .
(2.59)

On the one hand, by (2.57) σ n is bounded in L ∞ (R d ). Hence, there is a subsequence of n, still denoted by n, such that σ n converges weakly- * to some function σ in L ∞ (R d ). Moreover, we have for any x ∈ R d and any k ∈ Z d (denoting |k| ∞ := max

1≤i≤d |k i |), (2n + 1) d σ n (x + k) -(2n + 1) d σ n (x) = |j-k|∞≤n σ 0 (x + j) - |j|∞≤n σ 0 (x + j) ≤ |j-k|∞≤n |j|∞>n σ 0 (x + j) + |j-k|∞>n |j|∞≤n σ 0 (x + j) ≤ C n d-1 , (2.60) 
where C is a constant independent of n and x. This implies that σ(• + k) = σ(•) a.e. in R d , for any k ∈ Z d . The function σ is thus Y -periodic and belongs to L ∞ ♯ (Y ). Moreover, since by virtue of (2.57) and (2.58) σ 0 is bounded from below by e -C , so is σ n and its limit σ. Therefore, σ -1 also belongs to L ∞ ♯ (Y ).

On the other hand, by virtue of Theorem 2.14 the gradient field ∇u is realizable in R d with the conductivity σ 0 . This combined with the Y -periodicity of ∇u yields div (σ n ∇u) = 0 in R d . Hence, using the weak- * convergence of σ n in L ∞ (R d ) we get that for any ϕ

∈ C ∞ c (R d ), ∇u • ∇ϕ ∈ L 1 (R d ) and 0 = lim n→∞ ˆRd σ n ∇u • ∇ϕ dx = ˆRd σ∇u • ∇ϕ dx. (2.61)
Therefore, we obtain that div (σ∇u) = 0 in D ′ (R d ), so that ∇u is isotropically realizable with the Y -periodic bounded conductivity σ.

Necessary condition: Let σ be a positive function in C 1 ♯ (Y ) such that div (σ∇u) = 0 in R d . Then, the function w := ln σ also belongs to C 1 ♯ (Y ), and solves the equation ∇w • ∇u + ∆u = 0 in R d . Therefore, using (2.25) we obtain that for any

x ∈ R d , ˆτ(x) 0 ∆u X(t, x) dt = - ˆτ(x) 0 ∇w X(t, x) • ∇u X(t, x) dt = - ˆτ(x) 0 ∇w X(t, x) • dX dt (t, x) dt = w X(0, x) -w X(τ (x), x) = w(x) -w X(τ (x), x) , (2.62) 
which implies (2.57) due to the boundedness of w in R d .

Remark 2.18. If we also assume that σ 0 of (2.57) is uniformly continuous in R d , then the previous proof combined with Ascoli's theorem implies that the conductivity σ is continuous. Indeed, the sequence σ n defined by (2.59) is then equi-continuous.

3 The matrix field case Then, the Y -periodic conductivity σ defined by the formula (3.5) below is only defined a.e. in R d , and is not necessarily uniformly bounded from below or above in the cell period Y . However, σDU remains divergence free in the sense of distributions on R d .

Proof of Theorem 3. Hence, σDU is Divergence free in R d . Therefore, DU is a realizable electric matrix field associated with the continuous conductivity σ.

ii) Let DU be an electric matrix field satisfying condition (3.2) and associated with a smooth conductivity in R 2 . By the regularity results for second-order elliptic pde's the function U is smooth in R 2 . Moreover, due to [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF] (Theorem 1) we have det DU DU > 0 a.e. in R 2 . Therefore, as in the proof of Theorem 2.7 we conclude that (3.3) holds.

iii) This is an immediate consequence of the counter-example of [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF] combined with the regularization argument used in the proof of Theorem 2.2 iii).

Remark 3.4. The conductivity σ defined by (3.5) can be derived by applying the coordinate change x ′ = U -1 (x) to the homogeneous conductivity det DU I d .

In fact there are many ways to derive a conductivity σ associated with a matrix field DU the determinant of which has a constant sign. Following [START_REF] Milton | The Theory of Composites[END_REF] (Remark p. 155) such a conductivity can be expressed by σ = JDU -1 , where J is a Divergence free matrix-valued function. From this perspective we have the following extension of part i) of Theorem 3. (3.7)

Proof. On the one hand, the matrix-valued function J of (3.7) is clearly Divergence free due to Piola's identity. On the other hand, we have

Cof D(∇ϕ • U) = Cof DU ∇ 2 ϕ • U = Cof (DU) Cof ∇ 2 ϕ • U , (3.8) 
so that the matrix-valued σ defined by (3.7) satisfies

σ = det DU DU (DU -1 ) T Cof ∇ 2 ϕ • U DU -1 . (3.9)
Since ∇ 2 ϕ is symmetric positive definite, so is its Cofactors matrix. Therefore, σ is an admissible continuous conductivity such that σDU is Divergence free in R d . • At the smallest scale ε n , there is a set of m n rank-one laminates, the i th one of which is composed, for i = 1, . . . , m n , of an ε n -periodic repetition in the direction ξ i,n of homogeneous layers with constant positive definite conductivity matrices σ h i,n , h ∈ I i,n . • At the scale ε k , there is a set of m k laminates, the i th one of which is composed, for i = 1, . . . , m k , of an ε k -periodic repetition in the direction ξ i,k ∈ R d \ {0} of homogeneous layers and/or a selection of the m k+1 laminates which are obtained at stage (k + 1) with conductivity matrices σ h i,j , for j = k + 1, . . . , n, h ∈ I i,j . • At the scale ε 1 , there is a single laminate (m 1 = 1) which is composed of an ε 1 -periodic repetition in the direction ξ 1 ∈ R d \ {0} of homogeneous layers and/or a selection of the m 2 laminates which are obtained at the scale ε 2 with conductivity matrices σ h i,j , for j = 2, . . . , n, h ∈ I i,j .

The laminate case

σ 1 1,2 σ 1 1,2 σ 2 1,2 σ 2 1,2 σ 1 1,1 σ 2 1,1 σ 1 1,2 σ 1 1,1 σ 2 1,1 σ 1 1,2 σ 2 1,2 σ 2 1,2 σ 1 1,2 σ 1 1,2
The laminate conductivity at stage k = 1, . . . , n, is denoted by L ε k (σ), where σ is the whole set of the constant laminate conductivities.

Due to the results of [START_REF] Milton | Modelling the properties of composites by laminates[END_REF][START_REF] Briane | Correctors for the homogenization of a laminate[END_REF] there exists a set P of constant matrices in R d×d , such that the laminate P ε := L ε n ( P ) is a corrector (or a matrix electric field) associated with the conductivity

σ ε := L ε n (σ) in the sense of Murat-Tartar [15], i.e.        P ε ⇀ I d weakly in L 2 loc (R d ) d×d , Curl (P ε ) → 0 strongly in H -1 loc (R d ) d×d×d , Div (σ ε P ε ) is compact in H -1 loc (R d ) d .
(3.10)

The weak limit of σ ε P ε in L 2 loc (R d ) d×d is then the homogenized limit of the laminate. The three conditions of (3. satisfied by any electric matrix field DU in the periodic case. The equivalent of Theorem 3.2 for a laminate is the following: Theorem 3.7. Let n, d be two positive integers. Consider a rank-n laminate L ε n ( P ) built from a finite set P of R d×d (according to Definition 3.6) which satisfies the two first conditions of (3.10). Then, a necessary and sufficient condition for L ε n ( P ) to be a realizable laminate electric field, i.e. to satisfy the third condition of (3.10) for some rank-n laminate conductivity L ε n (σ), is that det L ε n ( P ) > 0 a.e. in R d , or equivalently that the determinant of each matrix in P is positive.

Proof of Theorem 3.7. The fact that the determinant positivity condition is necessary was established in [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF], Theorem 3.3 (see also [START_REF] Briane | Is it wise to keep laminating?[END_REF], Theorem 2.13, for an alternative approach).

Conversely, consider a rank-n laminate field P ε = L ε n ( P ) satisfying the two first convergence of (3.10) and det (P ε ) > 0 a.e. in R d , or equivalently det (P ) > 0 for any P ∈ P . Similarly to (3.5) consider the rank-n laminate conductivity defined by σ ε := det P ε (P -1 ε ) T (P ε ) -1 = L ε n (σ), where σ := det P (P -1 ) T P -1 : P ∈ P . (3.12)

Then, the third condition of (3.10) is equivalent to the condition Div Cof (P ε ) is compact in

H -1 loc (R d ) d . (3.13)
Contrary to the periodic case Cof (P ε ) is not divergence free in the sense of distributions. However, following the homogenization procedure for laminates of [START_REF] Briane | Correctors for the homogenization of a laminate[END_REF], and using the quasiaffinity of the Cofactors for gradients (see, e.g., [START_REF] Dacorogna | Direct Methods in the Calculus of Variations[END_REF]), condition (3.13) holds if any matrices P, Q of two neighboring layers in a direction ξ of the laminate satisfy the jump condition for the divergence Cof (P ) -Cof (Q) T ξ = 0. (

More precisely, at a given scale ε k of the laminate the matrix P , or Q, is:

• either a matrix in P ,

• or the average of rank-one laminates obtained at the smallest scales ε k+1 , . . . , ε n .

In the first case the matrix P is the constant value of the field in a homogeneous layer of the rank-n laminate. In the second case the average of the Cofactors of the matrices involving in these rank-one laminations is equal to the Cofactors matrix of the average, that is Cof (P ), by virtue of the quasi-affinity of the Cofactors applied iteratively to the rank-one connected matrices in each rank-one laminate. Therefore, it remains to prove equality (3.14) for any matrices P, Q with positive determinant satisfying the condition which controls the jumps in the second convergence of (3. 
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 1 Figure 1: The trajectories crossing the line {x 1 = 0} and the equipotential {u = 0}
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 2236 Figure 2: A rank-two laminate with directions ξ 1 = e 1 and ξ 1,2 = e 2

  10) satisfied by P ε extend to the laminate case the three respective conditions        DU = I d , Curl (DU) = 0, Div (σDU) = 0, (3.11)

  10), namely P -Q = ξ ⊗ η for some η ∈ R d . (3.15)By(3.15) and by the multiplicativity of the Cofactors matrix we haveCof (P ) -Cof (Q) T = Cof (Q) T Cof (I d + (ξ ⊗ η) Q -1 ) T -I d = Cof (Q) T Cof (I d + ξ ⊗ λ) T -I d , with λ := (Q -1 ) T η. (3.16) Moreover, if ξ • λ = -1, a simple computation yields Cof (I d + ξ ⊗ λ) T = det (I d + ξ ⊗ λ) (I d + ξ ⊗ λ) -1 = (1 + ξ • λ) I d -ξ ⊗ λ,(3.17)which extends to the case ξ • λ = -1 by a continuity argument. Therefore, it follows thatCof (P ) -Cof (Q) T = Cof (Q) T (ξ • λ) I d -ξ ⊗ λ ,(3.18)which implies the desired equality(3.14), since (ξ ⊗ λ) ξ = (ξ • λ) ξ.

theorem which needs at least C 1 -regularity and is local.

  Definition 2.1. Let Ω be an (bounded or not) open set of R d , d ≥ 2, and let u ∈ H 1 (Ω). The vector-valued field ∇u is said to be a realizable electric field in Ω if there exist a symmetric positive definite matrix-valued σ ∈ L ∞

	loc (Ω) d×d such that	
	div (σ∇u) = 0 in D ′ (Ω).	(2.1)
	If σ can be chosen isotropic (σ → σI d ), the field ∇u is said to be isotropically realizable in Ω.
	2.1 Isotropic and anisotropic realizability	
	2.1.1 Characterization of an isotropically realizable electric field	
	Theorem 2.2. Let Y be a closed parallelepiped of R d . Consider u ∈ C 1 (R d ), d ≥ 2, such that
	∇u is Y -periodic and ∇u = 0.	(2.2)
	i) Assume that	
	∇u = 0 everywhere in R d .	(2.3)
	Then, ∇u is an isotropically realizable electric field locally in R d associated with a con-
	tinuous conductivity.	
	ii) Assume that ∇u satisfies condition (2.2), and is a realizable electric field in R 2 associated
	with a smooth Y -periodic conductivity. Then, condition (2.3) holds true.	
	iii) There exists a gradient field ∇u satisfying (2.2), which is a realizable electric field in R 3
	associated with a smooth Y 3 -periodic conductivity, and which admits a critical point y 0 ,
	i.e. ∇u(y 0 ) = 0.	
	Remark 2.3. Part i) of Theorem 2.2 provides a local result in the smooth case, and still holds
	without the periodicity assumption on ∇u. It is then natural to ask if the local result remains
	valid when the potential u is only Lipschitz continuous. The answer is negative as shown in
	Example 2.4 below. We may also ask if a global realization of a periodic gradient can always
	be obtained with a periodic isotropic conductivity σ. The answer is still negative as shown in
	Example 2.6.	
	The underlying reason for these negative results is that the proof of Theorem 2.2 is based
	on the rectification	

  (e 1 + e 2 ) + (1 -χ) e 1 a.e. in R 2 , (2.23) which is divergence free in D ′ (R 2 ) since (e 1 + e 2 -e 1 ) ⊥ e 1 .

	This combined with (2.5) yields					
	σ∇u = χ					
							(2.20)
	which combined with (2.5) implies that				
	∇u • ∇v = R ⊥ ∇u • ∇v = 1 a.e. in R 2 .	(2.21)
	Hence, after a simple computation formula (2.17) yields the rank-one laminate (see Sec-
	tion 3.2) conductivity						
	σ = χ	2 1 1 1	+ (1 -χ)	1 4	1 1 1 5	a.e. in R 2 .	(2.22)

2 

, that is

(2.15)

.

Example 2.9. Go back to the Examples 2.4 and 2.6 which provide examples of gradients which are not isotropically realizable electric fields. However, in the context of Theorem 2.7 we can show that the two gradient fields are realizable electric fields associated with anisotropic conductivities:

1. Consider the function u defined by (2.4), and define the function v by

v(x) := -x 1 + ˆx2 0 χ(t) dt, for any x = (x 1 , x 2 ) ∈ R 2 .

(2.19)

We have ∇v = χ (e 2 -e 1 ) + (1 -χ) (-e 1 ) a.e. in R 2 ,

  x and at a unique time τ H (x) ∈ R, in such a way that ∇u is not tangential to H at z H (x). Then, the gradient ∇u is an isotropically realizable electric field in R d .Example 2.11. Go back to Example 2.6 with the function u defined in R 2 by (2.9). The gradient field ∇u is smooth and Y 2 -periodic. The solution of the dynamical system (2.25) which reads as

  Definition 3.1. Let Ω be an (bounded or not) open set of R d , d ≥ 2, and let U = (u 1 , . . . , u d ) be a function in H 1 (Ω) d . The matrix-valued field DU is said to be a realizable matrix-valued electric field in Ω if there exists a symmetric positive definite matrix-valued σ ∈ L ∞ Let Y be a closed parallelepiped of R d , d ≥ 2. Consider a function U ∈ C 1 (R d ) d Assume that d = 2,and that DU is a realizable electric matrix field in R 2 , satisfying (3.2) and associated with a smooth conductivity in R 2 . Then, condition (3.3) holds true. iii) In dimension d = 3, there exists a smooth matrix field DU satisfying (3.2) and associated with a smooth periodic conductivity, such that det (DU) takes positive and negative values in R 3 . Remark 3.3. Similarly to Remark 2.8 the assertions i) and ii) of Theorem 3.2 still hold under the less regular assumptions that DU ∈ L 2 ♯ (Y ) d×d and det DU DU > 0 a.e. in R d .

	loc (Ω) d×d (3.1) (3.2) (3.3) Then, DU is a realizable electric matrix field in R d associated with a continuous conduc-such that Div (σDU) = 0 in D ′ (Ω). 3.1 The periodic framework Theorem 3.2. such that DU is Y -periodic and det DU = 0. i) Assume that det DU DU > 0 everywhere in R d . tivity. ii) (3.4)
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