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Abstract—Dynamic Bayesian Networks (DBNs) are probabilis-
tic graphical models dedicated to modeling multivariate time
series. Two-time slice BNs (2-TBNs) are the most current type
of these models. Static BN structure learning is a well-studied
domain. Many approaches have been proposed and the quality
of these algorithms has been studied over a range of different
standard networks and methods of evaluation. To the best
of our knowledge, all studies about DBN structure learning
use their own benchmarks and techniques for evaluation. The
problem in the dynamic case is that we don’t find previous
works that provide details about used networks and indicators
of comparison. In addition, access to the datasets and the source
code is not always possible. In this paper, we propose a novel
approach to generate standard DBNs based on tiling and novel
technique of evaluation, adapted from the "static" Structural
Hamming Distance proposed for Bayesian networks.

Index Terms—Dynamic Bayesian Networks, 2-TBN models,
Bayesian Network Tiling, Structural Hamming Distance.

I. Introduction
During the last two decades there has been an increasing

interest in the Bayesian Network (BN) formalism [1], [2]. The
success of BN as one of the most complete and consistent
formalisms for the acquisition and representation of knowledge
and for reasoning from incomplete and/or uncertain data return
to the fact that: (1) their mathematical basis is rigorously
justified; (2) they deal in an innate way with uncertainty
(modeled as a joint probability distribution); (3) they are
understandable (graphical representation); and (4) they take
advantage of locality both in knowledge representation and
during inference.

Learning the graphical part (i.e. the structure) of these mod-
els from data is an NP-hard problem [3]. Many studies have
been conducted on this subject. The most of these works and
their result interpretations use standard networks and common
performance indicators such as approximation of the marginal
likelihood of the obtained model or comparison of the resulting
graph with the original graph given in benchmarking tasks with
the help of the Structural Hamming Distance (SHD) proposed
by Tsamardinos [4].

Dynamic Bayesian networks (DBNs) are a general and
flexible model class for representing complex stochastic tem-

poral processes [5]. Some structure learning algorithms have
been proposed, adapting principles already used in "static"
BNs. Comparing these algorithms is a difficult task because
the evaluation technique and/or the reference networks used
change over each article. Evaluation of these algorithms is also
often restricted to networks with a small number of variables,
at the difference of "static" BNs where structure learning has
been studied with large reference networks.

We focus on this paper to present two contributions: (1)
an algorithm for generating large 2-TBN networks (which
could be used as standard 2-TBN benchmarks) by using tiling
approach [6], [7] in the dynamic case; (2) an algorithm for
the evaluation of a 2-TBN structure learning algorithm by
adapting the SHD measure no more correct with temporal
networks. We believe that this work can be a usefull tool for
benchmarking any 2-TBN structure learning algorithm in a
common framework.

Section 2 provides the background of our work with a brief
introduction to the evaluation methods used in BN learning. In
section 3, we detail our proposed approach to generate large
DBN and metric to evaluate the performance of DBN structure
learning algorithms. Section 4 describes our experimental
results. Finally in section 5, we presents conclusions and future
works.

II. Background
A. Dynamic Bayesian networks and structure learning

A dynamic Bayesian Network (DBN) is a probabilistic
graphical model devoted to represent sequential systems [5].
More precisely, a DBN defines the probability distribution of
a collection of random variables X[t] where X = {X1 . . . Xn} is
the set of variables observed along discrete time t.

In this work, we consider a special class of DBNs, namely
2-time slice Bayesian Networks (2-TBN). A 2-TBN is a DBN
which satisfies the Markov property of order 1 X[t − 1] ⊥
X[t + 1] | X[t]. As a consequence, a 2-TBN is described by a
pair (M0,M→).

M0 (initial model) is a BN representing the initial joint
distribution of the process P(X[t = 0]) and consisting of a



direct acyclic graph (DAG) G0 containing the variables X[t =

0] and a set of conditional distributions P(Xi[t = 0] | paG0 (Xi))
where paG0 (Xi) are the parents of variable Xi[t = 0] in G0;

M→ (transition model) is another BN representing the
distribution P(X[t + 1] | X[t]) and consisting of a DAG
G→ containing the variables in X[t] ∪ X[t + 1] and a set
of conditional distributions P(Xi[t + 1] | paG→ (Xi)) where
paG→ (Xi) are the parents of variable Xi[t + 1] in G→, parents
which can belong to time t or t + 1.

Daly et al [8] propose a recent and interesting state of
the art about BN and DBN learning. From the important
literature about BN structure learning, some reference net-
works emerged. Let us cite some large networks : GENE
[9], LINK [10] or PIGS [11]) available in the web. These
reference networks are used in order to generate data which
is used by the structure learning algorithm. The learnt BN
can be evaluated by common performance indicators such as
approximation of the marginal likelihood [12] or comparison
of the resulting graph with the reference graph with the
help of the Structural Hamming Distance (SHD) proposed by
Tsamardinos [4].

Contrary to BN, learning structure for the DBN is more
difficult for two reasons: foremost the learning complexity
induced by adding the temporal dimension; then the un-
availability of standard benchmarks. except for instance some
reference nertworks with a small number of variables (less than
10), such as Umbrella and Water 1. Besides, articles dealing
with 2-TBN structure learning never use the indicators to argue
about the goodness of their proposition.

B. Generation of large "static" Bayesian networks

As we previously noticed, Learning the graphical part (i.e.
the structure) of BN from data is an NP-hard problem. Many
studies have been conducted on this subject, leading to three
different families of approaches: (1) constraint-based methods,
(2) score-based methods, (3) local search methods. The two
first approaches are usually validated on benchmark models
with small number of variables. These methods will underper-
form if the number of variables increases. The third approach
is able to scale to distributions with more than thousands of
variables. As existing BN benchmarks where limited in their
number of variables, some researchers proposed generating
BNs by controlling their size and/or complexity. [13] presents
methods for generation of random BN by generating uniformly
distributed samples of directed acyclic graphs. They develop
a uniform generation of multi-connected and singly-connected
networks for a given number of nodes. Generating a very large
BN randomly is not very realistic. In many large applications,
the global model can be decomposed in coherent repeated
subgraphs. [6] proposed a novel algorithm and software for
the generation of arbitrarily large BN (e.g., graphical mod-
els representing and joint probability distributions) by tiling
smaller real-world known networks (tiles). The complexity of
the final model is controlled by two parameters : the number

1http://www.cs.huji.ac.il/ galel/Repository/Datasets/water/water.html

of tiling n and the connectivity parameter c which determines
the maximum number of connections between one node and
the next tile.

C. Evaluation of BN structure learning algorithms

There are several measures proposed in the literature for
evaluation of structure learning algorithms. The most popular
metric is the BDeu score [2]. Under certain assumptions it
corresponds to the a posteriori probability (after having seen
the data) of the learned structure.

[14] notice that using the BDeu score as a metric of recon-
struction quality has the following two problems. First, the
score corresponds to the a posteriori probability of a network
only under certain conditions (e.g., a Dirichlet distribution
of the hyperparameters); it is unknown to what degree these
assumptions hold in distributions encountered in practice.
Second, the score depends on the equivalent sample size and
network priors used. Since, typically, the same arbitrary value
of this parameter is used both during learning and for scoring
the learned network, the metric favors algorithms that use the
BDeu score for learning. In fact, the BDeu score does not rely
on the structure of the original, gold standard network at all;
instead it employs several assumptions to score the networks.

When proposing a new structure learning algorithm,
Tsamardinos et al. [4] propose an adaptation of the usual
Hamming distance between graphs taking into account the
fact that some graphs with different orientations can be
statistically indistinguishable. As graphical models of inde-
pendence, several equivalent graphs will represent the same
set of dependence/independence properties. These equivalent
graphs (also named Markov or likelihood equivalent graphs)
can be summarized by a partially DAG (PDAG). This new
structural Hamming distance (SHD) compares the structure
of the PDAG of the learned and the original networks as
described in algorithm 1 in order to only compare orientations
that are really statistically distinguishable.

As mentioned before, structure learning is a difficult task.
Some works propose using prior knowledge in order to limit
the search space, for instance by declaring some forbidden or
required edges in the final graph [15]. By dealing with PDAGs,
the previous SHD measure only take into account information
from learning data, forgetting that some orientations have been
provided by prior knowledge.

D. Evaluation of a model learned from data and prior knowl-
edge

When proposing a first algorithm to determine the PDAG of
a given graph, [16] also proposed a way to take into account
prior background knowledge. This solution is decomposed
into three phases. The first phase consists in determining the
PDAG. This step can be resolved by keeping the skeleton
of the given DAG, and its V-structures, and then applying
recursively a set of three rules R1, R2, and R3 in order to infer
all the edge orientations compatible with the initial DAG. The
second phase consists in comparing this PDAG with the prior
knowledge. If some information are conflicting, the algorithm



Algorithm 1 Structural Hamming distance algorithm [4]
Require: Learned PDAG H; Original PDAG G
Ensure: SHD value
1: S HD = 0
2: for all edge E different between H and G do
3: if E is missing in H then
4: S HD=S HD+1
5: end if
6: if E is extra in H then
7: S HD=S HD+1
8: end if
9: if E is uncorrectly oriented in H then

10: S HD=S HD+1
11: end if
12: end for

returns an error. The final step consists in iteratively adding the
prior knowledge (edges) not present in the PDAG and applying
again the previous recursive orientation rules in order to infer
all the new edge orientations induced by the addition of the
prior knowledge. Meek demonstrates that another rule R4 is
needed in order to complete the three previous ones. We can
notice that [17] proposed an optimized implementation of the
first phase (PDAG determination).

III. Contributions

We describe here new tools for benchmarking dynamic
Bayesian network structure learning algorithms. The first sub-
section describes a 2-TBN generation algorithm. The second
one presents a novel metric for evaluating performance of
2-TBN structure learning algorithms, dealing with temporal
background knowledge.

A. Generation of large 2-TBNs

In order to generate a large 2-TBN model, we propose
generating two models M0 and M� from an initial static
benchmark BN M, as described in algorithm 2.

First we use the Tsamardinos’s work for generating realistic
large bayesian networks by tiling. Our method consists in gen-
erating a large initial model M0 and its conditional probability
distribution by tiling n copies of the initial model M. Then we
use again tiling to generate M� and the transition probability
distribution by tiling 2 copies of M0.

Complexity of the final 2-TBN can be controlled by chang-
ing the number of tiling copies and the intra-connectivity ci

(used for generating M0) or the temporal connectivity ct (used
for generating temporal edges).

B. Evaluation of DBN generated by data and prior knowledge

As 2-TBNs are defined by two graphs G0 and G�, we
propose evaluating the structural difference between one the-
oretical 2-TBN and a learned one by the pair of the structural
Hamming distance for the corresponding initial and transition
graphs as described in algorithm 3.

As we have seen before, taking into account Markov equiv-
alence by comparing PDAGs is important for BN structure
learning evaluation, but it’s not sufficient for DBNs. Some
temporal information (a priori knowledge) is used for 2-TBN
structure learning and can be lost by reasoning with PDAGs.

Algorithm 2 Generation of large 2-TBNs algorithm
Require: BN DAG M, number of copies n, intra-connectivity ci, temporal

connectivity ct
Ensure: Return initial M0 and transition models M�
1: M0 = bn_tiling(M,n,ci)
2: M� = bn_tiling(M0,2,ct)

Algorithm 3 Structural Hamming distance for 2-TBNs algo-
rithm
Require: Learned PDAG H0; Learned PDAG H�; Original PDAG G0;

Original PDAG G�
Ensure: SHD values for initial and transition graphs
1: Hk=H�
2: Gk=G�

% calculate SHD0
3: SHD0=SHD(H0,G0)

% Temporal correction for G�
4: Select randomly a temporal edge from G�
5: Orient this temporal undirected edge in Gk
6: Recursively apply the Meek rules in Gk
7: If there exist any unprocessed temporal edge then repeat 4, 5, 6.

% Temporal correction for H�
8: Select randomly a temporal edge from H�
9: Orient this temporal undirected edge in Hk

10: Recursively apply the Meek rules in Hk
11: If there exist any unprocessed temporal edge then repeat 8, 9, 10.

% Calculate SHD�
12: SHD�=SHD(Hk ,Gk)

% calculate SHD in 2-TBN
13: SHD = (SHD0,SHD�)

In the case of 2-TBN, two different models are learnt. The
first one M0 doesn’t model temporal information, so the usual
Tsamardinos’ SHD can be used.

The second model named represents the dependency rela-
tions between nodes of the same slice t or between the nodes
of slices t and t + 1. We have here an important background
(temporal) knowledge, edges between time slices are directed
from t to t+1. We then propose to adapt the Tsamardinos’ SHD
in order to deal with this additional knowledge as proposed in
section II-D for BNs. One temporal correction is applied for
each PDAG in order to obtain a corrected PDAGk compatible
with the prior knowledge. The structural Hamming distance is
then computed between these PDAGk

IV. Validation

A. 2-TBN Benchmark generation

For our implementation, we decided that the initial network
M is provided in Hugin2 format readable by several BN
software such as Genie/Smile3 or Matlab toolboxes such as
Causal Explorer4.

As Causal explorer also proposes an implementation of
bn_tiling(), we implemented our 2-TBN benchmark generation
in Matlab using these functions, and added another function
in order to export an unrolled 2-TBN model in Hugin format.
This exported 2-TBN can then be used by several software for
data generation and structure learning.

2http://www.hugin.com/
3http://genie.sis.pitt.edu/
4http://www.dsl-lab.org/causal_explorer/index.html



Figure 1 illustrate our algorithm with ASIA [18] generating
network, tiled 3 times for the initial model, with a maximum
connectivity equal to 3. As we can see, we are now able to
generate realistic 2-TBNs with very large domains by choosing
any static and well-known benchmarks and controlling the
complexity by increasing the number of tiling.

B. Structural Hamming distance for 2-TBN

In Figure 2, we show the interest of the temporal correction
proposed for SHD in section III-B. We can notice that the
PDAG corresponding to each 2-TBN can lose some temporal
information by un-orienting some temporal edges (resp. 1 and
2 for 2-TBN0 and 2-TBN1).

Applying the structural Hamming distance without correc-
tion gives us a distance equal to 2 between transition graphs
related to 2-TBN0 and 2-TBN1. This distance take into account
the missing edge between Ct+1 and Dt+1 and the missing
orientation of the temporal edge between Dt and Dt+1. This
distance increases to 5 between 2-TBN0 and 2-TBN2 because
of the 2 modifications (one missing edge and one added), but
also the 3 missing orientations in 2-TBN0.

Application of our temporal correction orients the temporal
edges in the corrected PDAG, but also orients 2 more edges
in the transition graph related to 2-TBN0and 2-TBN1.

Applying the structural Hamming distance with correction
gives us a distance equal to 1 between transition graphs
related to 2-TBN0 and 2-TBN1, which correspond to the "true"
missing edge, and a distance equal to 2 for the last model,
which also corresponds to the "true" differences.

As we can see in these toy examples, our SHD with
temporal correction is better in term of structural comparison
of dynamic bayesian networks. The improvement is given by
the integration of knowledge (temporal knowledge) in our
metric.

V. Conclusion and perspectives

We focus in this paper on providing tools for benchmarking
dynamic Bayesian network structure learning algorithms. Our
first contribution is a 2-TBN generation algorithm inspired
from the Tiling technique proposed by [6]. Our algorithm is
able to generate large and realistic 2-TBNs which can then be
used for sampling datasets. These datasets can then feed any
2-TBN structure learning algorithm.

Our second contribution is a novel metric for evaluating per-
formance of these structure learning algorithms, by correcting
the Structural Hamming distance proposed by [4] in order to
take into account temporal background information.

Our next step in this direction is proposing one website by
providing some 2-TBNs benchmarks (graphs and datasets) in
order to provide common evaluation tools for every researcher
interested in 2-TBN structure learning.

Another immediate perspective is the adaptation of the
structural Hamming distance in order to take into account any
background knowledge (forbidden edges, required ones, partial
ordering, ...).
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Figure 1. An example output of the 2-TBN generation algorithm. The generating network is ASIA benchmark [18] shown in the top left of figure a). a)
The output of initial network consists of three tiles of Asia with the addition of several intraconnecting edges shown with the dashed edges. b) The output
of transition network with the addition of several interconnecting edges shown with the dashed red edges.

Figure 2. Two examples of structural Hamming distance with or without temporal correction. A first 2-TBN and its corresponding PDAG
and corrected PDAG_k are shown in (a). (b) and (c) show two other 2-TBN and their corresponding PDAGs, and the structural Hamming
distance with the first model


