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Introduction

Motivation behind Mathemagix

Until the mid nineties, the development of computer algebra systems tended to exploit advances in the area of programming languages, and sometimes even influenced the design of new languages. The Formac system [START_REF] Bond | FORMAC an experimental formula manipulation compiler[END_REF] was developed shortly after the introduction of Fortran. Symbolic algebra was an important branch of the artificial intelligence project at Mit during the sixties. During a while, the Macsyma system [START_REF] Martin | The MACSYMA system[END_REF][START_REF]Maxima, a computer algebra system (free version)[END_REF][START_REF] Moses | Macsyma: A personal history[END_REF] was the largest program written in Lisp, and motivated the development of better Lisp compilers.

The Scratchpad system [START_REF] Griesmer | SCRATCHPAD User's Manual[END_REF][START_REF] Jenks | The SCRATCHPAD language[END_REF] was at the origin of yet another interesting family of computer algebra systems, especially after the introduction of domains and categories as function values and dependent types in Modlisp and Scratchpad II [START_REF] Jenks | MODLISP -an introduction (invited)[END_REF][START_REF] Jenks | A language for computational algebra[END_REF][START_REF] Sutor | The type inference and coercion facilities in the Scratchpad II interpreter[END_REF]. These developments were at the forefront of language design and type theory [START_REF] Girard | Une extension de l'interprétation de Gödel à l'analyse, et son application à l'élimination de coupures dans l'analyse et la théorie des types[END_REF][START_REF] Martin-Löf | Constructive mathematics and computer programming[END_REF][START_REF] Milner | A theory of type polymorphism in programming[END_REF]. Scratchpad later evolved into the Axiom system [START_REF]Axiom computer algebra system[END_REF][START_REF] Jenks | AXIOM: the scientific computation system[END_REF]. In the A# project [START_REF] Watt | A first report on the A# compiler[END_REF][START_REF] Watt | Aldor programming language. Software available from[END_REF], later renamed into Aldor, the language and compiler were redesigned from scratch and further purified.

After this initial period, computer algebra systems have been less keen on exploiting new ideas in language design. One important reason is that a good language for computer algebra is more important for developers than for end users. Indeed, typical end users tend to use computer algebra systems as enhanced pocket calculators, and rarely write programs of substantial complexity themselves. Another reason is specific to the family of systems that grew out of Scratchpad: after IBM's decision to no longer support the development, there has been a long period of uncertainty for developers and users on how the system would evolve. This has discouraged many of the programmers who did care about the novel programming language concepts in these systems.

In our opinion, this has led to an unpleasant current situation in computer algebra: there is a dramatic lack of a modern, sound and fast general purpose programming language. The major systems Mathematica tm [START_REF] Wolfram | Mathematica: A System for Doing Mathematics by Computer[END_REF] and Maple tm [20] are both interpreted, weakly typed, besides being proprietary and expensive. The Sage system [START_REF] Stein | Sage Mathematics Software. The Sage Development Team[END_REF] relies on Python and merely contents itself to glue together various existing libraries and other software components.

The absence of modern languages for computer algebra is even more critical whenever performance is required. Nowadays, many important computer algebra libraries (such as Gmp [START_REF] Granlund | GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF], Mpfr [START_REF] Fousse | MPFR: A multiple-precision binary floating-point library with correct rounding[END_REF], Flint [START_REF] Hart | An introduction to Flint[END_REF], FGb [START_REF] Faugère | FGb: A Library for Computing Gröbner Bases[END_REF], etc.) are directly written in C or C++. Performance issues are also important whenever computer algebra is used in combination with numerical algorithms. We would like to emphasize that high level ideas can be important even for traditionally low level applications. For instance, in a suitable high level language it should be easy to operate on SIMD vectors of, say, 256 bit floating point numbers. Unfortunately, Mpfr would have to be completely redesigned in order to make such a thing possible.

For these reasons, we have started the design of a new software, Mathemagix [START_REF] Van Der Hoeven | Software available from[END_REF][START_REF] Van Der Hoeven | Mathemagix, the quest of modularity and efficiency for symbolic and certified numeric computation[END_REF], based on a compiled and strongly typed language, featuring signatures, dependent types, and overloading. Mathemagix is intended as a general purpose language, which supports both functional and imperative programming styles. Although the design has greatly been influenced by Scratchpad II and its successors Axiom and Aldor, the type system of Mathemagix contains several novel aspects, as described in [START_REF] Van Der Hoeven | Overview of the Mathemagix type system[END_REF]. Mathemagix is also a free software, which can be downloaded from http://www.mathemagix.org.

Interfacing Mathemagix with C++

One major design goal of the Mathemagix compiler is to admit a good compatibility with existing programming languages. For the moment, we have focussed on C and C++. Indeed, on the one hand, in parallel with the development of the compiler, we have written several high performance C++ template libraries for various basic mathematical structures (polynomials, matrices, series, etc.). On the other hand, the compiler currently generates C++ code.

We already stated that Mathemagix was inspired by Axiom and Aldor in many respects. Some early work on interfacing with C++ was done in the context of Aldor [START_REF] Chicha | Automation of the Aldor/C++ interface: User's guide[END_REF][START_REF] Gaëtano | An object model correspondence for Aldor and C++[END_REF]. There are two major differences between C++ and Aldor which are important in this context.

On the one hand, Aldor provides support for genuine generic functional programming: not only functions, but also data types can be passed as function arguments. For instance, one may write a routine which takes a ring R and an integer n on input and which returns the ring

R[X 1 ] [X n ].
The language also provides support for dependent types: a function may very well take a ring R together with an instance x of R as its arguments or return value.

On the other hand, C++ provides support for templates. We may write a routine cube which takes an instance x of an arbitrary type R on input and returns x*x*x. However, and even though there is some work in this direction [START_REF] Garcia | A comparative study of language support for generic programming[END_REF], it is currently not possible to add the requirement that R must be a ring when declaring the template cube. Hence, the correctness of the template body x*x*x can only be checked at the moment when the template is instantiated for a particular type R. Furthermore, only a finite number of these instantiations can occur in a program or library, and template parameters cannot be passed to functions as objects.

In Aldor, there is no direct equivalent of templates. Nevertheless, it is possible to implement a function cube which takes a ring R and an instance x of R on input, and which returns x*x*x. It thus makes sense to consider the importation of C++ template libraries into Aldor. Although [START_REF] Chicha | Automation of the Aldor/C++ interface: User's guide[END_REF][START_REF] Gaëtano | An object model correspondence for Aldor and C++[END_REF] contain a precise strategy for realizing such interfacing, part of the interface still had to be written by hand.

Mathemagix features two main novelties with respect to the previous work which was done in the context of Axiom and Aldor. First of all, the language itself admits full support for templates with typed parameters; see our paper [START_REF] Van Der Hoeven | Overview of the Mathemagix type system[END_REF] on the type system for more details. Secondly, C++ template libraries can be imported into Mathemagix in a straightforward way, without the need to write any non trivial parts of the interface by hand.

The ability to transform a C++ template library which only permits static instantiation into a fully generic template library is somewhat surprising. Part of the magic occurs in the specification of the interface itself. Indeed, the interface should in particular provide the missing type information about the parameters of the C++ templates. In this paper, we will describe in more details how this mechanism works. We think that similar techniques can be applied for the generic importation of C++ templates into other languages such as Aldor or OCaml. It might also be useful for future extensions of C++ itself.

The paper is organized as follows. In Section 2, we describe how to import and export non templated classes and functions from and to C++. In Section 3, we briefly recall how genericity works in Mathemagix, and we describe what kind of C++ code is generated by the compiler for generic classes and functions. The core of the paper is Section 4, where we explain how C++ templates are imported into Mathemagix. In Section 5 we summarize the main C++ libraries that have been interfaced to Mathemagix, and Section 6 contains a conclusion and several ideas for future extensions.

Basic interface principles to C++

Preparing imports from C++

Different programming languages have different conventions for compiling programs, organizing projects into libraries, and mechanisms for separate compilation.

C++ is particularly complex, since the language does not provide any direct support for the management of big projects. Instead, this task is delegated to separate configuration and Makefile systems, which are responsible for the detection and specification of external and internal dependencies, and the determination of the correct compilation flags. Although these tasks may be facilitated up to a certain extent when using integrated development environments such as Eclipse tm (trademark of Eclipse Foundation, Inc.), Xcode tm (trademark of Apple Inc.), or C++ Builder tm (trademark of Embarcadero Technologies, Inc.), they usually remain non trivial for projects of a certain size.

Mathemagix uses a different philosophy for managing big projects. Roughly speaking, any source file contains all information which is necessary for building the corresponding binary. Consequently, there is no need for external configuration or Makefile systems.

Whenever we import functionality from C++ into Mathemagix, our design philosophy implies that we have to specify the necessary instructions for compiling and/or linking the imported code. To this effect, Mathemagix provides special primitives cpp_flags, cpp_libs and cpp_include for specifying the compilation and linking flags, and C++ header files to be included.

For instance, the numerix library of Mathemagix contains implementation for various numerical types. In particular, it contains wrappers for the Gmp and Mpfr libraries [START_REF] Fousse | MPFR: A multiple-precision binary floating-point library with correct rounding[END_REF][START_REF] Granlund | GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF] with implementations of arbitrary precision integers, rational numbers and floating point numbers. The Mathemagix interface for importing the wrapper for arbitrary precision integers starts as follows:

foreign cpp import { cpp_flags "`numerix-config --cppflags`"; cpp_libs "`numerix-config --libs`"; cpp_include "numerix/integer.hpp"; ... } On installation of the numerix library, a special script numerix-config is installed in the user's path. In the above example, we use this script in order to retrieve the compilation and linking flags. Notice also that numerix/integer.hpp is the C++ header file for basic arbitrary precision integer arithmetic.

Importing simple classes and functions

Ideally speaking, the bulk of an interface between Mathemagix and a foreign language is simply a dictionary which specifies how concepts in one system should be mapped into the other one. For ordinary classes, functions and constants, there is a direct correspondence between Mathemagix and C++, so the interface is very simple in this case.

Assume for instance that we want to map the C++ class integer from integer.hpp into the Mathemagix class Integer, and import the basic constructors and arithmetic operations on integers. This is done by completing the previous example into: ... }

The special constructor literal_integer allows us to write literal integer constants such as 12345678987654321 using the traditional notation. This literal constructor corresponds to the C++ routine integer make_literal_integer (const literal&);

where literal is a special C++ class for string symbols.

Syntactic sugar

The syntax of C++ is quite rigid and often directly related to implementation details. For instance, in C++ the notation p.x necessarily presupposes the definition of a class or structure with a field x. In Mathemagix, the operator postfix .x can be defined anywhere. More generally, the language provides a lot of syntactic sugar which allows for a flexible mapping of C++ functionality to Mathemagix.

Another example is type inheritance. In C++, type inheritance can only be done at the level of class definitions. Furthermore, type inheritance induces a specific low level representation in memory for the corresponding class instances. In Mathemagix, we may declare any type T to inherit from a type U by defining an operator downgrade: T -> U. This operator really acts as a converter with the special property that for any second converter X -> T, Mathemagix automatically generates the converter X -> U. This allows for a more high level view of type inheritance.

Mathemagix also provides a few built-in type constructors: Alias T provides a direct equivalent for the C++ reference types, the type Tuple T can be used for writing functions with an arbitrary number of arguments of the same type T, and Generator T corresponds to a stream of coefficients of type T. The built-in types Alias T, Tuple T and Generator T are automatically mapped to the C++ types T&, mmx::vector<T> and mmx::iterator<T> in definitions of foreign interfaces. The containers mmx::vector<T> and mmx::iterator<T> are defined in the C++ support library basix for Mathemagix, where mmx represents the Mathemagix namespace.

Compulsory functions

When importing a C++ class T into Mathemagix, we finally notice that the user should implement a few compulsory operators on T. These operators have fixed named in C++ and in Mathemagix, so it is not necessary to explicitly specify them in foreign interfaces.

The first compulsory operator is flatten: T -> Syntactic, which converts instances of type T into syntactic expression trees which can then be printed in several formats (ASCII, Lisp, T E X MACS , etc.). The other compulsory operators are three types of equality (and inequality) tests and the corresponding hash functions. Indeed, Mathemagix distinguishes between "semantic" equality, exact "syntactic" equality and "hard" pointer equality. Finally, any C++ type should provide a default constructor with no arguments.

Exporting basic functionality to C++

Simple Mathemagix classes and functions can be exported to C++ in a similar way as C++ classes and functions are imported. Assume for instance that we wrote a Mathemagix class Point with a constructor, accessors, and a few operations on points. Then we may export this functionality to C++ as follows: Mathemagix provides the forall construct for the declaration of generic functions. For instance, a simple generic function for the computation of a cube is the following:

forall (M: Monoid) cube (x: M): M == x*x*x;
This function can be applied to any element x whose type M is a monoid. For instance, we may write c: Int == cube 3;

The parameters of generic functions are necessarily typed. In our example, the parameter M is a type itself and the type of M a category . The category Monoid specifies the requirements which are made upon the type M, and a typical declaration would be the following: category Monoid == { infix *: (This, This) -> This; } Hence, a type M is considered to have the structure of a Monoid in a given context, as soon as the function infix *: (M, M) -> M is defined in this context. Notice that the compiler does not provide any means for checking mathematical axioms that are usually satisfied, such as associativity.

Already on this simple example, we notice several important differences with the C++ "counterpart" of the declaration of cube: template<typename M> M cube (const M& x) { return x*x*x; } First of all, C++ does not provide a means for checking that M admits the structure of a monoid. Consequently, the correctness of the body return x*x*x can only be checked for actual instantiations of the template. In particular, it is not possible to compile a truly generic version of cube.

By default, Mathemagix always compiles functions such as cube in a generic way. Let us briefly describe how this is implemented. First of all (and similarly to [START_REF] Chicha | Automation of the Aldor/C++ interface: User's guide[END_REF][START_REF] Gaëtano | An object model correspondence for Aldor and C++[END_REF]), the definition of the category Monoid gives rise to a corresponding abstract base class on the C++ side: A concrete monoid is a "managed pointer" (i.e. the objects to which they point are reference counted) to a derived class of Monoid_rep with an actual implementation of the multiplication mul. Instances of the Mathemagix type generic correspond to managed pointers to objects of arbitrary types. The declaration of cube gives rise to the following code on the C++ side: Notice that we did not generate any specific instantiation of cube for the Int type. This may lead to significantly smaller executables with respect to C++ when the function cube is applied to objects of many different types. Indeed, in the case of C++, a separate instantiation of the function needs to be generated for each of these types.

In particular, the function can only be applied to a finite number of types in the course of a program.

Remark 1. Of course, for very low level types such as

Int, the use of generic functions does imply a non trivial overhead. Nevertheless, since the type generic is essentially a void*, the overhead is kept as small as possible. In particular, the overhead is guaranteed to be bounded by a fixed constant. We also notice that Mathemagix provides an experimental keyword specialize which allows for the explicit instantiation of a generic function.

Remark 2.

Although generic functions such as cube are not instantiated by default, our example shows that we do have to generate special code for converting the type parameter Int to a Monoid. Although this code is essentially trivial, it may become quite voluminous when there are many different types and categories. We are still investigating how to reduce this size as much as possible while keeping the performance overhead small.

Mathemagix also allows for the declaration of generic container classes; the user simply has to specify the typed parameters when declaring the class:

class Complex (R: Ring) == { re: R; im: R; constructor complex (r: R, i: R) == { re == r; im == i; } } Again, only the generic version of this class is compiled by default. In particular, the internal representation of the corresponding C++ class is simply a class with two fields re and im of type generic.

Regarding functions and templates, there are a few other important differences between C++ and Mathemagix:

1. Dependencies are allowed between function and template parameters and return values, as in the following example: 2. Template parameters can be arbitrary types or (not necessarily constant) instances. For instance, one may define a container Vec (R: Ring, n: Int) for vectors with a fixed size.

Functions can be used as arguments and as values:

compose (f: Int -> Int, g: Int -> Int) (x: Int): Int == f g x;

Notice that Axiom and Aldor admit the same advantages with respect to C++.

Importing C++ containers and templates

One of the most interesting aspects of our interface between Mathemagix and C++ is its ability to import C++ template classes and functions. This makes it possible to provide a fully generic Mathemagix interface on top of an existing C++ template library. We notice that the interface between Aldor and C++ [START_REF] Chicha | Automation of the Aldor/C++ interface: User's guide[END_REF][START_REF] Gaëtano | An object model correspondence for Aldor and C++[END_REF] also provided a strategy for the importation of templates. However, the bulk of the actual work still had to be done by hand.

Example of a generic C++ import

Before coming to the technical details, let us first give a small example of how to import part of the univariate polynomial arithmetic from the C++ template library algebramix, which is shipped with Mathemagix: 

deg: Pol R -> Int == deg; postfix []: (Pol R, Int) -> R == postfix []; prefix -: Pol R -> Pol R == prefix -; infix +: (Pol R, Pol R) -> Pol R == infix +; infix -: (Pol R, Pol R) -> Pol R == infix -; infix *: (Pol R, Pol R) -> Pol R == infix *; ... } }
As is clear from this example, the actual syntax for template imports is a straightforward extension of the syntax of usual imports and the syntax of generic declarations on the Mathemagix side.

Actually, the above code is still incomplete: in order to make it work, we also have to specify how the ring operations on R should be interpreted on the C++ side. This is done by exporting the category Ring to C++: This means that the ring operations in C++ are the constructor from int and the usual operators +, -and *. The programmer should make sure that the C++ implementations of the imported templates only rely on these ring operations.

Generation of generic instance classes

The first thing the compiler does with the above C++ export of Ring the creation of a C++ class capable of representing generic instances of arbitrary ring types. Any mechanism for doing this has two components: we should not only store the actual ring elements, but also the rings themselves to which they belong. This can actually be done in two ways.

The most straightforward idea is to represent an instance of a generic ring by a pair (R, x), where R is the actual ring (similar to the example of the C++ counterpart of a monoid in Section 3) and x an actual element of R. This approach has the advantage of being purely functional, but it requires non trivial modifications on the C++ side. Indeed, whenever a function returns a ring object, we should be able to determine the underlying ring R from the input arguments. In the case of a function such as postfix []: (Pol R, Int) -> R, this means that R has to be read off from the coefficients of the input polynomial. But the most straightforward implementation of the zero polynomial does not have any coefficients! In principle, it is possible to tweak all C++ containers so as to guarantee the ability to determine the underlying generic parameters from actual instances. We have actually implemented this idea, but it required a lot of work, and it violates the principle that writing a Mathemagix interface for a C++ template library should essentially be trivial.

The second approach is to store the ring R in a global variable, whose value will frequently be changed in the course of actual computations. In fact, certain templates might carry more than one parameter of type Ring, in which case we need more than one global ring. For this reason, we chose to implement a container instance<Cat,Nr> for generic instances of a type of category Cat, with an additional integer parameter Nr for distinguishing between various parameters of the same category Cat. The container instance<Cat,Nr> is really a wrapper for generic: For instance, objects of type instance<Ring,2> are instances of the second generic Ring parameter of templates. The corresponding underlying ring is stored in the global static variable instance<Ring,2>::Cur.

When exporting the Ring category to C++, the Mathemagix compiler automatically generates generic C++ counterparts for the ring operations. For instance, the following multiplication is generated for instance<Ring,Nr>: template<int Nr> inline instance<Ring,Nr> operator * (const instance<Ring,Nr> &a1, const instance<Ring,Nr> &a2) { typedef instance<Ring,Nr> Inst; return Inst (Inst::Cur->mul (a1.rep, a2.rep)); } Since all C++ compilers do not allow us to directly specialize constructors of instance<Cat,Nr>, we provide a general default constructor of instance<Cat,Nr> from an arbitrary type T, which relies on the in place routine void set_as (instance<Ring,Nr>&, const T&); This routine can be specialized for particular categories. For instance, the converter convert: Int -> This from Ring gives rise to following routine, which induces a constructor for instance<Ring,Nr> from int:

template<int Nr> inline void set_as (instance<Ring,Nr> &ret, const int &a1) { typedef instance<Ring,Nr> Inst; ret = Inst (Inst::Cur->cast (a1)); }

In this example, Inst::Cur->cast represents the function that sends an int into an element of the current ring.

Importing C++ templates

Now that we have a way to represent arbitrary Mathemagix classes R with the structure of a Ring by a C++ type instance<Ring,Nr>, we are in a position to import arbitrary C++ templates with Ring parameters. This mechanism is best explained on an example. Consider the importation of the routine

forall (R: Ring) infix *: (Pol R, Pol R) -> Pol R;
The compiler essentially generates the following C++ code for this import: There are two things to be observed in this code. First of all, for the computation of the actual product P1 * P2, we have made sure that Inst::Cur contains the ring R corresponding to the coefficients of the generic coefficients of the inputs p1 and p2. Moreover, the old value of Inst::Cur is restored on exit. Secondly, we notice that polynomial<Inst> and polynomial<generic> have exactly the same internal representation. The template as simply casts between these two representations. In the actual code generated by the compiler, these casts are done without any cost, directly on pointers.

The above mechanism provides us with a fully generic way to import C++ templates. However, as long as the template parameters are themselves types which were imported from C++, it is usually more efficient to shortcut the above mechanism and directly specialize the templates on the C++ side. For instance, the Mathemagix program p: Pol Integer == ...; q: Pol Integer == p * p; is compiled into the following C++ code: polynomial<integer> p= ...; polynomial<integer> q= p * p;

Currently interfaced C++ libraries

Currently, most of the mathematical features available in Mathemagix are imported from C++ libraries, either of our own or external [START_REF] Van Der Hoeven | Mathemagix, the quest of modularity and efficiency for symbolic and certified numeric computation[END_REF]. In this section, we briefly describe what these libraries provide, and the main issues we encountered.

Mathemagix libraries

C++ libraries of the Mathemagix project provide the user with usual data types and mathematical objects. We have already mentioned the basix library which is devoted to vectors, iterators, lists, hash tables, generic objects, parsers, pretty printers, system commands, and the T E X MACS interface. The numerix library is dedicated to numerical types including integers, modular integers, rational numbers, floating point numbers, complex numbers, intervals, and balls. Univariate polynomials, power series, fraction fields, algebraic numbers, and matrices are provided by the algebramix library, completed by analyziz for when working with numerical coefficient types. Multivariate polynomials, jets, and power series and gathered in the multimix library. Finally continewz implements analytic functions and numerical homotopy continuation for polynomial system solving.

The Mathemagix compiler is itself written in Mathemagix on the top of the basix library. In order to produce a first binary for this compiler, we designed a mechanism for producing standalone C++ sources from its Mathemagix sources (namely the mmcompileregg package). This mechanism is made available to the user via the option --keep-cpp of the mmc compiler command.

In the following example we illustrate simple calculations with analytic functions. We use the notation ==> for macro definitions. We first construct the polynomial indeterminate x of C[x], and convert it into the analytic function indeterminate z. We display exp z, exp 1, and exp (z + 1) on the standard output mmout. Internal computations are performed up to 256 bits of precision, but printing is restricted to 5 decimal digits. Analytic functions are displayed as their underlying power series at the origin, for which we set the output order to 5.

include "basix/fundamental.mmx"; include "numerix/floating.mmx"; include "numerix/complex.mmx"; include "continewz/analytic.mmx"; 

External libraries

Importing a library that is completely external to the Mathemagix project involves several issues. First of all, as mentioned in Section 2.4, all the data types to be imported should satisfy mild conditions in order to be properly usable from Mathemagix. Usually, these conditions can easily be satisfied by writing a C++ wrapper whenever necessary.

However, when introducing new types and functions, one usually wants them to interact naturally with other librairies. For instance, if several libraries have their own arbitrarily long integer type, straightforward interfaces introduce several Mathemagix types of such integers, leaving to the user the responsibility of the conversions in order to use functions of different librairies within a single program.

For C and C++ libraries involving only a finite number of types, we prefer to design lower level interfaces to the libraries of Mathemagix. In this way, we focus on efficient converters between external and C++ Mathemagix objects, and then on interfacing new functions at the Mathemagix language level. This is the way we did for instance with lattice reduction of the Fplll library [START_REF] Cade | Fplll, library for LLLreduction of Euclidean lattices[END_REF], where we mainly had to write converters for integer matrices. Similarly the interface with FGb [START_REF] Faugère | FGb: A Library for Computing Gröbner Bases[END_REF] mainly consists in converters between different representations of multivariate polynomials.

When libraries contain many data types, functions, and have their own memory management, the interface quickly becomes tedious. This situation happened with the Pari library [START_REF]Software available from[END_REF]. We first created a C++ wrapper of generic Pari objects, so that wrapped objects are reference counted and have memory space allocated by Mathemagix. Before calling a Pari function, the arguments are copied onto the Pari stack. Once the function has terminated, the result from the stack is wrapped into a Mathemagix object. Of course converters for the different representations of integers, rationals, polynomials and matrices were needed. The following example calls the Pari function nfbasis to compute an integral basis of the number field defined by x 2 + x -1001: 

Conclusion and future extensions

The current mechanism for importing C++ template libraries has been tested for the standard mathematical libraries which are shipped with Mathemagix. For this purpose, it has turned out to be very user friendly, flexible and robust. We think that other languages may develop facilities for the importation of C++ template libraries along similar lines. In the future, our approach may even be useful for adding more genericity to C++ itself. A few points deserve to be developed further:

Exporting Mathemagix containers and templates So far, we have focussed on the importation of C++ containers and templates, and Mathemagix only allows for the exportation of simple, non generic functions and non parameterized classes. Nevertheless, it should not be hard to add support for the more general exportation of generic functions and parameterized classes. Of course, the types of the template parameters would be lost in this process and the resulting templates will only allow for static instantiation.

Multi-threading

The main disadvantage of relying on global variables for storing the current values of template parameters is that this strategy is not thread-safe. In order to allow generic code to be run simultaneously by several threads, the global variables have to be replaced by fast lookup tables which determine the current values of template parameters as a function of the current thread.

Non class parameters

The current interface only allows for the importation of C++ templates with type parameters. This is not a big limitation, because templates with value parameters are only supported for builtin types and they can only be instantiated for constant values. Nevertheless, it is possible to define auxiliary classes for storing mutable static variables, and use these instead as our template parameters; notice that this is exactly the purpose of the instance<Cat,Nr> template. In Mathemagix, we also use this mechanism for the implementation of modular arithmetic, with a modulus that can be changed during the execution. After fixing a standard convention for the creation of auxiliary classes, our implementation could be extended to the importation of C++ with "value parameters" of this kind.

Interfacing more libraries Interfacing libraries often involves portability issues, and also create dependencies that have a risk to be broken in case the library stops being maintained. In the Mathemagix project we considered that functionalities imported from an external library should be implemented even naively directly in Mathemagix (excepted for Gmp and Mpfr). This represents a certain amount of work (for lattice reduction, Gröbner basis, finite fields, etc), but this eases testing the interfaces and allows the whole software to run on platforms where some libraries are not available.

  foreign cpp export { class Point == point; point: (Double, Double) -> Point == keyword constructor; postfix .x: Point -> Double == get_x; postfix .y: Point -> Double == get_y; middle: (Point, Point) -> Point == middle; } 3 Categories and genericity in Mathemagix Before we discuss the importation of C++ template libraries into Mathemagix, let us first describe how to define generic classes and functions in Mathemagix, and how such generic declarations are reflected on the C++ side.

  generic cube (const Monoid& M, const generic& x) { // x is assumed to contain an object "of type M" return M->mul (x, M->mul (x, x)); } The declaration c: Int == cube 3; gives rise to the automatic generation of a class Int_Monoid_rep which corresponds to the class Int with the structure of a Monoid: struct Int_Ring_rep: public Ring_rep { ... generic mul (const generic& x, const generic& y) const { return as_generic<int> (from_generic<int> (x) * from_generic<int> (y)); } ... };The declaration itself corresponds to the following C++ code:Monoid Int_Ring= new Int_Ring_rep (); int c= from_generic<int> (cube (Int_Ring, as_generic<int> (3)));

  forall (R: Ring, M: Module R) infix * (c: R, v: Vector M): Vector M == [ c * x | x: M in v ];

  foreign cpp import { ... class Pol (R: Ring) == polynomial R; forall (R: Ring) { pol: Tuple R -> Pol R == keyword constructor; upgrade: R -> Pol R == keyword constructor;

  foreign cpp export category Ring == { convert: Int -> This == keyword constructor; prefix -: This -> This == prefix -; infix +: (This, This) -> This == infix +; infix -: (This, This) -> This == infix -; infix *: (This, This) -> This == infix *; }

R

  ==> Floating; C ==> Complex R; Pol ==> Polynomial C; Afun ==> Analytic (R, C); bit_precision := 256; x: Pol == polynomial (complex (0.0 :> R), complex (1.0 :> R)); z: Afun == x :> Pol; f: Afun == exp z; significant_digits := 5; set_output_order (x :> (Series C), 5); mmout << "f= " << f << lf; mmout << "f (1)= " << f (1.0 :> C) << lf; mmout << "f (1 + z)= " << move (f, 1.0 :> C) << lf; Compiling and running this program in a textual terminal yields: f= 1.0000 + 1.0000 * z + 0.50000 * z^2 + 0.16667 * z^3 + 0.041667 * z^4 + O (z^5) f (1)= 2.7183 f (1 + z)= 2.7183 + 2.7183 * z + 1.3591 * z^2 + 0.45305 * z^3 + 0.11326 * z^4 + O (z^5)

[ 1 ,

 1 1 / 3 * x -1 / 3]
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