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Abstract

In this paper, we give a detailed description of the inter-
face between the Mathemagix language and C++. In
particular, we describe the mechanism which allows us to
import a C++ template library (which only permits static
instantiation) as a fully generic Mathemagix template
library.
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1 Introduction

1.1 Motivation behind Mathemagix

Until the mid nineties, the development of computer
algebra systems tended to exploit advances in the area
of programming languages, and sometimes even influenced
the design of new languages. The Formac system [2]
was developed shortly after the introduction of Fortran.
Symbolic algebra was an important branch of the arti-
ficial intelligence project at Mit during the sixties. During
a while, the Macsyma system [21, 23, 25] was the largest
program written in Lisp, and motivated the development
of better Lisp compilers.

The Scratchpad system [11, 16] was at the origin of
yet another interesting family of computer algebra sys-
tems, especially after the introduction of domains and
categories as function values and dependent types in
Modlisp and Scratchpad II [17, 19, 27]. These devel-
opments were at the forefront of language design and type
theory [9, 22, 24]. Scratchpad later evolved into the
Axiom system [1, 18]. In the A# project [29, 30], later
renamed into Aldor, the language and compiler were
redesigned from scratch and further purified.

After this initial period, computer algebra systems
have been less keen on exploiting new ideas in language
design. One important reason is that a good language
for computer algebra is more important for developers
than for end users. Indeed, typical end users tend to use
computer algebra systems as enhanced pocket calculators,
and rarely write programs of substantial complexity them-
selves. Another reason is specific to the family of systems
that grew out of Scratchpad: after IBM’s decision to
no longer support the development, there has been a long
period of uncertainty for developers and users on how the

system would evolve. This has discouraged many of the
programmers who did care about the novel programming
language concepts in these systems.

In our opinion, this has led to an unpleasant current
situation in computer algebra: there is a dramatic lack of
a modern, sound and fast general purpose programming
language. The major systems Mathematicatm [31] and
Mapletm [20] are both interpreted, weakly typed, besides
being proprietary and expensive. The Sage system [26]
relies on Python and merely contents itself to glue
together various existing libraries and other software com-
ponents.

The absence of modern languages for computer algebra
is even more critical whenever performance is required.
Nowadays, many important computer algebra libraries
(such as Gmp [10], Mpfr [6], Flint [12], FGb [5], etc.)
are directly written in C or C++. Performance issues
are also important whenever computer algebra is used in
combination with numerical algorithms. We would like to
emphasize that high level ideas can be important even
for traditionally low level applications. For instance, in
a suitable high level language it should be easy to operate
on SIMD vectors of, say, 256 bit floating point num-
bers. Unfortunately, Mpfr would have to be completely
redesigned in order to make such a thing possible.

For these reasons, we have started the design of a new
software, Mathemagix [14, 15], based on a compiled and
strongly typed language, featuring signatures, dependent
types, and overloading. Mathemagix is intended as a gen-
eral purpose language, which supports both functional and
imperative programming styles. Although the design has
greatly been influenced by Scratchpad II and its succes-
sors Axiom and Aldor, the type system of Mathemagix

contains several novel aspects, as described in [13]. Math-

emagix is also a free software, which can be downloaded
from http://www.mathemagix.org.

1.2 Interfacing Mathemagix with C++

One major design goal of the Mathemagix compiler is
to admit a good compatibility with existing program-
ming languages. For the moment, we have focussed on C
and C++. Indeed, on the one hand, in parallel with the
development of the compiler, we have written several high
performance C++ template libraries for various basic
mathematical structures (polynomials, matrices, series,
etc.). On the other hand, the compiler currently gener-
ates C++ code.

∗. This work has been partly supported by the Digiteo 2009-36HD grant of the Région Ile-de-France.
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We already stated that Mathemagix was inspired
by Axiom and Aldor in many respects. Some early
work on interfacing with C++ was done in the context
of Aldor [4, 7]. There are two major differences between
C++ and Aldor which are important in this context.

On the one hand, Aldor provides support for gen-
uine generic functional programming: not only functions,
but also data types can be passed as function arguments.
For instance, one may write a routine which takes a ring
R and an integer n on input and which returns the ring
R[X1] 
 [Xn]. The language also provides support for
dependent types: a function may very well take a ring R

together with an instance x of R as its arguments or return
value.

On the other hand, C++ provides support for tem-
plates. We may write a routine cube which takes an
instance x of an arbitrary type R on input and returns
x*x*x. However, and even though there is some work in
this direction [8], it is currently not possible to add the
requirement that R must be a ring when declaring the tem-
plate cube. Hence, the correctness of the template body
x*x*x can only be checked at the moment when the tem-
plate is instantiated for a particular type R. Furthermore,
only a finite number of these instantiations can occur in
a program or library, and template parameters cannot be
passed to functions as objects.

In Aldor, there is no direct equivalent of templates.
Nevertheless, it is possible to implement a function cube

which takes a ring R and an instance x of R on input,
and which returns x*x*x. It thus makes sense to consider
the importation of C++ template libraries into Aldor.
Although [4, 7] contain a precise strategy for realizing such
interfacing, part of the interface still had to be written by
hand.

Mathemagix features two main novelties with respect
to the previous work which was done in the context of
Axiom and Aldor. First of all, the language itself admits
full support for templates with typed parameters; see our
paper [13] on the type system for more details. Secondly,
C++ template libraries can be imported into Math-

emagix in a straightforward way, without the need to
write any non trivial parts of the interface by hand.

The ability to transform a C++ template library which
only permits static instantiation into a fully generic tem-
plate library is somewhat surprising. Part of the magic
occurs in the specification of the interface itself. Indeed,
the interface should in particular provide the missing type
information about the parameters of the C++ templates.
In this paper, we will describe in more details how this
mechanism works. We think that similar techniques can
be applied for the generic importation of C++ templates
into other languages such as Aldor or OCaml. It might
also be useful for future extensions of C++ itself.

The paper is organized as follows. In Section 2, we
describe how to import and export non templated classes
and functions from and to C++. In Section 3, we briefly
recall how genericity works in Mathemagix, and we
describe what kind of C++ code is generated by the com-
piler for generic classes and functions. The core of the
paper is Section 4, where we explain how C++ templates
are imported into Mathemagix. In Section 5 we sum-
marize the main C++ libraries that have been interfaced
to Mathemagix, and Section 6 contains a conclusion and
several ideas for future extensions.

2 Basic interface principles to C++

2.1 Preparing imports from C++

Different programming languages have different conven-
tions for compiling programs, organizing projects into
libraries, and mechanisms for separate compilation.

C++ is particularly complex, since the language does
not provide any direct support for the management of big
projects. Instead, this task is delegated to separate con-
figuration and Makefile systems, which are responsible for
the detection and specification of external and internal
dependencies, and the determination of the correct com-
pilation flags. Although these tasks may be facilitated up
to a certain extent when using integrated development
environments such as Eclipsetm (trademark of Eclipse

Foundation, Inc.), Xcodetm (trademark of Apple Inc.),
or C++ Buildertm (trademark of Embarcadero Tech-
nologies, Inc.), they usually remain non trivial for projects
of a certain size.

Mathemagix uses a different philosophy for managing
big projects. Roughly speaking, any source file contains
all information which is necessary for building the cor-
responding binary. Consequently, there is no need for
external configuration or Makefile systems.

Whenever we import functionality from C++ into
Mathemagix, our design philosophy implies that we have
to specify the necessary instructions for compiling and/or
linking the imported code. To this effect, Mathemagix

provides special primitives cpp_flags, cpp_libs and
cpp_include for specifying the compilation and linking
flags, and C++ header files to be included.

For instance, the numerix library of Mathemagix

contains implementation for various numerical types.
In particular, it contains wrappers for the Gmp and
Mpfr libraries [6, 10] with implementations of arbitrary
precision integers, rational numbers and floating point
numbers. The Mathemagix interface for importing the
wrapper for arbitrary precision integers starts as follows:

foreign cpp import {

cpp_flags "`numerix-config --cppflags`";

cpp_libs "`numerix-config --libs`";

cpp_include "numerix/integer.hpp";

...

}

On installation of the numerix library, a special script
numerix-config is installed in the user’s path. In the
above example, we use this script in order to retrieve
the compilation and linking flags. Notice also that
numerix/integer.hpp is the C++ header file for basic
arbitrary precision integer arithmetic.

2.2 Importing simple classes and functions

Ideally speaking, the bulk of an interface between Math-

emagix and a foreign language is simply a dictionary
which specifies how concepts in one system should be
mapped into the other one. For ordinary classes, functions
and constants, there is a direct correspondence between
Mathemagix and C++, so the interface is very simple
in this case.

Assume for instance that we want to map the C++
class integer from integer.hpp into the Mathemagix

class Integer, and import the basic constructors and
arithmetic operations on integers. This is done by com-
pleting the previous example into:
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foreign cpp import {

cpp_flags "`numerix-config --cppflags`";

cpp_libs "`numerix-config --libs`";

cpp_include "numerix/integer.hpp";

class Integer == integer;

literal_integer: Literal -> Integer ==

make_literal_integer;

prefix -: Integer -> Integer == prefix -;

infix +: (Integer, Integer) -> Integer == infix +;

infix -: (Integer, Integer) -> Integer == infix -;

infix *: (Integer, Integer) -> Integer == infix *;

...

}

The special constructor literal_integer allows us to
write literal integer constants such as 12345678987654321
using the traditional notation. This literal constructor cor-
responds to the C++ routine

integer make_literal_integer (const literal&);

where literal is a special C++ class for string symbols.

2.3 Syntactic sugar

The syntax of C++ is quite rigid and often directly related
to implementation details. For instance, in C++ the nota-
tion p.x necessarily presupposes the definition of a class
or structure with a field x. In Mathemagix, the operator
postfix .x can be defined anywhere. More generally, the
language provides a lot of syntactic sugar which allows for
a flexible mapping of C++ functionality toMathemagix.

Another example is type inheritance. In C++, type
inheritance can only be done at the level of class defini-
tions. Furthermore, type inheritance induces a specific low
level representation in memory for the corresponding class
instances. In Mathemagix, we may declare any type T to
inherit from a type U by defining an operator downgrade:
T -> U. This operator really acts as a converter with the
special property that for any second converter X -> T,
Mathemagix automatically generates the converter X ->

U. This allows for a more high level view of type inher-
itance.

Mathemagix also provides a few built-in type con-
structors: Alias T provides a direct equivalent for the
C++ reference types, the type Tuple T can be used
for writing functions with an arbitrary number of argu-
ments of the same type T, and Generator T corresponds
to a stream of coefficients of type T. The built-in types
Alias T, Tuple T and Generator T are automatically
mapped to the C++ types T&, mmx::vector<T> and
mmx::iterator<T> in definitions of foreign interfaces. The
containers mmx::vector<T> and mmx::iterator<T> are
defined in the C++ support library basix for Math-

emagix, where mmx represents the Mathemagix name-
space.

2.4 Compulsory functions

When importing a C++ class T into Mathemagix, we
finally notice that the user should implement a few com-
pulsory operators on T. These operators have fixed named
in C++ and in Mathemagix, so it is not necessary to
explicitly specify them in foreign interfaces.

The first compulsory operator is flatten: T ->

Syntactic, which converts instances of type T into syn-
tactic expression trees which can then be printed in
several formats (ASCII, Lisp, TEXMACS, etc.). The other
compulsory operators are three types of equality (and
inequality) tests and the corresponding hash functions.
Indeed, Mathemagix distinguishes between “semantic”
equality, exact “syntactic” equality and “hard” pointer
equality. Finally, any C++ type should provide a default
constructor with no arguments.

2.5 Exporting basic functionality to C++

Simple Mathemagix classes and functions can be
exported to C++ in a similar way as C++ classes and
functions are imported. Assume for instance that we wrote
a Mathemagix class Point with a constructor, accessors,
and a few operations on points. Then we may export this
functionality to C++ as follows:

foreign cpp export {

class Point == point;

point: (Double, Double) -> Point ==

keyword constructor;

postfix .x: Point -> Double == get_x;

postfix .y: Point -> Double == get_y;

middle: (Point, Point) -> Point == middle;

}

3 Categories and genericity in Mathemagix

Before we discuss the importation of C++ template
libraries into Mathemagix, let us first describe how to
define generic classes and functions in Mathemagix, and
how such generic declarations are reflected on the C++
side.

Mathemagix provides the forall construct for the
declaration of generic functions. For instance, a simple
generic function for the computation of a cube is the fol-
lowing:

forall (M: Monoid) cube (x: M): M == x*x*x;

This function can be applied to any element x whose type
M is a monoid. For instance, we may write

c: Int == cube 3;

The parameters of generic functions are necessarily typed.
In our example, the parameter M is a type itself and the
type of M a category . The category Monoid specifies the
requirements which are made upon the type M, and a typ-
ical declaration would be the following:

category Monoid == {

infix *: (This, This) -> This;

}

Hence, a type M is considered to have the structure of a
Monoid in a given context, as soon as the function infix

*: (M, M) -> M is defined in this context. Notice that
the compiler does not provide any means for checking
mathematical axioms that are usually satisfied, such as
associativity.

Already on this simple example, we notice several
important differences with the C++ “counterpart” of the
declaration of cube:
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template<typename M> M

cube (const M& x) { return x*x*x; }

First of all, C++ does not provide a means for checking
that M admits the structure of a monoid. Consequently, the
correctness of the body return x*x*x can only be checked
for actual instantiations of the template. In particular, it
is not possible to compile a truly generic version of cube.

By default, Mathemagix always compiles functions
such as cube in a generic way. Let us briefly describe how
this is implemented. First of all (and similarly to [4, 7]),
the definition of the category Monoid gives rise to a corre-
sponding abstract base class on the C++ side:

class Monoid_rep: public rep_struct {

inline Monoid_rep ();

virtual inline ~Monoid_rep ();

virtual generic mul (const generic&,

const generic&) const = 0;

...

};

A concrete monoid is a “managed pointer” (i.e. the objects
to which they point are reference counted) to a derived
class of Monoid_rep with an actual implementation of the
multiplication mul. Instances of the Mathemagix type
generic correspond to managed pointers to objects of
arbitrary types. The declaration of cube gives rise to the
following code on the C++ side:

generic

cube (const Monoid& M, const generic& x) {

// x is assumed to contain an object "of type M"

return M->mul (x, M->mul (x, x));

}

The declaration c: Int == cube 3; gives rise to the auto-
matic generation of a class Int_Monoid_rep which corre-
sponds to the class Int with the structure of a Monoid:

struct Int_Ring_rep: public Ring_rep {

...

generic

mul (const generic& x, const generic& y) const {

return as_generic<int> (from_generic<int> (x) *

from_generic<int> (y));

}

...

};

The declaration itself corresponds to the following C++
code:

Monoid Int_Ring= new Int_Ring_rep ();

int c= from_generic<int>

(cube (Int_Ring, as_generic<int> (3)));

Notice that we did not generate any specific instantiation
of cube for the Int type. This may lead to significantly
smaller executables with respect to C++ when the func-
tion cube is applied to objects of many different types.
Indeed, in the case of C++, a separate instantiation of
the function needs to be generated for each of these types.
In particular, the function can only be applied to a finite
number of types in the course of a program.

Remark 1. Of course, for very low level types such as
Int, the use of generic functions does imply a non trivial
overhead. Nevertheless, since the type generic is essen-
tially a void*, the overhead is kept as small as possible. In
particular, the overhead is guaranteed to be bounded by a
fixed constant. We also notice that Mathemagix provides
an experimental keyword specialize which allows for the
explicit instantiation of a generic function.

Remark 2. Although generic functions such as cube are
not instantiated by default, our example shows that we
do have to generate special code for converting the type
parameter Int to a Monoid. Although this code is essen-
tially trivial, it may become quite voluminous when there
are many different types and categories. We are still inves-
tigating how to reduce this size as much as possible while
keeping the performance overhead small.

Mathemagix also allows for the declaration of generic
container classes; the user simply has to specify the typed
parameters when declaring the class:

class Complex (R: Ring) == {

re: R;

im: R;

constructor complex (r: R, i: R) == {

re == r;

im == i;

}

}

Again, only the generic version of this class is compiled by
default. In particular, the internal representation of the
corresponding C++ class is simply a class with two fields
re and im of type generic.

Regarding functions and templates, there are a few
other important differences between C++ and Math-

emagix:

1. Dependencies are allowed between function and
template parameters and return values, as in the
following example:

forall (R: Ring, M: Module R)

infix * (c: R, v: Vector M): Vector M ==

[ c * x | x: M in v ];

2. Template parameters can be arbitrary types or (not
necessarily constant) instances. For instance, one
may define a container Vec (R: Ring, n: Int) for
vectors with a fixed size.

3. Functions can be used as arguments and as values:

compose (f: Int -> Int, g: Int -> Int)

(x: Int): Int ==

f g x;

Notice that Axiom and Aldor admit the same advan-
tages with respect to C++.

4 Importing C++ containers and templates

One of the most interesting aspects of our interface
between Mathemagix and C++ is its ability to import
C++ template classes and functions. This makes it pos-
sible to provide a fully generic Mathemagix interface on
top of an existing C++ template library. We notice that
the interface between Aldor and C++ [4, 7] also provided
a strategy for the importation of templates. However, the
bulk of the actual work still had to be done by hand.
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4.1 Example of a generic C++ import

Before coming to the technical details, let us first give
a small example of how to import part of the univariate
polynomial arithmetic from the C++ template library
algebramix, which is shipped with Mathemagix:

foreign cpp import {

...

class Pol (R: Ring) == polynomial R;

forall (R: Ring) {

pol: Tuple R -> Pol R == keyword constructor;

upgrade: R -> Pol R == keyword constructor;

deg: Pol R -> Int == deg;

postfix []: (Pol R, Int) -> R == postfix [];

prefix -: Pol R -> Pol R == prefix -;

infix +: (Pol R, Pol R) -> Pol R == infix +;

infix -: (Pol R, Pol R) -> Pol R == infix -;

infix *: (Pol R, Pol R) -> Pol R == infix *;

...

}

}

As is clear from this example, the actual syntax for tem-
plate imports is a straightforward extension of the syntax
of usual imports and the syntax of generic declarations on
the Mathemagix side.

Actually, the above code is still incomplete: in order
to make it work, we also have to specify how the ring
operations on R should be interpreted on the C++ side.
This is done by exporting the category Ring to C++:

foreign cpp export

category Ring == {

convert: Int -> This == keyword constructor;

prefix -: This -> This == prefix -;

infix +: (This, This) -> This == infix +;

infix -: (This, This) -> This == infix -;

infix *: (This, This) -> This == infix *;

}

This means that the ring operations in C++ are the con-
structor from int and the usual operators +, - and *. The
programmer should make sure that the C++ implemen-
tations of the imported templates only rely on these ring
operations.

4.2 Generation of generic instance classes

The first thing the compiler does with the above C++
export of Ring is the creation of a C++ class capable of
representing generic instances of arbitrary ring types. Any
mechanism for doing this has two components: we should
not only store the actual ring elements, but also the rings
themselves to which they belong. This can actually be
done in two ways.

The most straightforward idea is to represent an
instance of a generic ring by a pair (R, x), where R is
the actual ring (similar to the example of the C++ coun-
terpart of a monoid in Section 3) and x an actual element
of R. This approach has the advantage of being purely
functional, but it requires non trivial modifications on the
C++ side.

Indeed, whenever a function returns a ring object, we
should be able to determine the underlying ring R from
the input arguments. In the case of a function such as
postfix []: (Pol R, Int) -> R, this means that R has
to be read off from the coefficients of the input polynomial.
But the most straightforward implementation of the zero
polynomial does not have any coefficients! In principle, it
is possible to tweak all C++ containers so as to guarantee
the ability to determine the underlying generic parameters
from actual instances. We have actually implemented this
idea, but it required a lot of work, and it violates the
principle that writing a Mathemagix interface for a C++
template library should essentially be trivial.

The second approach is to store the ring R in a
global variable, whose value will frequently be changed
in the course of actual computations. In fact, certain
templates might carry more than one parameter of type
Ring, in which case we need more than one global ring.
For this reason, we chose to implement a container
instance<Cat,Nr> for generic instances of a type of cat-
egory Cat, with an additional integer parameter Nr for
distinguishing between various parameters of the same
category Cat. The container instance<Cat,Nr> is really
a wrapper for generic:

template<typename Cat, int Nr>

class instance {

public:

generic rep;

static Cat Cur;

inline instance (const instance& prg2):

rep (prg2.rep) {}

inline instance (const generic& prg):

rep (prg) {}

instance ();

template<typename C1> instance (const C1& c1);

...

};

For instance, objects of type instance<Ring,2> are
instances of the second generic Ring parameter of tem-
plates. The corresponding underlying ring is stored in the
global static variable instance<Ring,2>::Cur.

When exporting the Ring category to C++, the Math-

emagix compiler automatically generates generic C++
counterparts for the ring operations. For instance, the fol-
lowing multiplication is generated for instance<Ring,Nr>:

template<int Nr> inline instance<Ring,Nr>

operator * (const instance<Ring,Nr> &a1,

const instance<Ring,Nr> &a2) {

typedef instance<Ring,Nr> Inst;

return Inst (Inst::Cur->mul (a1.rep, a2.rep));

}

Since all C++ compilers do not allow us to directly spe-
cialize constructors of instance<Cat,Nr>, we provide a
general default constructor of instance<Cat,Nr> from an
arbitrary type T, which relies on the in place routine

void set_as (instance<Ring,Nr>&, const T&);

This routine can be specialized for particular categories.
For instance, the converter convert: Int -> This from
Ring gives rise to following routine, which induces a con-
structor for instance<Ring,Nr> from int:
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template<int Nr> inline void

set_as (instance<Ring,Nr> &ret, const int &a1) {

typedef instance<Ring,Nr> Inst;

ret = Inst (Inst::Cur->cast (a1));

}

In this example, Inst::Cur->cast represents the function
that sends an int into an element of the current ring.

4.3 Importing C++ templates

Now that we have a way to represent arbitrary Math-

emagix classes R with the structure of a Ring by a C++
type instance<Ring,Nr>, we are in a position to import
arbitrary C++ templates with Ring parameters. This
mechanism is best explained on an example. Consider the
importation of the routine

forall (R: Ring)

infix *: (Pol R, Pol R) -> Pol R;

The compiler essentially generates the following C++ code
for this import:

polynomial<generic>

mul (const Ring &R,

const polynomial<generic> &p1,

const polynomial<generic> &p2)

{

typedef instance<Ring,1> Inst;

Ring old_R= Inst::Cur;

Inst::Cur= R;

polynomial<Inst> P1= as<polynomial<Inst> > (p1);

polynomial<Inst> P2= as<polynomial<Inst> > (p2);

polynomial<Inst> R = P1 * P2;

polynomial<generic> r=

as<polynomial<generic> > (R);

Inst::Cur= old_R;

return r;

}

There are two things to be observed in this code. First of
all, for the computation of the actual product P1 * P2,
we have made sure that Inst::Cur contains the ring R

corresponding to the coefficients of the generic coeffi-
cients of the inputs p1 and p2. Moreover, the old value
of Inst::Cur is restored on exit. Secondly, we notice
that polynomial<Inst> and polynomial<generic> have
exactly the same internal representation. The template
as simply casts between these two representations. In the
actual code generated by the compiler, these casts are done
without any cost, directly on pointers.

The above mechanism provides us with a fully generic
way to import C++ templates. However, as long as the
template parameters are themselves types which were
imported from C++, it is usually more efficient to shortcut
the above mechanism and directly specialize the templates
on the C++ side. For instance, the Mathemagix program

p: Pol Integer == ...;

q: Pol Integer == p * p;

is compiled into the following C++ code:

polynomial<integer> p= ...;

polynomial<integer> q= p * p;

5 Currently interfaced C++ libraries

Currently, most of the mathematical features available in
Mathemagix are imported from C++ libraries, either
of our own or external [15]. In this section, we briefly
describe what these libraries provide, and the main issues
we encountered.

5.1 Mathemagix libraries

C++ libraries of the Mathemagix project provide the
user with usual data types and mathematical objects.
We have already mentioned the basix library which is
devoted to vectors, iterators, lists, hash tables, generic
objects, parsers, pretty printers, system commands, and
the TEXMACS interface. The numerix library is dedicated
to numerical types including integers, modular integers,
rational numbers, floating point numbers, complex num-
bers, intervals, and balls. Univariate polynomials, power
series, fraction fields, algebraic numbers, and matrices
are provided by the algebramix library, completed by
analyziz for when working with numerical coefficient
types. Multivariate polynomials, jets, and power series
and gathered in the multimix library. Finally continewz

implements analytic functions and numerical homotopy
continuation for polynomial system solving.

The Mathemagix compiler is itself written in Math-

emagix on the top of the basix library. In order to
produce a first binary for this compiler, we designed a
mechanism for producing standalone C++ sources from
its Mathemagix sources (namely the mmcompileregg

package). This mechanism is made available to the user
via the option --keep-cpp of the mmc compiler command.

In the following example we illustrate simple calcu-
lations with analytic functions. We use the notation ==>

for macro definitions. We first construct the polynomial
indeterminate x of C[x], and convert it into the analytic
function indeterminate z. We display exp z, exp 1, and
exp (z + 1) on the standard output mmout. Internal com-
putations are performed up to 256 bits of precision, but
printing is restricted to 5 decimal digits. Analytic func-
tions are displayed as their underlying power series at the
origin, for which we set the output order to 5.

include "basix/fundamental.mmx";

include "numerix/floating.mmx";

include "numerix/complex.mmx";

include "continewz/analytic.mmx";

R ==> Floating;

C ==> Complex R;

Pol ==> Polynomial C;

Afun ==> Analytic (R, C);

bit_precision := 256;

x: Pol == polynomial (complex (0.0 :> R),

complex (1.0 :> R));

z: Afun == x :> Pol;

f: Afun == exp z;

significant_digits := 5;

set_output_order (x :> (Series C), 5);

mmout << "f= " << f << lf;

mmout << "f (1)= " << f (1.0 :> C) << lf;

mmout << "f (1 + z)= " << move (f, 1.0 :> C) << lf;
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Compiling and running this program in a textual terminal
yields:

f= 1.0000 + 1.0000 * z + 0.50000 * z^2

+ 0.16667 * z^3 + 0.041667 * z^4 + O (z^5)

f (1)= 2.7183

f (1 + z)= 2.7183 + 2.7183 * z + 1.3591 * z^2

+ 0.45305 * z^3 + 0.11326 * z^4 + O (z^5)

5.2 External libraries

Importing a library that is completely external to the
Mathemagix project involves several issues. First of all,
as mentioned in Section 2.4, all the data types to be
imported should satisfy mild conditions in order to be
properly usable from Mathemagix. Usually, these con-
ditions can easily be satisfied by writing a C++ wrapper
whenever necessary.

However, when introducing new types and functions,
one usually wants them to interact naturally with other
librairies. For instance, if several libraries have their own
arbitrarily long integer type, straightforward interfaces
introduce several Mathemagix types of such integers,
leaving to the user the responsibility of the conversions
in order to use functions of different librairies within a
single program.

For C and C++ libraries involving only a finite number
of types, we prefer to design lower level interfaces to the
C++ libraries of Mathemagix. In this way, we focus
on writing efficient converters between external and C++
Mathemagix objects, and then on interfacing new func-
tions at the Mathemagix language level. This is the way
we did for instance with lattice reduction of the Fplll

library [3], where we mainly had to write converters for
integer matrices. Similarly the interface with FGb [5]
mainly consists in converters between different represen-
tations of multivariate polynomials.

When libraries contain many data types, functions,
and have their own memory management, the interface
quickly becomes tedious. This situation happened with
the Pari library [28]. We first created a C++ wrapper
of generic Pari objects, so that wrapped objects are refer-
ence counted and have memory space allocated by Math-

emagix. Before calling a Pari function, the arguments
are copied onto the Pari stack. Once the function has
terminated, the result from the stack is wrapped into
a Mathemagix object. Of course converters for the dif-
ferent representations of integers, rationals, polynomials
and matrices were needed. The following example calls
the Pari function nfbasis to compute an integral basis
of the number field defined by x2+ x− 1001:

include "basix/fundamental.mmx";

include "mpari/pari.mmx";

Pol ==> Polynomial Integer;

x: Pol == polynomial (0 :> Integer, 1 :> Integer);

p: Pol == x^2 + x - 1001;

mmout << pari_nf_basis p << lf;

[1, 1 / 3 * x - 1 / 3]

6 Conclusion and future extensions

The current mechanism for importing C++ template
libraries has been tested for the standard mathematical
libraries which are shipped with Mathemagix. For this
purpose, it has turned out to be very user friendly, flexible
and robust. We think that other languages may develop
facilities for the importation of C++ template libraries
along similar lines. In the future, our approach may even
be useful for adding more genericity to C++ itself. A few
points deserve to be developed further:

Exporting Mathemagix containers and tem-

plates So far, we have focussed on the importation of
C++ containers and templates, and Mathemagix only
allows for the exportation of simple, non generic functions
and non parameterized classes. Nevertheless, it should not
be hard to add support for the more general exportation
of generic functions and parameterized classes. Of course,
the types of the template parameters would be lost in
this process and the resulting templates will only allow
for static instantiation.

Multi-threading The main disadvantage of relying on
global variables for storing the current values of template
parameters is that this strategy is not thread-safe. In order
to allow generic code to be run simultaneously by several
threads, the global variables have to be replaced by fast
lookup tables which determine the current values of tem-
plate parameters as a function of the current thread.

Non class parameters The current interface only
allows for the importation of C++ templates with type
parameters. This is not a big limitation, because tem-
plates with value parameters are only supported for built-
in types and they can only be instantiated for constant
values. Nevertheless, it is possible to define auxiliary
classes for storing mutable static variables, and use these
instead as our template parameters; notice that this is
exactly the purpose of the instance<Cat,Nr> template. In
Mathemagix, we also use this mechanism for the imple-
mentation of modular arithmetic, with a modulus that
can be changed during the execution. After fixing a stan-
dard convention for the creation of auxiliary classes, our
implementation could be extended to the importation of
C++ with “value parameters” of this kind.

Interfacing more libraries Interfacing libraries often
involves portability issues, and also create dependencies
that have a risk to be broken in case the library stops
being maintained. In the Mathemagix project we consid-
ered that functionalities imported from an external library
should be implemented even naively directly in Math-

emagix (excepted for Gmp and Mpfr). This represents
a certain amount of work (for lattice reduction, Gröbner
basis, finite fields, etc), but this eases testing the interfaces
and allows the whole software to run on platforms where
some libraries are not available.
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