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Supplementary Information

A. Theoretical Model

Taking into account the finite duration of the pump pulse, the finite length of interaction, and the linearity of
energy and momentum conservation, the wave function describing the two-photon state produced by pumping at a
given angle θ can be written as :

|Ψ(θ)〉 =

∫∫∫
dωsdωidz

[
A(1)

+θ(ωs, ωi)a
†
H(ωs)a

†
V (ωi) +A(2)

+θ(ωs, ωi)a
†
V (ωs)a

†
H(ωi)

]
S+(z)|vac〉|z〉 (1)

where A(1)
+θ(ωs, ωi) and A(2)

+θ(ωs, ωi) are the joint spectral amplitudes corresponding to the two possible phase-
matching conditions, z is the propagation direction of the generated photons and S+(z) the spatial profile of the

pumping beam in the z direction. The functions A(1)
+θ(ωs, ωi) and A(2)

+θ(ωs, ωi) are completely determined by the
pump spectrum and the interaction length in the medium. Notice that, in principle, other photonic degrees of
freedom of the pumping beam, as for instance its dispersion in momentum, should be taken into account to provide
the most complete theoretical model of the experiment. However, we expect that the spatial and frequency degrees
of freedom should play the most important role to explain the observed results, and Fig.5 indicates that our model
indeed provides a very good description of the experiment. In general, the two interactions have different central
frequencies and since the spectral width is small compared to other types of phase matching, photons generated
by interaction (1) are distinguishable from photons generated by interaction (2): frequency provides a “which-way”
information on each polarization and thus reduces the entanglement. To obtain indistinguishable photons from both
sides of the medium (right and left), two pump laser pulses must be used with different angles of incidence ±θdeg. In
this case, each pump generates a pair of photons, and the total state can be written as:

|Ψ(+θdeg,−θdeg)〉 =

∫∫∫
dωsdωidz

[
A(1)

+θdeg
(ωs, ωi)S+(z)|ωs, H〉|ωi, V 〉 +A(2)

−θdeg(ωs, ωi)S−(z)|ωs, V 〉|ωi, H〉
]
|z〉

+

∫∫∫
dωsdωidz

[
A(2)

+θdeg
(ωs, ωi)S+(z)|ωs, V 〉|ωi, H〉+A(1)

−θdeg(ωs, ωi)S−(z)|ωs, H〉|ωi, V 〉
]
|z〉 (2)

where S± is the spatial distribution for each pumping beam along z. When nearly frequency degenerated photons are
selected by filtering (i.e. |ωs − ωi| < σ), only the first integral is selected (see Fig. 2 in the main text). Finally the
almost frequency indistinguishable two-photon state can be written as:

|Ψ(+θdeg,−θdeg)〉 =

∫∫∫
dωsdωidz

[
A(1)

+θdeg
(ωs, ωi)S+(z)|ωs, H〉|ωi, V 〉+A(2)

−θdeg(ωs, ωi)S−(z)|ωs, V 〉|ωi, H〉
]
|z〉 (3)

From now on, we simplify the notation, and write A(1)
+θdeg

≡ A1 , A(2)
−θdeg ≡ A2, S+ ≡ S1 and S− ≡ S2.

1. Polarization only measurement

Since experimentally we perform polarization sensitive but frequency insensitive measurements, it is con-
venient to work with the reduced state taking the trace over frequencies and space coordinates in
|Ψ(+θdeg,−θdeg)〉〈Ψ(+θdeg,−θdeg)|:

ρ = α1|HV 〉〈HV |+ α2|V H〉〈V H|+ β|V H〉〈HV |+ β∗|HV 〉〈V H| (4)

with α1 =
∫∫∫

dωsdωidz |A1(ωs, ωi)S1(z)|2, α2 =
∫∫∫

dωsdωidz |A2(ωs, ωi)S2(z)|2 and β =∫∫∫
dωsdωidzA1(ωs, ωi)A∗2(ωs, ωi)S1(z)S∗2 (z)

The reduced state can thus be represented as a 2×2 density matrix in the (|HV 〉, |V H〉) basis. The two eigenvalues
λ± are:

λ± =
1

2

[
α1 + α2 ±

√
(α1 − α2)2 + 4 |β|2

]
=

1

2

{
1±

√
1 + 4

[
|β|2 − α1(1− α1)

]}
(5)
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where the normalization condition α1 + α2 = 1 has been used. Using this expression, all relevant quantities such
as purity and entanglement can be computed since they depend on the integrals α1 and |β|2. The density matrix
ρ is pure if and only if Tr[ρ2] = 1, that is λ2

− + λ2
+ = 1. Using λ− + λ+ = 1, this is equivalent to λ− = 0, that

is |β|2 = α1(1 − α1) (see Eq. (5)) (note that |β|2 ≤ 1
4 since α1 ≤ 1). In that case λ+ = 1 and the corresponding

eigenvectors are :

λ+ = 1→ 1√
1− α1

(
β

1− α1

)
(6)

λ− = 0→ 1
√
α1

(
β
−α1

)
(7)

ρ can thus be written as ρ = |φ〉〈φ| with:

|φ〉 =
1√

1− α1
[β|HV 〉+ (1− α1)|V H〉] . (8)

The pure state is maximally entangled in polarization if the two, orthogonal, contributions have an equal weight, that
is |β|2 = (1−α1)2 i.e. when α1 = 1

2 = α2 and |β|2 = 1
4 . These conditions can be arranged by optimizing the pumping

conditions: to obtain a maximally entangled state in polarization (which is necessarily pure) we need to set up the
two laser pumps such that there is perfect overlap between the joint spectral amplitudes of the generated pairs, as
well as perfect spatial overlap between both pumping beams in the waveguide. The spectral overlap can be easily
experimentally verified in our setup. However, ensuring the spatial overlap and perfect indistinguishability between
the two different processes leading to photon pair generation is a more delicate task. This happens because the spatial
transverse spatial profiles of the pumping beams are not the same, and thus cannot perfectly overlap. As a first
approximation, we can consider that, after passing through the biprism, each pumping beam is a half gaussian. The
point of maximum intensity of the two gaussians at the point they reach the sample is separated by a transverse (z)
distance of δz. The spatial distribution of each beam can be modelized by the half-gaussian functions S1(z < 0) = 0,

S1(z > 0) =
√

2
√

2
wpπ

e
− z2

w2
p and S2(z > δz) = 0, S2(z < δz) =

√
2
√

2
wpπ

e
− (z−δz)2

w2
p . We see in Fig. 5 that, even in the case

where the overlap between these two non-symmetric functions is maximized, we cannot reach |β| = 0.5.

2. Concurrence and linear entropy

We develop now our model to extract information about entanglement. Experimental measurements of the photon
countings for each interaction indicate that condition α1 = α2 is satisfied. However, we can have |β|2 < 1/4 and
consequently non-maximally polarization entangled states if both beams are not in perfect frequency degeneracy
and/or if their spatial profiles in the waveguide do not overlap. It was experimentally verified (see main text) that
the degeneracy condition is satisfied within our spectral resolution. However, the overlap between the two pumping
beams spatial profiles is more difficult to quantify, since it requires a perfect knowledge of the propagation effect on
the laser beam intensity distribution throughout the optical path. Fig. 3 of the main text indicates the dependence of
|β| on the distance between the central points of the pumping beams in the z axis. The concurrence C can be easily
calculated, as a function of |β|, using its definition:

C = max {0, λ1 − λ2 − λ3 − λ4} , (9)

where the λi are the ordered eigenvalues of the matrix R, defined as:

R =
√
ρ.σy ⊗ σyρTσy ⊗ σy. (10)

Using the model introduced in the previous section, we have that C = 2|β| and thus the tangle T = 4|β|2. The
linear entropy SL = 4/3(1 − Tr[ρ2]) can also be easily calculated in the conditions stated above. We have that
SL = 2/3(1 − T ) in this case. Notice that the value of |β| quantities can be computed directly from a measurement
of the experimental pumping beams profile. This model illustrate the important role played by the spatial overlap of
the pumping beams and provide us with a clear guideline for controlling the degree of entanglement in polarization.

B. Frequency correlation control

Recent developments in quantum information theory have arisen a growing interest on generalized states of fre-
quency correlation (like frequency-correlated, -anticorrelated or -uncorrelated photons). For all these reasons, several
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techniques have been proposed to create two photon states with an arbitrary degree of entanglement and the counter-
propagating phase-matching scheme has attracted a deal of attention because of its unusual flexibility in the control
of the quantum properties of the emitted photons. Frequency correlation is governed by the joint spectral amplitude
(JSA), the probability amplitude for an idler photon to have a frequency ωi when its signal twin has a frequency ωs.
It consists of the product of the pump beam spectral amplitude and the phase-matching distribution special to the
nonlinear waveguide used, and it can be expressed as follows:

JSA(ωs, ωi) = A α(ωs + ωi) Φ(ωs, ωi, θ) (11)

where A is a normalization factor, α is the spectral amplitude of the pump beam, and Φ is the phase-matching
function depending on the pump incident angle θ. As a pump distribution of the mode-locked picosecond Ti:Sa laser,
we assume a spectrum with sech shape. Taking into account the transmission function of the integrated microcavity
of the waveguide, we arrive at

α(ω) ∝ sech

(
1.7628

ωp − ω
σp

)
× 1

1− 4
ωp−ω
σcav

(12)

with ωp the pump central frequency, σp the spectral pump width, σcav the cavity resonance width. The cavity
resonance frequency we assume to be coincident with the pump central frequency ωp.

In general, the form of the phasematching function Φ depends only on the phase mismatch ∆k and is determined
by the spatial pump amplitude function g(z) in waveguide direction:

Φ(∆k) =

∫
dz g(z) e−2ıπ∆kz (13)

For a standard co-propagating phasematching scheme in a waveguide, Φ will take the form of the sinc function. In our
transverse pump configuration we have to take into account the spatial pump profile. If we assume this as a Gaussian

e−z
2/w2

p , we find in good approximation for a waveguide placed at the beam’s waist

Φ(∆k) ∝ e− 1
4w

2
p∆k2 . (14)

For an incidence angle θ, the phase-mismatch for interaction 1 is given by

∆k =
sinθ (ωs + ωi)

c
− nHωs

c
+
nV ωi
c

=
1

c
[(sinθ − nH)ωs + (sinθ − nV )ωi]

(15)

Thus, we can write as JSA function:

JSA(ωs, ωi) = A sech

(
1.7628

ωp − ωs − ωi
σp

)
1

1− 4
ωp−ωs−ωi

σcav

e−
w2
p

4c2
[(sinθ−nH)ωs+(sinθ−nV )ωi]

2

(16)

In order to quantify the degree of correlation of a given frequency state and its eventual separability, one has to
perform a Schmidt decomposition of the JSA, a basis transformation into a set of orthogonal Schmidt modes {ψn;ϕn}:

JSA(ωs, ωi) =
∑
n

√
λnψn(ωs)ϕn(ωi) (17)

with the normalization condition
∑
n λn = 1.

If the sum of expression (17) contains only 1 term, the JSA is factorizable and the photons are uncorrelated in
frequency. On the contrary, if it contains a great number N of terms, the frequency state is strongly correlated (or
anti-correlated).

In Figure 1, we present three examples of calculated JSA shapes and their corresponding Schmidt decompositions
for interaction 1 at degeneracy. These states have been calculated with our source for three different pumping
configurations in the picosecond regime. We note that the versatility in the tuning of the frequency state is peculiar
to the counterpropagating geometry, since in this case the pump bandwidth σp and the sample length L each act
on the length of one of the ellipse axes (ωs + ωi = ω0

p and ωs − ωi = 0). Thus, by varying independently these two
parameters, every possible eccentricity of the ellipse can be obtained. In the case of copropagating geometry instead,
in most cases, only one of the lengths of the axis of the ellipse can be adjusted, which usually prevents the obtention
of other states than frequency-anti-correlated ones. More exotic frequency states presenting JSA with several lobes
can be obtained by playing also with the phase of the pump beam; an experimental and theoretical work on this kind
of states is in progress.
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FIG. 1: Calculated JSA for our AlGaAs waveguide device with a pump having a pulse duration 3.5 ps for different pump beam
waists and their respective Schmidt decompositions. All three cases of negative correlation (pump waist =0.2 mm) (a), positive
correlation (pump waist =1.3 mm)(b) and decorrelation (pump waist =0.45 mm) (c) can be achieved. Accordingly, the Schmidt
decomposition (f) of case (c) has only one Schmidt mode pair with λ0 = 1.


