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COMBINATORIAL RIGIDITY OF ARC COMPLEXES

VALENTINA DISARLO

Abstract. We study arc complexes of surfaces in the most general setting of surfaces with
marked points in the interior and on the boundary. In particular, we prove that except a few
cases every automorphism is induced by a homeomorphism of the surface which fixes the marked
points setwise and the isomorphism type of these arc complexes determines the topological data
of the underlying surface. Our proofs are based on a combinatorial approach which leads to new
information on the geometry of these objects and are independent of all the other well-known
combinatorial rigidity results.

1. Introduction

Combinatorics of arcs play a key-role in the study of the moduli space of Riemann surfaces. In
[6, 7] Harer defined the arc complex of a punctured surface in order to study some homological
properties of the mapping class group. In [3] Bowditch and Epstein showed that appropri-
ate quotients of the arc complex give a combinatorial compactification of the moduli space of
punctured hyperbolic surfaces. In [20, 18, 15], Penner described some other features of this
combinatorial compactification in the context of his decorated Teichmüller theory. In [16, 19]
Penner suggests an approach to mapping class group and moduli space problems through the
combinatorics of arcs and arc complexes.

In this paper we deal with arc complexes in the most general setting of surfaces with bondary,
marked points on the boundary and in the interior. Some topological features (i.e. connect-
edness, contractibility) of arc complexes in this setting have been studied by Hatcher in [8].
In [17, 19] Penner determines the topological type of some of their quotients, he also sketches
interesting relations with the decorated moduli space for surfaces with boundary.
In this paper we study the problem of combinatorial rigidity of arc complexes for surfaces
with boundary, marked points on the boundary and in the interior. We say that an arc
complex is rigid if its automorphism group is isomorphic to the mapping class group of the
underlying surface. We denote by (Ss

g,b,p) an orientable surface of genus g with b ≥ 0 bound-

ary components, pi ≥ 1 marked points on each boundary component whenever b > 0 (with
p = (p1, . . . pb)), and s ≥ 0 marked points in the interior of S. We denote by A(Ss

g,b,p)

its arc complex, A♯(S
s
g,b,p) the subcomplex spanned by arcs with endpoints on the boundary

and Aut A(Ss
g,b,p), Aut A♯(S

s
g,b,p) their automorphism group (for more precise definitions, see

Section 2). The main theorems we prove are the following:

Theorem 1.1. Let b+ s > 0 and A(Ss
g,b,p) 6= ∅. If (Ss

g,b,p) 6= (S0
0,2, (1, 1)), (S

1
1,0 ,∅), (S3

0,0,∅),

and dimA(Ss
g,b,p) ≥ 1, then A(Ss

g,b,p) is rigid. In the exceptional cases, the natural homomor-

phisms MCG(Ss
g,b,p) → Aut A(Ss

g,b,p) is surjective, but not injective.

Theorem 1.2. Let b > 0 and pi ≥ 1 for i = 1, . . . , b. If (Ss
g,b,p) 6= (S0

0,2, (1, 1)), then

A♯(S
s
g,b,p) is rigid. In the exception cases the natural homomorphism MCG(S0

0,2, (1, 1)) →

Aut A♯(S
0
0,2, (1, 1)) is surjective, but not injective.

Theorem 1.3. If A(Ss
g,b,p) is not empty and isomorphic to A(Ss′

g′,b′ ,p
′), then s = s′, b = b′,

g = g′ and pi = p′i for all i.

The exceptional cases are listed and studied in Section 2. As a corollary of the first theorem
in the case b = 0 we have a new proof of a theorem of Irmak-McCarthy [5].
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As far as we know, the first example of simplicial complex with the rigidity property is the
curve complex. The rigidity theorem for the curve complex of a punctured surface was first
stated by Ivanov [11] for surfaces of genus greater than 1, then proved in low genus by Korkmaz
[9] and finally reproved in the most general case by Luo [12]. Applications of this result include a
new proof of Royden’s theorem for the isometries of the Teichmüller space for punctured surfaces
and the study of finite index subgroups of mapping class groups (see for instance [11, 10]).
Rigidity properties of simplicial complexes built from surfaces have been investigated in the
past by many different authors; a survey of these results and their applications can be found
in [14]. Most of these proofs are based on (non-trivial) reductions to the rigidity theorem for
the curve complex. Our proof for arc complexes is instead completely independent from this
and all the other results, and it leads to new information on the geometry of our complexes.
Our result is also useful in the proof of Royden’s theorem concerning Teichmüller isometries for
surfaces with boundary [1].

1.1. Structure of the paper. The structure of the paper is the following. In Section 2 we
introduce the notation and restate the main theorems as Theorem A, B and C. We also discuss
some new results about the combinatorics of arc complexes, including several invariance lemmas
which will be used throughout the paper. Finally we prove Theorem A. In Section 3 we discuss
examples and give a proof of Theorem B. Section 4 is devoted to the proof of Theorem C.

2. Combinatorics of arc complexes

Let us first fix the notation. Let S = Ss
g,b be a compact orientable surface with genus

g ≥ 0, b ≥ 0 ordered boundary components and s distinguished points in the interior of the
surface. When b > 0 we shall fix a finite set P of distinguished points on ∂S and denote by
p = (p1, . . . , pb) the vector whose component pi is the number of distinguished points on the
i-th boundary component of S. Finally we denote by (Ss

g,b,p) or (S,p) (when no ambiguity

occurs) the pair given by a surface Ss
g,b and a vector p related to the distinguished points on

its boundary as here described.
We shall now recall the definition of mapping class group of the pair (S,p).

Let S be the set of the s distinguished points in the interior of S. Let Homeo(S,p) be the group
of homeomorphisms of S fixing P∪S as a set. Let Homeo0(S,p) ⊆ Homeo(S,p) be the normal
subgroup of homeomorphisms isotopic to the identity through isotopies fixing S ∪ p . The
mapping class group of the pair (S,p) is the group MCG∗(S,p) = Homeo(S,p)/Homeo0(S,p).
The pure mapping class group of the pair(S,p) is the subgroup PMCG∗(S,p) < MCG∗(S,p)
generated by the homeomorphisms fixing S ∪ P pointwise.

Let Bi be the i-th boundary component of S with pi marked points on it. We will introduce
here the definition of 2π

pi
-rotation around Bi.

First consider the annulus A = S1 × [0, 1] in R
2 (equipped with polar coordinates (θ, r)) with

marked points {(2π
pi
j, 1)}j=0,...,pi−1. The

2π
pi
-rotation map of A is the map R : A→ A defined as

R(θ, r) = (θ + 2π
pi
t, t). Remark that R is orientaton-preserving, the restriction R| : S

1 × {1} →

S1 × {1} is a rotation of angle 2π
pi
, the restriction R| : S

1 × {0} → S1 × {0} is the identity and

the power Rpi is the right Dehn-twist around the core curve of the annulus.
Let {Pj}j=0,...,pi−1 be the set of marked points on Bi. Let N be the closure of a regular

neighborhood of Bi, and choose a homeomorphism φ : N → A such that φ(Pj) = (2πj
pi
, 1) for

all j = 0, . . . , pi − 1. We consider the homeomorphism R̃i : (S,p) → (S,p) defined as follows:

R̃i(x) =

{

φ−1 ◦R ◦ φ(x) for x ∈ N
x for x ∈ S \N

The map R̃i depends on the choice of φ and N , but the equivalence class modulo isotopies
which fix P pointwise doesn’t depend on such choices and gives a well-defined non-trivial
element ρ 2π

pi

= [R̃i] in MCG∗(S,p). We call such an element the ρ 2π
pi

-rotation around the i-th

boundary component Bi.
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We remark that the group Rp = 〈ρ 2π
p1

, . . . , ρ 2π
pb

〉, generated by all the rotations around the

boundary components of S is abelian of rank b.
Let us denote by Σn be the symmetric group on n elements. For every i = 1, . . . , b, let ri be
the number of boundary components having exactly pi marked points. Finally we denote by
PMCG∗(S) the subgroup of MCG∗(S,p) generated by mapping classes fixing pointwise S ∪∂S.
The following two propositions are not difficult to prove.

Proposition 2.1. There is a short non-split exact sequence:

0 → PMCG(S,p) → MCG(S,p) → ⊕b
i=1(Σri ⋉ Zpi)⊕ Σs → 0.

If s = 0 and the pi are all distincts, MCG(S,p) is generated by Rp and Dehn twists about simple
closed curves non-parallel to ∂S.

Proposition 2.2. The following holds:

(1) If there exist pi such that pi ≥ 3, then PMCG∗(S,p) = PMCG(S,p).
(2) If s = 0 and for all i = 1, . . . , b |pi| ≤ 2, then PMCG∗(S,p) is generated by 〈PMCG∗(S), i〉,

where i an involution which fixes every point in p;
(3) In any other case, PMCG∗(S) is isomorphic to PMCG∗(S,p).

2.1. Arc complexes A(S,p). In this section we will define arc complexes and give some ex-
amples in low dimension.

We denote by A(S,p) the simplicial complex whose vertices are the equivalence classes of
arcs with endpoints on P ∪ S modulo isotopies fixing P ∪ S pointwise. A set of vertices
〈a1, . . . , ak〉 spans a k − 1-simplex if and only if all the vertices can be realized simultaneously
as disjoint arcs.
We shall denote by A♯(S,p) the subcomplex of A(S,p) spanned by isotopy classes of arcs with
both endpoints on P. If s = 0, we have A♯(S,p) = A(S,p). In general A♯(S,p) has codimension
s in A(S,p). The definitions here also make sense when P = ∅. In this case we shall use the
notation A(Ss

g) instead of A(Sb
g,0,∅).

The following remarks illustrate some basic properties of these complexes. Their proofs easily
follow from our definitions.

Remark 2.3. Let g, s ≥ 0, b ≥ 1 and p = (p1, . . . , pb) ∈ (N \ {0})b.
The following holds:

(1) A(S,p) = ∅ if and only if (g, b, s) = (0, 1, 0) and p1 ∈ {1, 2, 3}.
(2) A(S,p) has a finite number of vertices if and only if g = 0, b = 1 and s ≤ 1. In

particular, A(S,p) is a single point if and only if g = 0, b = 1, s = 1 and p = (1).

Remark 2.4. If b = 0, g ≥ 0 and s ≥ 1, the following holds:

(1) A(Ss
g,0) = ∅ if and only if (g, s) = (0, 1);

(2) A(Ss
g,0) has a finite number of vertices if and only if g = 0, s ≤ 3. In particular A(Ss

g,0)

is a single point if and only if g = 0 and s = 2, and A(S3
0,0) is homeomorphic to a disk

having 6 vertices and 4 2-simplices.

Figure 1. Surfaces and their respective arc complexes in Remark 2.5
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Remark 2.5 (Low dimensional cases). Let g, s ≥ 0, b ≥ 1 and p = (p1, . . . , pb) ∈ (N \ {0})b.
The following holds:

(1) (g, b, s,p) ∈ {(0, 1, 0; (4)), (0, 1, 1; (1))} if and only if A(S,p) has dimension 0.
In particular, A(S1

0,1; (1)) is a single point and A(S0
0,1, (4)) consists of two disjoint ver-

tices (see Figure 1).
(2) (g, b, s,p) ∈ {(0, 2, 0; (1, 1)), (0, 1, 0; (5)), (0, 1, 1; (2))} if and only if A(S,p) has dimen-

sion 1.
In particular, A(S0

0,2, (1, 1)) is isomorphic to R, A(S0
0,1; (5)) has diameter 2 and A(S1

0,1; (2))
has diameter 3.

(3) (g, b, s,p) ∈ {(0, 1, 0; (6)), (0, 1, 1; (3)), (0, 2, 0; (1, 2)} if and only if A(S,p) has dimension
2.

In Figure 1 we show some some examples of surfaces together with their arc complexes in
the low dimensional cases.

By an elementary Euler characteristic argument, we find that the dimension of simplices in the
complexes is bounded from above, in particular A(S,p) and A♯(S,p) have dimension respectively
6g +3b+3s+ |p| − 7 and 6g +3b+2s+ |p| − 7. We remark that in both A(S,p) and A♯(S,p)
each simplex of maximal dimension corresponds to a collection of disjoint non-homotopic arcs
which is maximal with respect to inclusion on the surface. Indeed, a maximal simplex in A(S,p)
corresponds to a triangulation of S with vertices in P ∪ S , and the complement on (S,p) of
a maximal simplex in A♯(S,p) corresponds to a union of once-punctured discs (with punctures
in S ) and (immersed) triangles with vertices in P.
A proof of the following lemma can be found in [8].

Proposition 2.6 (Hatcher [8]). If A(S,p) has dimension at least 1, then A(S,p) is arcwise
connected. Moreover, except when S is a disk or an annulus with s = 0, A(S,p) is contractible.
In the exceptional cases, A(S,p) is homeomorphic to a sphere.

The case when the surface is a disk has also been studied by Braun and Ehrenborg in [3].
In [17] Penner studies the topology of quotients of these arc complexes through the action of

the pure mapping class group, suggesting a deep connection with the topology of the moduli
space. In particular he proves the following result:

Theorem 2.7 (Penner [17]). Let (Ss
g,b,p) be a compact orientable surface with genus g, b ≥ 1

boundary components, s marked points in the interior and p = (p1, . . . , pb) marked points on
the boundary, with pi ≥ 1 for all i. The quotient Q(Ss

g,b,p) of A♯(S
s
g,b,p) by the action of the

pure mapping class group PMCG(Ss
g,b,p) is a sphere only in the cases

Q(Ss
0,1,p) for s ≥ 0; Q(S1

0,2,p) for p1 + p2 ≥ 2 ;
Q(S1

1,1,p) for p1 ≥ 1; Q(S0
0,2,p) for p1 + p2 ≥ 2 ;

Q(S1
0,1,p) for p1 ≥ 1; Q(S0

0,3,p) for p1 + p2 + p3 ≥ 3 .

Furthermore, Q(Ss
g,b,p) is a PL-manifold but not a sphere if and only if pi = 1 for all i and

(g, b, s) ∈ {(0, 2, 2), (0, 3, 1), (1, 3, 1), (1, 2, 0)}. In all other cases the quotient Q(Ss
g,b,p) is not a

PL-manifold.

We remark that A♯(S
s
g,b,p) and A(Ss

g,b,p) coincide when s = 0. The topology of the non-
spherical quotients is still unknown.
Using the notation we have introduced, we restate the main results Theorem 1.1 and 1.2 in the
following equivalent forms:

Theorem A. If A(Ss
g,b,p) is not empty and isomorphic to A(Ss′

g′,b′ ,p
′), then s = s′, b = b′,

g = g′ and pi = p′i for all i.

Theorem B. If b+ s > 0, (Ss
g,b,p) 6= (S0

0,2, (1, 1)), S
1
1 , and dimA(Ss

g,b,p) ≥ 1, then A(Ss
g,b,p)

is rigid. In the exceptional cases, the natural homomorphism MCG(Ss
g,b,p) → Aut A(Ss

g,b,p)
is surjective, but not injective.
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Theorem C. If b > 0, (Ss
g,b,p) 6= (S0

0,2, (1, 1)), and dimA♯(S
s
g,b,p) ≥ 1, then A♯(S

s
g,b,p) is

rigid. In the exceptional cases, the natural homomorphism MCG(Ss
g,b,p) → Aut A♯(S

s
g,b,p) is

surjective, but not injective.

We are going to prove Theorem A in this section, Theorem B in Section 3 and Theorem C
in Section 4.

2.2. Intersection numbers. Let v1, v2 be two vertices in A(S,p). We recall the usual notion

of intersection number i(v1, v2) = min|α̊ ∩ β̊|, where α, β are essential arcs on S with α in the

homotopy class v1 and β in the homotopy class v2, and α̊, β̊ their interior.

Definition 2.8. Let τ and σ be two simplices in A(S,p) with the same dimension. We say
that σ and τ are obtained from each other by a flip if there exists vertices v1 ∈ τ and v2 ∈ σ
(called flippable) such that the following properties hold:

• i(v1, v2) = 1;
• i(v1, w) = 0 for every w ∈ σ \ v2;
• i(v2, z) = 0 for every z ∈ τ \ v1.

A proof of the following lemma can be found in [8] or in [13].

Lemma 2.9. Let α, β be two maximal simplices in A(S,p). Then there exists a finite sequence
τ0, . . . , τn of maximal simplices such that τ0 = α, τn = β and for any i = 0, . . . , n − 1 τi+1 is
obtained by τi by a flip.

The following lemmas are adapted from Ivanov’s paper in [11].

Invariance Lemma 2.10 (Intersection number). Let us denote by A the arc complex A or A♯.
Let A (S,p) and A (S′,p′) have dimension greater than 1, and φ : A (S,p) → A (S′,p′) be an
isomorphism. For any α1, α2 ∈ A (S,p) such that i(α1, α2) = 1, we have i(φ(α1), φ(α2)) = 1.

Proof. Let us first consider the case when A = A. Since φ is an isomorphism, dimA(S,p) =
dimA(S′,p′) and φ sends maximal simplices (that is, triangulations of (S,p)) into maximal
simplices (that is, triangulations of (S′,p′)). Let α and β be arcs intersecting exactly once,
we can extend α to a triangulation τα such that the set of arcs τβ := (τα \ {α}) ∪ β is also a
triangulation of S. Let τ be the simplex of A(S,p) defined as τ = τα∩τβ = τα\α = τβ \β, it has
codimension 1. Now φ(τα) and φ(τβ) are triangulations of (S′,p′), and φ(τ) = φ(τα) ∩ φ(τβ) =
φ(τα) \ φ(α) = φ(τβ) \ φ(β) has codimension 1. Hence, one can pass from φ(τα) to φ(τβ) with
one elementary move. We have necessarily i(φ(α), φ(β)) = 1.

Let us adapt the argument for A♯(S,p). Let V be the set of all vertices of A♯(S,p) which
correspond to simple closed loops around exactly one point in S . It is easy to see that any
maximal simplex σ of A♯(S,p) contains exactly s disjoint elements of V . Now let α1, α2 ∈
A♯(S,p) be such that i(α1, α2) = 1. Notice that for each v ∈ V we have i(v, α) 6= 1 for all
α ∈ A♯(S,p), so nor α1 nor α2 are elements in V . Let us extend α1, α2 to maximal simplices
σα1

, σα2
such that σα2

= 〈σα1
\ α1, α2〉 is the simplex spanned by σα1

\ α1 and α2. Let us
define σ0 = σα1

∩ σα2
, it is a simplex of codimension 1. Both φ(σα1

) = 〈φ(σα0
), φ(α1)〉 and

φ(σα2
) = 〈φ(σα0

), φ(α2)〉 are maximal simplices in A♯(S,p). Now let us realize φ(σ0) and look
at its complement on S. Since φ(σ0) has codimension 1, its complement contains at most one
element of V . If the complement contains exactly one element v ∈ V , then we would have
v = φ(α1) = φ(α2), in contradiction with the injectivity: in fact the simplices φ(σα1

), φ(σα2
)

being both maximal simplices, both of them have the same number s of elements of V . Thus
all the complementary regions of φ(σ0) are open triangles except one open square which should
contain both φ(α1) and φ(α2). We then conclude that i(φ(α1), φ(α2)) = 1. �

The following lemma, which gives a useful criterion to establish whether two automorphisms
coincide or not, follows easily from the above Invariance Lemma.

Lemma 2.11. Let φ1, φ2 ∈ Aut A(S,p). If there exists a maximal simplex σ = 〈a1, . . . , aM 〉 in
A(S,p) such that φ1(ai) = φ2(ai) for all i = 1, . . . ,M , then φ1(v) = φ2(v) for all v ∈ A(S,p).
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2.3. Proof of Theorem A. The goal of this section is to state some Invariance Lemmas which
will be used throughout the paper and to prove Theorem A.

Let us first recall some well-known definitions of simplicial topology that we will use in the
rest of the paper (a classical reference is [4]).
Let K be a nonempty simplicial complex and let σ be one of its simplices. The link Lk(σ,K)
of σ is the subcomplex of K whose simplices are the simplices τ such that σ ∩ τ = ∅ and σ ∪ τ
is a simplex of K. Let K1 and K2 be two simplicial complexes whose vertex sets V1 and V2 are
disjoint. The join of K1 and K2 is a simplicial complex K1 ⋆K2 with vertex set V1∪V2; a subset
of V1 ∪ V2 is a simplex of K1 ⋆ K2 if and only if it is a simplex of K1, a simplex of K2 or the
union of a simplex of K1 and a simplex of K2. We have dim(K1 ⋆ K2) = dimK1 + dimK2 + 1.
The cone C(K) over K is the join of K with only one vertex {w0}.

v

v

v

v

v

v

Figure 2. Cutting along v on S

It is important to remark that arc complexes of surfaces in this setting are ”stable” under
simplicial constructions. Indeed, the link of a simplex in the arc complex of a surface can be
described in term of the arc complexes of surfaces (with boundary and marked points) of lower
complexity. The link of a vertex is the (join of) arc complex(es) of the subsurface(s) obtained by
cutting along the arc which corresponds to the vertex. Such subsurface(s) will have one or more
boundary components (with new marked points on it) according on the geometric properties
of the arc (separating, non-separating, joining one or two distinct boundary components, etc.).
The same holds for the links of simplices. In Figure 2 we illustrate the new surface one gets
cutting along the arc v and how to add marked points on its boundary components according
to the type of v. When v is non-separating, Lk(v) is isomorphic to the arc complex of the new
surface. We can thus restate Lemma 2.11 in the following equivalent form:

Lemma 2.12. Let v ∈ A(Ss
g,b,p) be a vertex. If φ,ψ ∈ Aut A(Ss

g,b,p) fix v and coincide on

each vertex of Lk(v), then φ = ψ.

Let us now introduce some useful vocabulary.

Figure 3. A 3-leaf, a 3-petal and a 4-petal

Let S = (Ss
g,b,p), and Bi be the i-th boundary component of S. If pi ≥ 4 (resp. pi ≥ 3)

we call a 4-petal (resp. a 3-petal) an arc which runs parallel to Bi, joins two distinct marked
points and bounds a disc containing exactly 4 (resp. 3) marked points on its boundary (see
Figure 3 ). If pi ≥ 2, we call a pi-leaf any loop based at one marked point and running
parallel to Bi. By the previous discussion we have for instance that if l is a p1-leaf, then
Lk(l) = A(S0

0,1, (p1 + 1)) ⋆ A(Ss
g,b, (1, p2, . . . , pb)), if m is a j-petal around the first boundary

component then Lk(m) = A(S0
0,1, (j)) ⋆ A(S

s
g,b, (p1 − j + 2, p2, . . . , pb)).

The following remarks are immediate and very useful.
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Remark 2.13. The following holds:

(1) Lk(v,A(S,p)) consists of two disjoint vertices if and only if (g, s, b,p) = (0, 1, 0, (4)).
(2) Lk(v,A♯(S,p)) consists of two disjoint vertices if and only if (g, s, b,p) ∈ {(0, 1, 0, (4)), (0, 1, 1, (2))}.
(3) Let dimA♯(S,p) ≥ 1, and let v1, v2 be two vertices in A(S,p). Lk(v1) = Lk(v2) as

subsets of A(S,p) if and only if v1 = v2. The same statement holds for A♯(S,p).
(4) A(S,p) is a cone if and only if (g, s, b,p) = (0, 1, 1, (1)), namely if A(S,p) is a point.
(5) The join of two arc complexes is a cone if and only if one of the two arc complexes is

A(S1
0,1, (1)).

Remark 2.14. The following holds:

(1) diamA♯(S
s
g,b, (1b)) ≥ diamA(Ss

g,b, (1b)) ≥ diamA(Sg,b+s). In particular, if diamA(Sg,b+s)

is infinite, diamA♯(S
s
g,b, (1b)) and diamA(Ss

g,b, (1b)) are infinite as well.

(2) If diamA(Sg,b+s) = ∞, then A(Ss
g,b,p) has infinite diameter or it contains a simplex σ

with Lk(σ) ∼= A(Ss
g,b, (1b)) which has infinite diameter. The same statement holds for

A♯(S
s
g,b,p).

(3) If there exists i such that pi ≥ 5, then diamA(Ss
g,b,p) = 2.

Figure 4. Lemma 2.16

For brevity, we will say that an arc l on (S,p) is a drop if it is a simple loop based on a point
bounding a disc with a puncture (see Figure 4). An edge 〈l, v〉 in A(S,p) is an edge-drop if it
is the arc complex of a once-punctured disc embedded in S as in Figure 4. An arc on (S,p)
is properly separating if it is separating and is not a 3-petal, a 2-leaf or a drop. The following
remark directly follows from these definitions and easily implies the invariance lemma below.

Remark 2.15. The following holds:

(1) an arc v is properly separating if and Lk(v) = A1 ⋆ A2 where both A1 and A2 are two
arc complexes with more than one vertex.

(2) an arc l is a drop if and only if Lk(l) in A (Ss
g,b,p) is a cone.

(3) an arc v is a 4-petal or a 3-leaf if and only if Lk(v) = A1 ⋆ A2, with A1 consisting of
two disjoint vertices, and A2 the arc complex of some surface.

Invariance Lemma 2.16 (Separating arcs). Let us denote by A (Ss
g,b,p) the arc complex

A(Ss
g,b,p) or A♯(S

s
g,b,p). Assume dimA (Ss

g,b,p) ≥ 2.
The following holds:

(1) Let φ : A (Ss
g,b,p) → A (Ss′

g′,b′ ,p
′) be an isomorphism. If l is a properly separating arc,

then φ(l) is a properly separating arc on S′.

(2) Let φ : A(Ss
g,b,p) → A(Ss′

g′,b′ ,p
′) be an isomorphism. If l is a drop, then φ(l) is a drop

on S′.
(3) Let φ : A(Ss

g,b,p) → A(Ss′

g′,b′ ,p
′) be an isomorphism. If 〈l, v〉 is an edge-drop , then also

the edge 〈φ(l), φ(v)〉 is an edge-drop.

Proposition 2.17. Let S be the set of marked points in the interior of S, with |S | = s. we
have:

(1) If A(Ss
g,b,p) is isomorphic to A(Ss′

g′,b′ ,p
′), then s′ = s.

(2) If α is an arc joining two points in S , then the image of α through an isomorphism is
also an arc joining two points in S .

7



Proof. By Remark 2.16, drops are simplicial invariants. Since the maximal dimension of a
simplex spanned by drops is s, isomorphic arc complexes have the same number of marked
points in the interior, as stated in (1). In order to prove (2) it is sufficient to remark that the
link of such an arc is the arc complex of a surface with s − 1 or s − 2 marked points in the
interior. The conclusion follows from (1). �

Lemma 2.18. The following holds:

(1) Let K1 = {a, b} (isomorphic to A(S0
0,1, (4)) or A♯(S

1
0,1, (2))) and K2 is an arc complex

of dimension at least 1.
If K ′

1 and K ′
2 are arc complexes such that K1 ⋆K2 is isomorphic to K ′

1 ⋆K
′
2, then up to

reordering K ′
1 is isomorphic K1 and K ′

2 is somorphic K2.
(2) Let K1 = A(S0

0,2, (1, 1)) = R and K2 be an arc complex with infinite vertices.

If K ′
1 and K ′

2 are arc complexes such that K1 ⋆ K2 is isomorphic K ′
1 ⋆ K

′
2, then up to

reordering K ′
1 is isomorphic K1 and K ′

2 is isomorphic to K2.

Proof. 1. The pair {a, b} is the unique pair of vertices in K1 ⋆ K2 whose links coincide. Let
φ : K1 ⋆ K2 → K ′

1 ⋆ K
′
2 be an isomorphism; φ(a) and φ(b) are necessarily in the same K ′

i

(otherwise they would be connected by an edge). Since K ′
i is an arc complex as well, it contains

two vertices with the same link if and only if it is isomorphic to K1 (Proposition 2.13).
2. Let v ∈ K1 = A(S0

0,2, (1, 1)) = R, and let φ : K1 ⋆K2 → K ′
1 ⋆K

′
2 be an isomorphism. Assume

that φ(v) ∈ K ′
1; we have

{a, b} ⋆ K2 = Lk(v,K1 ⋆ K2) ∼= Lk(φ(v),K ′
1 ⋆ K

′
2) = Lk(φ(v),K ′

1) ⋆ K
′
2.

Now Lk(φ(v),K ′
1) is either isomorphic to a join of arc complexes A1 ⋆A2 or is an arc complex

itself. An argument similar to the one used above allows us to exclude the first case. Thus
Lk(φ(v),K ′

1) is an arc complex. By (1) we conclude either Lk(φ(v),K ′
1)

∼= {a, b} (and K ′
2
∼=

K2) or K ′
2
∼= {a, b} (and Lk(φ(v),K ′

1) = K2. In both cases the conclusion follows from the
application of (1). �

Invariance Lemma 2.19 (Petals). Let A (Ss
g,b,p) be A(S

s
g,b,p) or A♯(S

s
g,b,p) of dimension at

least 2, and φ : A (Ss
g,b,p) → A (Ss′

g′,b′ ,p
′) be an isomorphism.

The following holds:

(1) If l1 is a 3-leaf, then φ(l1) is a 3-leaf.
(2) If l2 is a 4-petal, then φ(l2) is a 4-petal.
(3) If l3 is a 3-petal, then φ(l3) is a 3-petal.

Moreover, if li is based on a boundary component having exactly p ≥ 3 marked points, φ(li) is
also based on a boundary component with the same number of marked points, and

∑

pi≥3 pi =
∑

p′j≥3 p
′
j .

Proof. 1. and 2. By Remark 2.15 (3) we just have to prove that in the case A(Ss
g,b,p) contains

both a 3-leaf l1 and a 4-petal l2, φ(l1) cannot be a 4-petal and φ(l2) cannot be a 3-leaf of

A(Ss′

g′,b′ ,p
′).

Without loss of generality, we assume that l1 is based on the first boundary component B1,
and l2 is based on B2 (resp. p1 = 3 and p2 ≥ 4), namely Lk(l1, A(S

s
g,b,p))

∼= A(S0
0,1, (4)) ⋆

A(Ss
g,b, (1, p2, . . . , pb)) and Lk(l2, A(S

s
g,b,p))

∼= A(S0
0,1, (4)) ⋆ A(S

s
g,b, (3, p2 − 2, . . . , pb)).

Let ρ1, ρ2 be respectively the 2π
3 -rotation around B1 and the 2π

p2
-rotation around B2. We

remark that for any i = 0, 1, 2 the arcs represented by ρi1(l1) and ρ
i
2(l2) are respectively a 3-leaf

and a 4-petal. The intersection patterns for these families of arcs are i(ρi1(l1), ρ
j±1
1 (l1)) = 2δij

for i, j = 0, 1, 2, and i(ρh2 (l2), ρ
k±1
2 (l2)) = δhk for h, k = 0, . . . , p2 − 1.

By the simplicial invariance of their intersection number (Invariance Lemma 2.10), we deduce

that the arcs {φ(ρj2(l2))}j=0,...p2−1 are all based on the same boundary component of S′, and
the arcs are all of the same type (i.e. either they are all 3-leaves or they are all 4-petals). Since
p2 ≥ 4, we deduce that they are necessarily 4-petals, hence φ(l1) is necessarily a 3-leaf.
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3. Remark that for every 3-petal l3 based on the i-th boundary component there exists a 4-petal
(or a 3-leaf, in the case pi = 3) l4 based on that same component such that Lk(l4, A(S,p)) =

{l3, ρi(l3)} ⋆ A(S
s′

g′,b′ ,p
′) ∼= A(S0,1,0, (4)) ⋆ A(S

s′

g′,b′ ,p
′). By Lemma 2.18 and the previous case,

we deduce that φ(l4) is also a 4-petal (or a 3-leaf when pi = 3), and the same holds for all the

ρji (l4)’s as well. The number pi of points on the i-th boundary component of S is necessarily
equal to the number of 3-petals based on it. Since i(ρj(l3), ρ

j±1(l3)) = 1 for all j = 0, . . . , pi−1,
our conclusion follows by simpliciality as in the previous case.
The last statement follows directly from the arguments used here. �

Following the usual definition, we say that a non-separating arc on S is an arc which does
not disconnect the surface.

Invariance Lemma 2.20 (Non-separating arcs). Let A (Ss
g,b,p) be A(Ss

g,b,p) or A♯(S
s
g,b,p),

and assume dimA (Ss
g,b,p) ≥ 2. Let φ : A (Ss

g,b,p) → A (Ss′

g′,b′ ,p
′) be an isomorphism. The

following holds:

(1) if v is a non-separating arc, then φ(v) is also a non-separating arc;
(2) if w is a 2-leaf, then also φ(w) is a 2-leaf.

Proof. Without loss of generality, we assume that v joins the first and the second boundary
component, hence Lk(v) = A(Ss

g′,b−1, (p1 + p2+2, p3, . . . , pb)). By Lemma 2.19 φ(v1) is either a

non-separating arc or a 2-petal. Now by simpliciality we have Lk(φ(v)) ∼= A(Ss
g′,b−1, (p1 + p2 +

2, p3, . . . , pb)), with p1 + p2 + 2 ≥ 4. If φ(v) were a 2-petal, Lk(φ(v)) = A(Ss
g′,b,p

′), with p′i = 1

for some i and p′j = pj for all j 6= i. Now
∑

p′
h
≥3 p

′
h =

∑

ph≥3 ph < p1 + p2 + 2 +
∑

ph≥3,h≥3 ph
in contradiction with Invariance Lemma 2.19. The same argument also proves that φ(w) is
necessarily a 2-leaf. �

The arguments in Lemma 2.19 easily prove the following:

Corollary 2.21. Let φ ∈ Aut A(S,p) be an automorphism. the following holds:

(1) For every boundary component B of S there exists f ∈ MCG⋆(S,p) such that f⋆ ◦ φ
fixes every 3-petal (or every 2-leaf) on B.

(2) If f ∈ MCG∗(S,p) fixes two intersecting 3-petal (or 2-leaves), then φ fixes every 3-petal
(or 2-leaves).

Invariance Lemma 2.22 (Leaves). Let A (Ss
g,b,p) be A(Ss

g,b,p) or A♯(S
s
g,b,p). Let l be an

n-leaf on A (Ss
g,1, (n)), then φ(l) is an n-leaf.

Proof. Notice that there exists a unique 3-petal v which intersects l, and there is no non-
separating arc α such that i(α, l) = i(α, v) = 0. By simpliciality and Lemma 2.20, the same
properties hold for φ(l). By Lemma 2.16 φ(l) is a separating loop. If both the connected
components bounded by φ(l) were different from (S0,1,0, (n+1)), there would be a non-separating
arc disjoint from both the 3-petal φ(v) and φ(l), and we would get a contradiction. �

When pi = 1 for all i = 1, . . . , b, we will use the notation (1b) or 1 to refer to the vector
p = (1, . . . , 1). We say that an edge 〈l, v〉 of A(Ss

g,b,1) is an edge bridge if v corresponds
to a non-separating arc connecting two distinct boundary component and l corresponds to a
separating loop wrapping around v as in Figure 5. We remark that Lk(l) ∼= A(S0

0,2, (1, 1)) ⋆

A(Ss
g,b, (2, 1b−1)) ∼= R⋆A(Ss

g,b, (2, 1b−1)), and v is a vertex of A(S0
0,2, (1, 1)). The following lemma

is an immediate application of Lemma 2.18 (2).

v

l

Figure 5.
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Invariance Lemma 2.23. Let 〈l, v〉 be an edge bridge of A(Ss
g,b,1), and φ : A(Ss

g,b,1) →

A(Ss′

g′,b′ ,1) an isomorphism. The edge φ(〈l, v〉) is an edge bridge as well.

It is now immediate to deduce Theorem A.

Theorem A. If A(Ss
g,b,p) is not empty and isomorphic to A(Ss′

g′,b′ ,p
′), then s = s′, b = b′,

g = g′ and pi = p′i for all i.

Proof. The proof in the low dimensional cases follows by Remark 2.5. The equality s = s′ has
already been proved in Proposition 2.17. The equality pi = p′i for all i follows immediately
from Lemmas 2.19 and 2.20. To prove b = b′ it is sufficient to remark that by Lemma 2.23
the maximal number of disjoint edge-drops on a surface depends only on b and is a simplicial
invariant. Finally g = g′ follows by the equalities between the dimensions of the arc complexes
in the hypothesis of this theorem. �

3. Proof of Theorem B

In this section we deal with the proof of Theorem B. Invariance lemmas developed in Section
2 imply some suitable reduction lemmas, which allow an inductive approach to the proof of
theorem B. The structure of the section is the following: in Subsection 3.1 we deal with the
case g = 0, in Subsection 3.2 we deal with the cases b = 0 and b = 1, and in Subsection 3.3 we
prove the reduction lemmas and complete the proof of Theorem B.

By sake of brevity, we will introduce the following definitions.

Definition 3.1. Let (Ss
g,b,p) be a surface such that its arc complex A(Ss

g,b,p) is not empty.

We say that A(Ss
g,b,p) is rigid if its automorphism group Aut A(Ss

g,b,p) is isomorphic to the

mapping class group MCG∗(Ss
g,b,p). We shall say that A(Ss

g,b,p) is weakly rigid if the natural

homomorphism MCG∗(Ss
g,b,p) → Aut A(Ss

g,b,p) is surjective.

We will show later that when there is enough topology, the two notions of rigidity and weak
rigidity are equivalent.

3.1. Basic case: genus 0. Here we prove Theorem B for some genus 0 surfaces.

P P

c0

ci

γi

Figure 6. Fans and chords

3.1.1. Polygon (S0
0,1, (n)), with n ≥ 4. Let (S0

0,1, (n)) be a polygon with a set P = {P0, . . . , Pn−1}

of n ≥ 4 marked points on its boundary (enumerated with respect to the order induced by the
orientation of ∂S), and we denote by ρ 2π

n
the rotation of angle 2π

n
around the first boundary

component. We recall the following is a well-known fact. A proof can be found for instance in
[3].

Theorem 3.2. A(S0
0,1, (n)) is PL-homeomorphic to S

n−4.

For any point P ∈ P, we define the fan based in P to be the triangulation FP as in Figure
6, and we define the chord based at P the 3-petal cP joining the two marked points adjacent
to P . If P is the i-th point in P, we shall also use the notation ci when referring to cP .
It is immediate to remark that a triangulation T is a fan if and only if there exists P ∈ P such
that Lk(cP , A(S, (n)))∩T = ∅. If C = {ci} is the set of chords of (S0

0,1, (n)), then according to
10



our notation i(ci, ci±1) = 1 for i = 0, . . . , n − 1 and i(ci, cj) = 0 for |i− j| 6= 1. Let FP0
= {γi}

be the fan based at P0, where γi is the arc which connects P0 to the i-th point of P. According
to our notation, we have i(ci, γj) = δij and i(c0, γj) = 1 for all γj . Since these intersection
patterns are simplicial invariant by Lemma 2.10, we easily deduce the following:

Lemma 3.3. Let φ : A(S0
0,1, (n)) → A(S0

0,1, (n)) be an automorphism. The following holds:

(1) If C is the set of chords of S, then φ(C ) = C , and φ either preserves or reverses the
cyclic order of the chords.

(2) Let FP = {γi} be the fan based at P , where γi is the arc which connects P to the i-th
point of P according to the (cyclic) order on P. There exists P ′ ∈ P such that the
triangulation φ(FP ) = {φ(γi)} is a fan triangulation FP ′ . The map φ either preserves
or reverses the order of arcs in FP .

The following holds:

Theorem 3.4 (Weak rigidity of polygons). For n ≥ 4, A(S0
0,1, (n)) is weakly rigid.

Proof. By Lemma 2.11 it is sufficient to prove that if FP is a fan and φ(FP ) is its image through

φ, then there exists a homeomorphism φ̃ such that φ̃∗ agrees with φ on each arc of FP .
Up to precomposition with a rotation ρ 2π

n
, we assume φ(FP ) = FP . By Lemma 3.3, the order

of arcs in FP is either preserved or reversed. Up to precomposition with a reflection, we can
assume that φ preserves the order of arcs in FP . Up to isotopies, we also assume that φ fixes
each arc pointwise. By Lemma 2.12, we can conclude by extending φ to a homeomorphism of
the disc by the identity on the inner triangles.

�

3.1.2. Annuli. In the following section we shall study the annuli (S0
0,2, (p1, p2)). We denote by

ρ1 and ρ2 the two rotations (respectively of 2π
p1

and 2π
p2
) around the two boundary components

of S, and by i the inversion which exchanges the two boundary components of the surface.

Example 3.5 (Annulus (S0
0,2, (1, 1))).

a

a

τa

τa

τ
2
aτ

−1
aτ

−2
a

Figure 7. Annulus

If a is an arc as in Figure 7, then MCG∗(S0
0,2, (1, 1)) is generated by 〈τ, r, i〉, where τ is the

Dehn twist along the core curve of the annulus , r is the reflection with respect to a, and i
is the inversion which exchanges the two boundary components of S. Since for any arc α in
A(S0

0,2, (1, 1)) we have i(α, τα) = 0, A(S0
0,2, (1, 1)) is isomorphic to the real line.

Notice that the natural homomorphism MCG∗(S0
0,2, (1, 1)) → Aut A(S0

0,2, (1, 1)) is surjective
but not injective: r and i have the same image.

Example 3.6 (Annulus (S0
0,2, (1, 2))).

Let τ be the Dehn twist around the core of the annulus, let ρ be the π-rotation which ex-
changes the two marked points and let r be the reflection which fixes the three marked points.
It is easy to see that the group MCG∗(S0

0,2, (1, 2)) is generated by the elements τ , ρ, r.

Let a, a′ be arcs as in Figure 8. Let l be the loop around the upper point on the outer boundary
component of S, and let l′ be the loop around the lower point of the boundary component of S.
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a
τa

τa
′

l

a
′

τ
2
a
′

τa
′

a
′

τ
−1

a
′ τ

−2
a
′

l
′

l

τ
2
a τa a τ

−1
a τ

−2
a

Figure 8.

It is not too difficult to see that the complex A(S0
0,2, (1, 2)) looks like the strip in Figure 8. It

is not too difficult to use this configuration to deduce directly that the natural homomorphism
MCG∗(S0

0,2, (1, 2)) → Aut A(S0
0,2, (1, 2)) is surjective.

Theorem 3.7 (Annuli). For any p1, p2 ∈ N, A(S0
0,2, (p1, p2)) is weakly rigid. If p1 = p2 = 1,

A(S0
0,2, (p1, p2)) is not rigid.

Proof. Let a be an arc joining the two boundary components. Let φ be an automorphism of
A(Ss

0,2, (p1, p2)). By Lemma 2.20, we can assume φ(a) = a and by Lemma 2.21 we can assume
that φ fixes every 3-leaf in the first boundary component. Cutting the surface along a, we find
a new surface (Ss

0,1, (p1+p2+2)). The map φ induces by restriction an automorphism φ| which
fixes at least two intersecting 3-petals. By Lemma 2.21, φ| fixes any other 3-petal. By Theorem
3.4, φ| is induced by a homeomorphism of the surface, which restricts to the identity on the
boundary. We can just glue back the two pieces of the boundary coming form the cut along a
and get a homeomorphism of the annulus, which induces φ by Lemma 2.12.

To prove the second statement just notice that if p1 = p2 = 1, then r and i have the same
image. �

3.2. Basic case: b = 1. Here we prove Theorem B for surfaces with one boundary component.
Let us first work on the pair (S0

g,1, (1)) = (S0
g,1, P ) and we denote by P the unique marked point

on the boundary of S. This subsection is structured as follows: in Paragraph 1 we shall study the
properties of a natural forgetful map between A(S0

g,1, (1)) and A(S1
g ); in Paragraph 2 we shall

introduce a useful reduction lemma and prove Theorem B for surface with b = 1; in Paragraph
3 we shall deal with the case b = 0, providing a new proof of a result by Irmak-McCarthy.

3.2.1. The forgetful map. Recall that the Dehn-twist τ around the boundary of S is not the
identity in MCG∗(Ss

g,1, P ). Let a be a simple closed arc based at P on S, and let a−, a+ =

τa− be the arcs obtained from a twisting only one of its two endpoints (see Figure 9). The
natural inclusion (Ss

g,1, P ) → Ss
g,1, which ”forgets” about P , induces a natural forgetful map

f : A(Ss
g,1, P ) → A(Ss

g,1)
∼= A(Ss+1

g ), where the vertex [a]P ∈ A(S,P ), which corresponds to
a, is mapped to the corresponding vertex [a] ∈ A(Ss

g,1) (forgetting about P ). We remark that

f([τna]P ) = f([τna−]P ) = f([τna+]P ).

a a
− −

+a
+

Figure 9.

Lemma 3.8. Let f : A(S,P ) ∋ [a]P → [a] ∈ A(S) be the natural forgetful map. The following
holds:
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(1) f is well-defined and surjective, and for every [a] ∈ A(S), f−1([a]) is a 1-dimensional
simplicial complex isomorphic to R.

(2) If φ ∈ Aut (A(S,P )) is an automorphism induced by an element of MCG∗(S,P ),
then for every a ∈ A(S,P ) the restriction of φ is an isomorphism: φ| : f−1([a]) →

f−1([φ(a)]). Moreover there is a well-defined simplicial map f(φ) : A(S) ∋ [a] 7→
A(S) ∋ f([φ(a)]) which is also an automorphism.

(3) If τ : (S,P ) → (S,P ) is the Dehn twist around ∂S, then τ∗ : A(S,P ) → A(S,P ) is a
2-translation on all fibers f−1([a]), and f(φ) : A(S) → A(S) is the identity.

The following two lemmas clarify some of the properties of f .

Lemma 3.9. Let σ : A(S,P ) → A(S,P ) be an automorphism such that f(σ) : A(S) → A(S)
is well-defined and is the identity. Then, either σ is the identity idA(S,P ) or σ is induced by a

power τk of a Dehn twist around ∂S.

Proof. Claim 1 : There does not exist [a] ∈ A(S) such that σ| : f−1([a]) → f−1([a]) is a
1-translation.

By contradiction, let [a] ∈ A(S) be such an element. Let us fix a hyperbolic metric on S
such that the boundary of S is geodesic. Remember that any vertex of A(S) has exactly one
geodesic representative in its isotopy class; geodesic representatives always intersect each other
minimally and are always transverse to the boundary. Let ā be geodesic representative for [a].

PPP
a a

+
a
−

Figure 10. a, a+, a−

We can then define “preferred” classes a, a+, a− ∈ A(S,P ) just taking the relative isotopy
classes of the loops obtained joining the endpoints of ā to P as in Figure 10. Remark that
τa− = a+. Moreover, we can similarly define a “base point” b on every other fiber f−1([b]), [b] ∈
Lk([a], A(S)) and describe completely the links between the fibers f−1([a]) and f−1([b]).

We have then 3 cases: Figures 11, 12, 13.

P

a

b

c

τa a
+

a a
−

τ
−1

a

τb b
+

b b
−

τ
−1

b

Figure 11. Case 1

P
a

b

τaa
+

a a
−
τ
−1

a

τb b
+

b b
−
τ
−1

b

Figure 12. Case 2
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P

a

b

τa a
+

a a
−
τ
−1

a

τb b
+

b b
−
τ
−1

b

Figure 13. Case 3

Notice that in Case 1 we have |Lk(a,A(S,P ))∩f−1([b])| = 1 and |Lk(a±, A(S,P ))∩f−1([b])| =
3. This is enough to prove Claim 1: for if σ restricts to a 1-translation on f−1([a]), then a 7→ a±

and |Lk(a,A(S,P ))∩f−1([b])| = |Lk(σ(a), A(S,P ))∩σ(f−1([b]))| = |Lk(a±, A(S,P ))∩f−1([b])|.

Claim 2 : There does not exist [a] ∈ A(S) such that σ| : f
−1([a]) → f−1([a]) is a reflection.

We will prove the claim by contradiction. In the same setting of the proof of the previous
claim, the simplicial definition of the reflection of f−1([a]) is the following:

ρa :















a 7→ a
a− 7→ τ−1a−

τka 7→ τ−ka for k ∈ Z

τka− 7→ τ−k−1a− for k ∈ N

Now assume that σ : A(S,P ) → A(S,P ) extends ρa : f−1([a]) → f−1([a]). Recall from the
proof of the previous claim that for every [b] ∈ Lk([a], A(S,P )) the fibers f−1([a]) and f−1([b])
can be linked in three different ways (Figures 11, 12, 13). It is not difficult to verify that:

• σ| = ρb : f
−1([b]) → f−1([b]) in Case 1;

• σ| = σb ◦ ρb : f
−1([b]) → f−1([b]) in Case 2;

• σ| = σb ◦ ρb ◦ σ
−1
b : f−1([b]) → f−1([b]) in Case 3.

P
a

b

c

τb b
+

b b
−

τ
−1

b

τc c
+

b c
−

τ
−1

c

Figure 14. Simplicial relations between f−1([b]) and f−1([c])

Let now [b], [c] ∈ A(S) such that 〈[a], [b], [c]〉 is a 2-simplex in A(S) and they both are in Case
2. It is not difficult to verify that the simplicial relations between f−1([b]) and f−1([c]) in Figure
14 are not compatible with the definitions of σ| : f

−1([b]) → f−1([b]) and σ| : f
−1([c]) → f−1([c]).

We get to a contradiction, and this proves Claim 2.
By Claim 1 and 2, σ must coincide with some τka on each fiber f−1([a]). The discussion in

Claim 1 about the connections between the fibers f−1([a]) and f−1([b]) when 〈[a], [b]〉 is an edge
on A(S) and the connectedness of A(S,P ) proves that ka is the same for all the fibers. �

Lemma 3.10. Let g ≥ 1. If φ : A(S,P ) → A(S,P ) is a simplicial automorphism, then
f(φ) : A(S) ∋ [a] 7→ f([φ(a)]) ∈ A(S) is well-defined and it is an automorphism.

Proof. Remark that if 〈a, b〉 is an edge of A(S,P ), then either 〈f(a), f(b)〉 is an edge in A(S) or
f(a) = f(b) and b = a± ∈ f−1([a]) according to the above description of the fiber of [a] ∈ A(S).
Moreover if 〈a1, . . . aM 〉 is a maximal simplex in A(S,P ) (that is, if it corresponds to a triangu-
lation of (S,P )) then the set {f(a1), . . . , f(aM )} spans a maximal simplex in A(S), and there
are exactly two indices i 6= j such that f(ai) = f(aj) (that is aj = a±i ).
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By contradiction now assume that there exists φ ∈ Aut A(S,P ) such f(φ) is not well defined
or simplicial. Hence, there are two cases:

(1) there exists an edge 〈a, b〉 ∈ A(S,P ) such that 〈f(a), f(b)〉 is an edge in A(S), but
f(φ(a)) = f(φ(b)) ∈ A(S);

(2) there exists an edge 〈a, a±〉 ∈ A(S,P ) such that f(a) = f(a±), f(φ(a±)) 6= f(φ(a)) and
〈f(φ(a±)), f(φ(a))〉 is an edge in A(S).

Claim 1: Let 〈a, b〉 be an edge of A(S,P ) as in the case 1. Then there does not exist
c ∈ A(S,P ) such that 〈a, b, c〉 is a 2-simplex in A(S,P ), 〈f(a), f(b), f(c) > is a 2-simplex in
A(S) and f(φ(a)) = f(φ(b)) = f(φ(c)).

By contradiction, let c be such a vertex, and let δabc be a maximal simplex in A(S,P ) which
extends the 2-simplex 〈a, b, c〉. By simpliciality φ(δabc) is a maximal simplex in A(S,P ) which
contains the simplex 〈φ(a), φ(b), φ(c)〉, and f(φ(δabc)) spans a maximal simplex in A(S). Then
by the previous remark, at most two elements in the set {f(φ(a)), f(φ(b)), f(φ(c))} can coincide.

Claim 2: Let 〈a, b〉 be an edge as in the case 1. Then 〈a, a±〉 spans an edge of A(S,P ) as in
the case 2.

Consider the 2-simplex 〈a, a±, b〉 and extend it to a maximal simplex δaa±b of A(S,P ). Notice
that Then φ(δaa±b) is a maximal simplex of A(S,P ), and by the above remark exactly two of
its vertices must have the same image through f . Now it follows from the hypothesis that if
f(φ(a)) = f(φ(b)), then necessarily f(φ(a)) 6= f(φ(a±)), and 〈a, a±〉 is an edge of A(S,P ) in
the case 2.

Claim 3: Let 〈a, a±〉 be an edge as in the case 2, and let δaa± be a maximal simplex of
A(S,P ) extending it. Then δaa± contains a unique vertex bδ such that 〈a, bδ〉 is an edge as in
the case 1.

By simpliciality φ(δaa+) is a maximal simplex in A(S,P ). It follows from the hypothesis that
f(φ(a)) 6= f(φ(a+)), then by the above remark there exists b ∈ δaa+ such that f(φ(b)) = f(φ(a)).
Now f(a) = f(a+), then by Claim 1 necessarily f(b) 6= f(a). The uniqueness of b follows from
the same argument.

Without loss of generality we can assume that 〈a, a+〉 is an edge as in the case 2 (Claim 2
guarantees that such an edge exists).

In the genus 1 case the proof is direct. Remark that in (S0
1,1, (1)) there is only one orbit

of arcs through the action of the mapping class group. Up to precomposing with a simplicial
automorphism induced by a mapping class, we can assume φ(a) = a. The map φ restricts
to a simplicial automorphism of the annulus (S0

0,2, (1, 2)) obtained by cutting S along a. We

remark that the two arcs a+ and a− correspond to the two 2-leaves of the annulus. By Lemma
2.20, φ preserves the set of 2-leaves, hence φ(a+) ∈ {a+, a−} and f(φ(a+)) = f(a), we get to a
contradiction.

Let us now focus on the case g ≥ 2. Let δ1
aa+

be a maximal simplex of A(S,P ) extending

〈a, a+〉. Let b1 be the unique vertex in δ1
aa+

as in Claim 3. Now flip δ1
aa+

on b1, and let δ2
aa+

be

the new triangulation and b2 be the new side. By Claims 1 and 3 the edge 〈a, b2〉 is necessarily
as in the case 1. Now since g ≥ 2 the situation looks like in Figure 15 and b2 bounds a triangle
on (S,P ) where at least one of the other two sides is neither a nor a+. Performing another flip
on that arc, we find another maximal simplex δ3

aa+
still containing a, a+ and b2. Now flipping

again on b2, we obtain a new maximal simplex δ4
aa+

containing a, a+ and a new arc b3 (not

contained in δ3
aa+

). By Claim 1 and 3, the edge 〈a, b3〉 is in the case 1, and 〈b1, a, b3〉 spans a
2-simplex (see again 15), but this contradicts Claim 1.

�

We can summarize the results of the previous lemmas in the following proposition.

Proposition 3.11. The forgetful map f : A(S,P ) → A(S) is simplicial an induces a homo-
morphism f∗ : Aut A(S,P ) → Aut A(S) whose kernel is generated by Dehn twists around ∂S.
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3.2.2. Proof of Theorem B for b = 1. Let us now complete the proof of Theorem B for surfaces
with one boundary component. We will prove another Reduction Lemma, which will be used
together with Reduction Lemma 3.15 as a key ingredient in our proof.

Lemma 3.12. Let S0
g,1 be a surface of genus g ≥ 1 with one boundary component. If A(S0

g,1)

is weakly rigid, then also A(S0
g,1, P ) is weakly rigid.

Proof. Let φ ∈ Aut A(S0
g,1, P ) be an automorphism. By Lemma 3.10 f(φ) ∈ Aut A(Sg,1), and

it follows from the hypothesis that there exists a mapping class MCG∗(Sg,1) which induces φ.
Let φ̄ : (S,P ) → (S,P ) be a homeomorphism in such a class and let φ̄∗ : A(S,P ) → A(S,P ) be
the induced map. We have id = f(φ̄−1

∗ ◦ φ) : A(Sg,1) → A(Sg,1); then there exists k ∈ Z such

that φ̄−1
∗ ◦ φ = τk∗ , hence φ is induced by φ ◦ τk. �

The following proposition can be also regarded as a particular case of a theorem of Irmak
and McCarthy [5]. We will postpone its proof to the next section.

Proposition 3.13. If S0
g,1 is a compact orientable surface of genus g ≥ 2 with one boundary

component, then the natural homomorphism MCG∗(S0
g,1) → Aut A(S0

g,1) is surjective.

An easy application of Lemma 3.12 and the previous proposition proves the following:

Proposition 3.14. Let (S0
g,1, (n)) be a surface of genus g ≥ 1 with one boundary component

and n marked points on it. Then A(S0
g,1, (n)) is weakly rigid.

Proof. The case n = 1 easily follows from Lemma 3.12.
Now let us use an inductive argument. By Lemma 2.21, we can assume that φ fixes every 3-
petal (or 2-leaf). Let v be a 3-petal (or 2-leaf), cutting S along v we find two surfaces (S0

g,1, (1))

and (S0
0,1, (3)), and φ induces an automorphism φ| of the arc complex of (S0

g,1, (n − 1)). By

induction φ| is induced by a homeomorphism φ1 of (S0
g,1, (n− 1)) which fixes every point on the

boundary. Lemma 2.12 ensures that the homeomorphim obtained by glueing φ1 to a suitable
homeomorphism of (S0

0,1, (3)) induces φ on the whole A(S0
g,1, (n)). �

Here is the first Reduction Lemma.

Reduction Lemma 3.15. For any s ≥ 0 and g ≥ 0, if A(S0
g,1, (1)) is weakly rigid, then also

A(Ss
g,1, (1)) is weakly rigid.

Proof. Let φ ∈ Aut A(Ss
g,1, (1)) be an automorphism. For every i = 1, . . . , b, let 〈li, vi〉 be an

edge as in Lemma 2.16 (3), corresponding to the i-th puncture. Without loss of generality, we
can assume that the set of all pairs {li, vi}i spans a simplex on A(Ss

g,1, (1)) and, by Lemma 2.16,

φ(li) = li and φ(vi) = vi for all i = 1, . . . , s. By restriction, φ induces an automorphism φ| on

Lk(σ) = A(S0
0,1, (1)). It follows from the hypothesis that φ| is induced by a homeomorphism

φ̃ : (S0
0,1, (s + 1)) → (S0

0,1, (s+ 1)).

We claim that φ̃ restricts to the identity on the boundary of (S0
0,1, (s+ 1)). By Lemma 2.20

we can equivalently show that φ̃ fixes every 3-petal on (S0
0,1, (s+1)). Let us denote by lii+1 the
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Figure 16. Reduction Lemma 3.15 in genus 0 case

3-petal of (S0
g,1, (s+ 1)) which joins the i-th and the i+ 1-th marked point on the boundary of

(S0
0,1, (s + 1)). Let aii+1 be the arc joining the i-th and the i+ 1-th puncture of (S0

0,1, (s + 1))
as it is shown in the Figure 16. The intersection pattern of the aii+1’s, of the lj ’s and lii+1’s is
the following:

i(ai,i+1, li) = i(aii+1, li+1) = 1
i(aii+1, lk) = 0 for i 6= k
i(ai,i+1, li+1,i+2) = i(li+1,i+2, ai+2,i+3) = 1
i(ah,h+1, lk+1,k+2) = i(lk+1,k+2, ah+2,h+3) = 0 for h 6= k

Using Lemmas 2.17-(2), 2.19 and the automorphism invariance of the intersection patterns given
above, we immediately deduce that necessarily φ(lii+1) = lii+1 for all i, and the claim is proved.

By the claim, we can extend φ̃ to a homeomorphism of the surface inducing φ just glueing back
the punctured discs bounded by the li’s. �

As an immediate application of Propositions 3.14 and 3.15, we have:

Theorem 3.16 (Weak rigidity for b = 1). Let (Ss
g,1, (1)) be an orientable surface of genus

g ≥ 1. Then A(Ss
g,1, (1)) is weakly rigid.

3.2.3. Proof of Proposition 3.13 and b = 0. In this section we will use Lemma 3.12 to give an
independent proof of Proposition 3.13.

Lemma 3.17. Let S1
g,0 be a closed orientable surface of genus g ≥ 2 with one marked point P.

Let c ∈ A(S1
g,0) be a vertex corresponding to an arc separating S in two connected components

S = S′
c ∪ S

′′
c .

For any φ ∈ Aut A(S1
g,0), φ(c) corresponds to an arc which separates S in two connected compo-

nents S = S′
φ(c)∪S

′′
φ(c), with S

′
φ(c) homeomorphic to S′

c and S
′′
φ(c) homeomorphic to S′′

c . Moreover,

φ restricts to isomorphisms φ| : A(S
′
c, P ) → A(S′

φ(c), P ) and φ| : A(S
′′
c , P ) → A(S′′

φ(c), P ).

Proof. By simpliciality, Lk(c,A(S1
g,0)) = A(S′

c, P ) ⋆ A(S
′′
c , P )

∼= Lk(φ(c), A(S1
g,0)) has diameter

2. If φ(c) were non-separating, then Lk(φ(c), A(S1
g,0))

∼= A(S0
g−1,2, (1, 1)) has infinite diameter

(Remark 2.14). Thus, φ(c) separates S into two connected components S′
φ(c) and S′′

φ(c). We

remark that in this setting the following conditions are equivalent:

(1) S′
φ(c), S

′′
φ(c) are respectively homeomorphic to S′

c, S
′′
c ;

(2) (genus(S′
φ(c)), genus(S

′′
φ(c))) = (genus(S′

c), genus(S
′′
c ));

(3) dim A(S′c,P) = dim A(S′
φ(c),P);

(4) the number of arcs of a triangulation of S′
c is equal to the number of arcs of a triangu-

lation of S′
φ(c).

Without loss of generality, we assume g(S′
c) = max{g(S′

c), g(S
′′
c ), g(S

′
φ(c)), g(S

′′
φ(c))}. Let µc be a

maximal simplex in A(Sc, P ), that is dimµc = dim Lk(c,A(S)). Let I (µc) be the set of simplices
of Lk(c,A(S)) obtained from µc by an elementary move. Since µc corresponds to a triangulation
of Sc, we have |I (µc)| = dim µc+1 = dim A(S′c,P)+1. By simpliciality, φ(I (µc)) corresponds
precisely to the set of simplices in Lk(φ(c), A(S)) obtained from φ(µc) by an elementary move,
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and we have |φ(I (µc))| = |I (µc)|. We write φ(µc) as φ(µc) = 〈µ′
φ(c), µ

′′
φ(c)〉, where µ

′
φ(c) is the

empty set or simplex in A(S′
φ(c), P ), and the same holds for µ′′

φ(c) in A(S
′′
φ(c), P ), and we remark

that dim µ′
φ(c) + dim µ′′

φ(c) + 2 = dim φ(µc) + 1 = dim µc + 1 = dim A(S′c,P) + 1 = |I (µc)|.

By contradiction assume that 0 ≤ dim µ′
φ(c) < dim A(S′

φ(c),P), that is µ
′
φ(c) is neither empty

nor a triangulation of (S′
φ(c), P ). Since g ≥ 2, there are at least two different ways to extend µ′

φ(c)

vv

Figure 17. Two ways of flipping v in µ′
φ(c)

to a triangulation of S′
φ(c) and, since (S′

φ(c), P ) has only one boundary component, there exists

at least one vertex of µ′
φ(c) flippable in at least two different ways (see Figure 17). It follows

that |I (φ(µc))| ≥ dim µ′′
φ(c) + 1+ dim µ′

φ(c) + 2 > |I (µc)|, and we get to a contradiction. The

same argument holds if we assume 0 ≤ dim µ′′
φ(c) < dim A(S′

φ(c),P).

We deduce that either dim µ′
φ(c) = dim A(S′

φ(c),P) (and µ
′′
φ(c) = ∅) or dim µ′′

φ(c) = dim A(S′′
φ(c),P)

(and µ′
φ(c) = ∅). In the first case φ(µc) = φ(µ′c) ⊂ A(S′

c, P ) has maximal dimension. Similarly,

in the second case, φ(µc) = φ(µ′′c ) ⊂ A(S′′
c , P ) has maximal dimension. The conclusion easily

follows from the equivalence of the above conditions 1 and 2. �

This lemma actually gives a proof of Proposition 3.13:

Proposition 3.18. Let S1
g,0 be an orientable surface of genus g ≥ 1 with one marked point P.

Then the natural representation MCG∗(S1
g,0) → Aut A(S1

g,0) is surjective.

Proof. We recall that this result is well known for g = 1, since A(S1
1) is isomorphic to the Farey

graph.
Let φ ∈ Aut A(S1

g,0) be a simplicial automorphism, and let c ∈ A(S1
g,0) be an arc which separates

S in two subsurfaces (S0
1,1, P ) of genus 1 and (S0

g2,1, P ) of genus g2 ≥ 1. Up to precomposing

φ with an automorphism induced by MCG∗(S1
g,0), we can assume φ(c) = c, and φ restricts to

automorphisms φ1 and φ2, respectively of A(S0
1,1, P ) and A(S

0
g2,1

, P ). By the genus 1 case, φ1
is induced by a homeomorphism f1 : (S

0
1,1, P ) → (S0

1,1, P ).

If g2 = 1, let f2 : (S
0
1,1, P ) → (S0

1,1, P ) be the homeomorphism which induces φ2. We glue f2 to

f1, and the resulting homeomorphism f : S1
1,0 → S1

1,0 induces φ (Lemma 2.12).
An inductive argument on g2 allows us to conclude. �

We shall now complete our proof with the b = 0 case. An analogous version of this case
in the slightly different context of injective simplicial maps and arc complexes of surfaces with
boundary (and no marked points) has also been achieved by Irmak and Mc Carthy. Their proof
is based on an extensive study of all the possible reciprocal configurations of quintuplets of arcs
connecting two boundary components (see [5]). By sake of completeness we show here that our
indirect approach leads to a new proof that each simplicial automorphism of A(Ss

g) is induced
by a mapping class.

The following lemma can be proved with the same argument as Proposition 3.18.

Lemma 3.19. Let Ss+1
g,0 be a compact orientable surface of genus g ≥ 2 with s + 1 marked

points. Let c1 ∈ A(Ss+1
g,0 ) be a vertex corresponding to a separating arc which decomposes S as

S = S′
c1
∪ S′′

c1
where S′

c1
= (S0

g′+1,1, (1)) and S′′
c1

= (Ss
g′′+1,1, (1)).

For any φ ∈ Aut A(Ss+1
g,0 ), φ(c1) is a separating arc whose induced decomposition is S =
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S′
φ(c1)

∪ S′′
φ(c1)

, with S′
φ(c1)

homeomorphic to S′
c1

and S′′
φ(c1)

homeomorphic to S′′
c1
. Moreover,

φ induces isomorphisms φ| : A(S
′
c1
, P ) → φ(A(S′

c1
, P )) = A(S′

φ(c1)
, P ) and φ| : A(S

′′
c1
, P ) →

φ(A(S′′
c1
, P )) = A(S′′

φ(c1)
, P ) by restriction.

Theorem 3.20. Let Ss
g,0 be an orientable surface of genus g ≥ 2 with s ≥ 1 punctures. Then

the natural homomorphism MCG∗(Ss
g,0) → Aut A(Ss

g,0) is surjective.

Proof. Let φ ∈ Aut A(Ss
g,0) and let c be a simple closed loop based at the puncture P on S such

that c disconnects the surface into the two subsurfaces (Ss−1
1,1 , P ) (of genus 1) and (S0

g2,1
, P )

(of genus g2 ≥ 1). By Lemma 3.19, up to precomposition with an element of the mapping
class group, φ restricts to automorphisms of A(Ss−1

1,1 , P ) and A(S
0
g2,1, P ). Hence, by Proposition

3.14 in the genus 1 case, Proposition 3.18 and Lemma 3.12 both automorphisms are induced
by homeomorphims of the respective surfaces. Glueing them, we get a homeomorphism of S
inducing φ by Lemma 2.12. �

3.3. General case. The Invariance Lemmas proved in Section 2 imply the following Reduction
Lemmas.

Reduction Lemma 3.21. Let g ≥ 1. If A(Ss
g,b,1) is weakly rigid, then for every p =

(p1, . . . , pb) ∈ N
b
0 A(S

s
g,b,p) is weakly rigid.

Proof. By an inductive argument it is sufficient to show that the surjectivity of MCG⋆(Ss
g,b, (p1−

1, . . . , pb)) → Aut A(Ss
g,b, (p1−1, . . . , pb)) implies the surjectivity of MCG⋆(Ss

g,b, (p1−1, . . . , pb)) →

Aut A(Ss
g,b, (p)). Let φ ∈ Aut A(Ss

g,b,1)) be an automorphism.

Assume first that p1 ≥ 3. By Lemma 2.19 we can assume that φ fixes every 3-petal (or 3-leaf)
on the first boundary component, up to precomposition with an automorphism induced by an
element of the mapping class group. Let v1, v2 be two 3-petals such that i(v1, v2) = 0. Let us cut
along v1, φ induces an automorphism φ| of the arc complex of the surface (Ss

g,b, (p1− 1, . . . , pb))
obtained cutting along v1. Our hypothesis implies that φ| is induced by a homeomorphism

φ̃| of (S
s
g,b, (p1 − 1, . . . , pb)). Since φ̃|(v2) = v2, φ̃| is the identity on the boundary of its first

component, it agrees with the identity on (S0
0,1, (3)) and, by glueing, it gives a homeomorphism

on (Ss
g,b,p) which induces φ. Lemma 2.20 ensures us that the same argument holds for pi = 2

using 2-leaves instead of 3-petals. �

Reduction Lemma 3.22. Let b ≥ 2. If A(Ss
g,b−1,1) is weakly rigid, then A(Ss

g,b,1) is weakly
rigid.

Proof. Let 〈l, v〉 be an edge as in Lemma 2.23. Without loss of generality assume l is based on
the first boundary component and v joins the first and the second boundary component. Let
φ ∈ Aut A(Ss

g,b,1) be an automorphism. Up to precomposition with an element induced by a

mapping class, we can assume φ(l) = l and φ(v) = v. Cutting along v, φ restricts to an auto-
morphism φ| of the arc complex of the surface (Ss

g,b−1, (4, 1b−2)). Our hypothesis and Lemma

3.21 imply that φ| is induced by a homeomorphism φ̃| : (S
s
g,b−1, (4, 1b−2)) → (Ss

g,b−1, (4, 1b−2)).

Since φ̃|(l) = l, φ preserves the segment of the first boundary components of (Ss
g,b−1, (4, 1b−2))

which corresponds to the cut along v, we can thus glue back and get a homeomorphism of
(Ss

g,b,1). �

Let us now prove that the two definitions of rigid and weakly rigid are equivalent.

Proposition 3.23. Let A(Ss
g,b,p) be not empty, with (g, b, s,p) 6= (0, 2, 0, (1, 1)). If A(Ss

g,b,p)
is weakly rigid, then it is also rigid.

Proof. This is equivalent to showing that if f ∈ MCG∗(Ssg,b,p) is such that the automorphism

f⋆ : A(S
s
g,b,p) → A(Ss

g,b,p) is the identity, then f is isotopic to the identity.
Let us assume first f exchanges at least two boundary components of S, say B1 and B2.

We have necessarily b = 2 and s = 0. Indeed, otherwise f would send an arc connecting B1 and
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B3 (or the puncture S ) to an arc connecting B2 and B3 (or the puncture S ), in contradiction
with the assumption f⋆ = id. Moreover, we have p1 = p2 = 1 otherwise f⋆ would exchange
2-leaves around different boundary components. Finally, g = 0 (s = 0) otherwise f⋆ would
exchange loops based on different boundary components and running around a handle. The
non-rigidity in the case (g, b, s,p) = (0, 2, 0, (1, 1)) has been proved in Theorem B for annuli.

Now assume that f fixes all the boundary components. Of course, f cannot be a rotation.
If f|B1

is homotopic to a reflection, then p1 ≤ 2 otherwise two 3-petals around B1 would be

exchanged. If g ≥ 1 there would exist some loop α based on B1 such that f⋆(α
−) = α+,

according to the notation used in Subsection 3.2.1. The same argument also excludes the case
g = 0 with b > 2 or b = 1 and s > 0. The three remaining cases (g, b, s,p) = (0, 2, 0, (1, 1)),
(0, 2, 0, (2, 2)), (0, 2, 0, (1, 2)) have been discussed in Section 3.1.2.

If f is now homotopic to the identity, f⋆ = id implies that f fixes each arc of a triangulation.
If the triangulation of (Ss

g,b,p) consists of at least 4 arcs (i.e. dimA(Ss
g,b,p) ≥ 3), then f

necessary fixes each triangle as well, hence f is isotopic to the identity. Low dimensional cases
have been checked in Proposition 2.5. �

We finally deduce Theorem B:

Theorem B. Let (Ss
g,b,p) be an orientable surface of genus g ≥ 1 with s marked points in

the interior, b ordered boundary components, and let p = (p1, . . . , pb) be the vector whose i-th
component pi is the number of marked points on the i-th boundary component of S. If A(Ss

g,b,p)

is not empty, then A(Ss
g,b,p) is weakly rigid. If furthermore (g, b, s,p) 6= (0, 2, 0, (1, 1)), then

A(Ss
g,b,p) is rigid.

Proof. Reduction Lemmas 3.21 3.22 and 3.15 allows us to reduce to the cases genus 0 and one
boundary component surfaces with positive genus. We can thus conclude by Theorems 3.4, 3.7,
3.16 and 3.20. �

4. Proof of Theorem C

Since there will be no ambiguity, in this section we shall use the notation A♯ for A♯(S
s
g,b,p)

and A for A(Ss
g,b,p). Here we shall prove the following result

Theorem C. Let (Ss
g,b,p) be an orientable surface of genus g with b ≥ 1 boundary compo-

nents, s punctures and pi ≥ 1 for all i = 1, . . . , b. If (Ss
g,b,p) 6= (S0

0,2, (1, 1)), then A♯(S
s
g,b,p)

is rigid. Moreover, in the exceptional cases the natural homomorphism MCG(S0
0,2, (1, 1)) →

Aut A♯(S
0
0,2, (1, 1)) is surjective, but not injective.

Proof. In order to prove Theorem C, we shall first prove that any automorphism φ : A♯ → A♯

extends to an automorphism φ̃ : A→ A.

Figure 18.

Step 1: Extending φ on the vertices of A \ A♯. We shall define an extension φ̃ of φ on A0. We
classify the vertices of A \ A♯ in 4 types, as in Figure 18: arcs α joining a marked point on
the boundary to a puncture inside, arcs β joining two punctures, loops γ based at a puncture
wrapping around another puncture, loops δ based on a puncture (different from type γ).
Let α be an arc joining a marked point on the boundary to a puncture inside, and let us complete
α to the edge-drop 〈α, lα〉 (we can do it in a unique way). By Lemma 2.16, φ(lα) is an arc of

the same type. Hence, we can define φ̃(α) as the unique complement of φ(lα) to an edge-drop
in A. The following lemma is an easy consequence of Lemmas 2.17 and 2.18.
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Figure 19.

Lemma 4.1. The configuration of arcs in a square like in Figure 19-left is invariant through
the action of φ (and φ̃, defined above).

Let β ∈ A be an arc joining two punctures. Let us choose vertices v1, . . . , v4 ∈ A represented
by disjoint arcs as in the case above, such that they form a square on S whose diagonal is β
(as in Figure 19-left). Let us denote by β∗ the other diagonal of this square, and remark that

β∗ ∈ A♯. By Lemma 4.1, the arcs φ̃(v1), . . . , φ̃(v4) form a square with diagonal φ(β∗). Let

us then define φ̃(β) := φ(β∗)∗, the other diagonal of this new square. We remark that at this
step this definition depends only the choice of v1, . . . , v4. We shall see later that it is actually
natural.

Lemma 4.2. The configuration of arcs in a square joining punctures in a square like Figure
19-right is invariant through the action of φ (and φ̃, as defined above).

Let γ be a loop around β, and let α be one of the arcs not intersecting γ used in the definition
of φ̃(β). By definition, φ̃(β) is an arc of the same type of β, and φ̃(α) is an arc of the same type

of α. By the above lemma φ̃(α) and φ̃(β) share a (unique) common endpoint.

We can thus define φ̃(γ) as the loop based at this end and running close around φ̃(β). We

remark that this definition depends only on the definition of φ̃(β). Let γ be a loop based at a

Figure 20.

puncture. Let us choose αγ an arc disjoint from γ which connects the puncture to a marked
point on the boundary, and let lγ be the loop boundary of αγ∪γ as in Figure 19-right. As in the
above lemmas, it is not difficult to prove that the relative configuration of αγ ∪ lγ is invariant

through the action of φ̃.
We can then define φ̃(γ) as the loop parallel to φ(lγ) based at the same marked point on ∂S as

φ̃(αγ). We remark that this definition depends only on the choice of αγ .

Step 2: Simpliciality of φ̃. We can resume Lemmas 4.1, 4.2 used above in the following lemma,
whose proof is an immediate consequence of Lemmas 2.16 and 2.18.

Lemma 4.3. The maps φ and φ̃ preserve squares and their diagonals.

It is not difficult to see that φ̃ is simplicial if and only if for any maximal simplex T in A
φ̃(T ) is a maximal simplex as well. For any T♯ maximal simplex in A♯, there is a natural way to

extend T♯ to a maximal simplex T̃♯ by adding arcs of type α as above. By definition of φ̃, the

simultaneous disjointness of all such arcs is preserved in this case, and T̃♯ is a maximal simplex
in A as well. To prove the statement in full generality, just recall that any two triangulations
of A are connected by flips and Lemma 4.3 ensures us that simpliciality is preserved through
flips.
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Step 3: Surjectivity of φ̃. We remark that φ̃ preserves the types of arcs in Figure 18, moreover
it is clearly surjective on arcs α. Surjectivity on arcs γ clearly follows from surjectivity on arcs
β. Surjectivity on β and δ follows from Lemma 4.3. Let w be such an arc, there exists a square
(whose sides v1, . . . , v4 are arcs of type α) on S having w as a diagonal (see for instance Figure

19-left for β). By surjectivity on sides of type α, vi = φ̃(ui). By Lemma 4.3, u1, . . . , u4 is a
square as well and its diagonals are the preimages of diagonals of the v1, . . . , v4.

Step 4: Injectivity of φ̃. Injectivity on arcs of type α follows by definition, injectivity on arcs of
type β and γ follows by construction. Imagine φ̃(δ1) = φ̃(δ2).

Step 5: Good definition of φ̃. By the above steps, all the possible extensions φ̃ are automor-
phisms of A. By the remark in Step 2, the maps φ̃ are all canonically determined on a triangu-
lation T̃♯. Hence, by Lemma 2.11, they all coincide and the definition of φ̃ doesn’t depend on
any choice.

To conclude the proof, let us just remark that the restriction map β : Aut A→ Aut A♯ defined
as β(φ) := φ| is well-defined and is a group homomorphism, and so is α : Aut A♯ → Aut A

defined as α(φ) := φ̃. Moreover α ◦ β = idAut A and β ◦ α = idAut A♯
, hence AutA♯

∼= Aut A,
and Theorem B is proved. �
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