Théorie $L^p$ pour l'équation de Cauchy-Riemann
Résumé
In this paper we propose a systematic study of the Cauchy-Riemann operator in the $L^p$-setting in complex manifolds. We first consider $L^p_{loc}$-theory and then we develop an $L^p$ Andreotti-Grauert theory. Finally we consider Serre duality and its applications to the solvability of the Cauchy-Riemann equation with exact support in $L^p$-spaces.
Domaines
Variables complexes [math.CV]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...