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Abstract

In this paper, we propose to evaluate whether asymmetry influences the day-

of-the-week effects on volatility. We also investigate empirically the impact of

the day-of-the-week effect in major international stock markets using GARCH

family models from a forecast framework. Indeed the existence of calendar

effects might be interesting only if their incorporation in a model results in better

volatility forecasts.
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1 Introduction

The day-of-the-week effect is one of the most widely documented seasonal anomalies,

according to which stock returns are significantly higher on some days of the week than

on other days (Lakonishok and Smidt, 1988; Barone, 1990; Aggarwal and Tandon,

1994). There is an extensive literature on anomalies in financial markets notably

examines size effects, stock split effects, and seasonal effects1. It is well documented

that some predictable patterns exist in the day-of-the-week returns.

Empirical studies have found that the day of the week effect appears not only in the

US, which is the biggest capital market in the world, and other developed markets (UK,

France, Canada, Australia, Japan), but also in emerging markets (China, Malaysia,

Hong Kong, Turkey).

What are the explanations for differences in expected returns across days of the

week? Many potential explanations for the weekend effect have been proposed

and investigated: measurement errors; delay between trading and settlement in

stocks; specialist related biases in prices; spill-over effect from other large markets;

concentration of certain investment decisions; timing of corporate releases after

Friday’s close; reduced institutional trading and greater individual trading on

Mondays; country-specific settlement procedures; risk-return tradeoff; daily savings

for two weekends a year; speculative short sales; new political macroeconomics and

transactions costs. At this point, it should be noted that the above explanations are

not fully adequate to explain the phenomenon of the day-of-the-week anomaly. The

literature to date does not provide an adequate explanation for this phenomenon. This

market anomaly is consequently an intriguing research topic.

These day-of-the-week findings appear to conflict with the efficient market hy-

pothesis since they imply that investors could develop a trading strategy to benefit

from these seasonal regularities2. Nevertheless, the Monday effect, which is the day-

1See for example the recent volume of Keim and Ziemba (2000) for a general discussion.
2However, once transaction costs and time-varying stock market risk premiums are taken into account,

it is not clear that the predictability of stock returns translates into market inefficiencies.
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of-the-week effect most frequently discussed in the literature, has not being of prof-

itable use in trading. The average weekend decline of 0.089 percent found by Siegel

(1998) would amount to only 0.0445 US dollars for a 50 US dollars stock which is less

than the bid-ask spread that prevailed during the period studied. Many other references

make this same point including French (1980), Kim (1988), Bessembinder and Hertzel

(1993), Ko and Lee (1993), and Chow et al. (1997). Consequently, the only potential

for profiting from the day-of-the-week effect through trading individual stocks would

be through changing the timing of trades that are already planned, such as timing pur-

chases for Mondays and sales for Fridays in the case of a Monday effect.

Kohers et al. (2004) assert that because of improvements in market efficiency over

time, the day-of-the-week effect may have disappeared in more recent years. Using

both parametric and nonparametric statistical tests, the authors examine the evolution

of the day-of-the-week seasonality for the largest developed equity markets over the

last 22 years. Their results indicate that while the day-of-the-week effect was clearly

prevalent in the vast majority of developed markets during the 1980s, it appears to have

faded away starting in the 1990s. These findings imply that increases in market effi-

ciency over long time periods may erode the effects of certain anomalies such as the

day-of-the-week effect. A contrario, Cho et al. (2007) provide a test of the day-of-the-

week effect in daily stock index returns based on the stochastic dominance criterion.

They apply the test to a number of stock indexes including US large caps and small

caps as well as UK and Japanese indexes. They find strong evidence of a Monday

effect in many cases under this stronger criterion. The effect has reversed or weakened

in the Dow Jones and SP 500 indexes post 1987, but is still strong in more broadly

based indexes like the NASDAQ, the Russell 2000 and the CRSP. Consequently, the

debate on the existence of seasonal patterns on returns remains open.

For a rational financial decision maker, returns constitute only one part of the

decision-making process. Risk-averse investors are interested not only in the variation
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of their return, but also its volatility. It is important to determine whether there are

variations in volatility of stock returns in day-of-the-week patterns and whether a

high (low) return is associated with a corresponding high (low) return for a given day.

Having such knowledge may allow investors to adjust their portfolios by taking into

account day-of-the-week variations in volatility. For example, Engle (1993) argues

that investors that dislike risk may adjust their portfolios by reducing their investments

in those assets whose volatility is expected to increase. Finding certain patterns in

volatility may be useful in several ways, for instance by identifying predicted volatility

patterns for hedging and speculative purposes and using predicted volatility to value

certain assets, in particular stock index options.

Several authors have investigated the time series behavior of stock prices in terms

of volatility using various GARCH models3. Balaban et al.(2001) use a GJR-GARCH

framework to test daily stock returns for 19 countries and find a significant day-of-

the-week effect on volatility for 8 countries. Berument and Kiymaz (2001) model the

day-of-the-week effect in a GARCH specification by allowing the constant term to vary

for each day-of-the-week. The authors show that the day-of-the-week effect is present

on the SP 500 index in both the volatility and return equations. Berument et al. (2007)

assess the day-of-the-week effect on foreign exchange rate changes and their volatility

with an EGARCH specification. More recently, Alagidede (2008) investigates the day-

of-the-week anomaly in Africa’s largest stock markets by looking at both the first and

second moments of returns. From a GARCH in mean model, the author incorporates

the market risk to test for the presence of daily effects. There is significant daily

seasonality for some of African stock markets regarding both mean and variance.

Nevertheless, these empirical studies estimate the day-of-the-week effect in the

return and volatility jointly. Therefore, one cannot evaluate whether asymmetry

influences the day-of-the-week effect on volatility. Consequently, we propose to

determine whether incorporating asymmetric effects of positive and negative shocks

on volatility adds a new twist to the existing understanding of the day-of-the-week

3See Poon and Granger (2003) for an overview.
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effect on volatility. Our aim is to show whether after corrections for the asymmetries,

the day-of-the-week effect weakens substantially4. Further, we investigate the impact

of the day-of-the-week effect in major international stock markets empirically using

GARCH family models in a forecast framework. Indeed, as underlined by Balaban

et al. (2001) and Holden et al. (2005), the existence of calendar effects might be

interesting only if their incorporation in a model results in better forecasts. Thus, we

propose to check whether these seasonal effects are useful for forecasting.

The rest of this paper is organized as follows. Section 2 introduces the data and

some preliminary statistical tests. Section 3 specifies the volatility models used. The

empirical results are presented in Section 4 and Section 5 concludes.

2 Data and some preliminary statistical tests

The data consist of the daily closing of five international indexes: CAC 40 (France),

DAX 30 (Germany), DJIA (US), FTSE 100 (UK) and NIKKEI 225 (Japan). The

indexes are basically designed to reflect the largest firms: the CAC 40 is the main

French index that is based on 40 of the largest companies in terms of market

capitalization; the DAX 30 is the main German indicator of the blue-chip segment

and contains the 30 largest companies in terms of capitalization and turnover; the Dow

Jones Industrial Average (DJIA) includes 30 of the largest US stocks5; The FTSE 100

is the senior index in the UK and consists of the largest 100 UK companies by full

market value and the Nikkei 225 Stock Average contains 225 of the most actively

traded stocks on the first section of the Tokyo Stock Exchange.

The data cover the period from July 7th, 1987 through July 27th, 2007 for a total of

5205 observations. The daily return is computed as the natural logarithmic first dif-

4Chang et al. (1998) examined the robustness of day-of-the-week effects on US stock markets. Their

results indicate that once the asymmetries are removed, day-of-the-week effects in mean returns are

reduced substantially.
5The stocks are selected at the discretion of the editors of The Wall Street Journal and add up to about

29% of the US market capitalization. Unlike, most indices the DJIA does not weight the individual stocks

by their market capitalization.
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ference of the daily closing price. The data are obtained from Thomsom Financial-

Datastream.

Tables 1 and 2 report the descriptive statistics for returns for each day-of-the-week

and for each market. The first column reports the daily mean, the second provides

the standard deviation, the third column reports the skewness, the fourth represents the

kurtosis, and the fifth corresponds to the Jarque-Bera statistic. An examination of these

characteristics shows that average daily returns are positive for all indexes expect the

NIKKEI 225, for which the average daily returns are negative. Monday has the highest

variance for all indexes6. This phenomenon can be explained by larger volatility on

the day following the exchange weekend (French and Roll, 1986). The lowest variance

is displayed on Fridays for CAC 40, DAX 30 and NIKKEI 225. Harvey and Huang

(1991) argue that the most important US macroeconomic announcements usually are

released between 8:30 and 9:30 a.m. on Fridays, which induce higher volatility. Their

results do not necessarily conflict with ours because these announcements are likely

to mainly affect opening price. Because we are using closing price, the impact on

volatility should lessen by the end of Friday’s trading. DJIA and FTSE 100 indexes

display the lowest variance on Wednesday. The highest average returns are observed

on Mondays for the DJIA; on Thursdays for CAC 40 and NIKKEI 225 and on Fridays

for DAX 30 and FTSE 100. The lowest average returns are on Mondays for CAC 40,

FTSE 100 and NIKKEI 225 with a negative sign; on Tuesdays for DAX 30 with a

positive sign and on Thursdays for DJIA with a negative sign.

Tables 1 and 2 also report skewness and kurtosis for the return series of each mar-

ket. All sample distributions are negatively skewed, indicating that they are non sym-

metric. Furthermore, they all exhibit high levels of kurtosis, indicating that these dis-

tributions have thicker tails than normal distributions. These initial findings show that

6Kyimaz and Berument (2003) have shown that for Germany and Japan, the days with the highest

volatility also coincide with that market’s lowest trading volume.
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daily returns are not normally distributed; they are leptokurtic and skewed.

We now test for constancy of variance prior to comparing the mean across different

days. Indeed, the choice of test of comparison of mean depends on whether the

variance is homogenous across different days. We further perform Brown-Forsythe

test (Brown and Forsythe, 1974) to see whether the constancy of the variances across

the days of the week can be rejected. Brown-Forsythe test is used to determine whether

k samples have equal variance. Brown-Forsythe test is more robust to departure from

normality, an assumption that is strongly rejected in our data7.

The results are reported in Table 3. By applying Brown-Forsythe test, the hypothesis

that variance is constant across the days of the week is rejected for all series except

for the FTSE 100 index. As we have shown that the variance is not constant over time

(except for the FTSE 100 series) and the series are non-normal, we use the Kruskal-

Wallis test to examine the existence of the day-of- the-week effect in the world’s

developed equity markets. We reject the null hypothesis that the mean is constant

over the week for all series except for the DJIA index, which shows a day-of-the-week

effect on returns.

3 Modelling the day-of-the-week effect on volatility

Finding patterns in volatility may be useful in several ways, including identifying

volatility patterns for hedging and speculative purposes and the use of predicted

volatility in valuation of certain assets specifically stock index options. Furthermore,

investors may adjust their portfolios by reducing their commitments to assets whose

7There are numerous tests for equal variances, but, as by Box (1953) points out, many of them appear

to be sensitive to departures from normality, outliers and heteroskedasticity. Several tests have been

proposed to deal with this problem. Conover et al. (1981) list and compare 60 methods for testing the

homogeneity of variance assumptions and show that Brown-Forsythe procedure outperforms all the other

procedures. Moreover, Brown and Forsythe (1974) performed Monte Carlo studies that indicated that

using the trimmed mean performed best when the underlying data followed a heavy-tailed distribution

and the median performed best when the underlying data followed a skewed distribution.
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volatility is expected to increase, and vice versa.

3.1 The GARCH and GJR-GARCH models

The GARCH model, developed by Bollerslev (1986), has been a major tool in mod-

elling predictability and time variation in the volatility of financial asset returns

(Hansen and Lunde, 2005). In this context, the estimated volatility is symmetric; i.e.

the forecast errors, whether positive or negative, have the same effect on the condi-

tional volatility. However, it is well documented in the literature that negative shocks

may have a different effect on volatility (Black, 1976). For example, according to

the so-called leverage effect, negative shocks increase volatility more than positive

shocks of equal magnitude do. Several volatility models have been developed to take

non-symmetrical dependencies into account8. In this paper, we consider only the first

generation threshold models9 such as the GJR-GARCH (Glosten et al., 1993) and

APARCH models (Ding et al., 1993).

One very simple method for examining the degree to which seasonality is

present in the financial time series is the inclusion of dummy variables in regression

equations10. We consider the following model

Rit = µ0 +
p

∑
i=1

φiRt−i +
q

∑
j=1

θiεt− j +
4

∑
k=1

λkDkt + εt

where Rit represents the returns of the index i at time t, εt = ztσt ,εt ∼ N(0,σ2
t ) and

zt ∼ i.i.d.N(0,1) and the conditional variance of εt is given by

σ2
t = α0 +α1ε2

t−1 +βσ2
t−1 ++γε2

t−1It−1 +
4

∑
k=1

δkDkt

The parameters should satisfy α0 > 0, α1 ≥ 0 and β1 ≥ 0 to guarantee the positivity

of the conditional variance (ht ≥ 0). If there are no asymmetries, γ is not statistically

8See Li and Li (1996), Brooks (2001), Chen et al. (2006), Munõz et al. (2007) and Chen et al. (2008).
9For a review of those models see Franses and van Dijk (2000) and the references contained therein.

10An alternative way to model seasonality in stock returns is the periodic autoregressive model with

periodic integrated GARCH process proposed by Franses and Paap (2000) and the periodic stochastic

volatility process developed by Tsiakas (2006).
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significant and the previous volatility equation is the equation of a GARCH model.

Dkt is a binary variable such that D1t = 1 if day t is a Monday and 0 otherwise;

D2t = 1 if day t is a Tuesday; D3t = 1 if day t is a Wednesday and D4t = 1 if day

t is a Thursday. We exclude the dummy variable for Friday to avoid the dummy

variable trap11. Care needs to be taken with dummy variables in variance equation

so that negative effect estimates do not lead to negative variances. As no restrictions

are placed on the dummy effects, it is necessary to check that the variance and the

forecasted variance are positive12.

3.2 The Asymmetric Power ARCH model

Since the introduction of the ARCH/GARCH family of models, many additional

features have been added to the base models to capture more complex volatility

dynamics. These additional features include leverage and asymmetry effects and

power transformations. A popular general model that captures these two features is

the Asymmetric Power ARCH [APARCH] model introduced by Ding et al. (1993).

Indeed, this model nests at least seven ARCH-type models (see below) and was found

to be particularly relevant in many recent applications (Mittnik and Paolella, 2000;

Giot and Laurent, 2003; Huang and Lin, 2004; Brooks, 2007). The APARCH(p,q)

model can be expressed as

Rt = µ0 +
p

∑
i=1

φiRt−i +
q

∑
j=1

θiεt− j +
4

∑
k=1

λkDkt + εt

where εt = ztσt ,εt ∼ N(0,σ2
t ) and zt ∼ i.i.d.N(0,1) and the conditional variance of εt

is given by

συ
t = α0 +

q

∑
i=1

αi(|εt−i|− γiεt−i)
υ +

p

∑
j=1

β jσ
2
t− j

where α0 > 0,υ ≥ 0,β j ≥ 0( j = 1, ..., p),αi ≥ 0 and −1 < γi < 1(i = 1, ...,q). The

asymmetry in the model is captured via the parameter γi and the power term υ captures

both the conditional standard deviation (υ=1) and conditional variance (υ=2) as special

11The dummy variable effect estimates are all in comparison to the base level of Friday.
12We thank one referee for this important insight.
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cases. This model is quite interesting because it couples the flexibility of a varying

exponent with the asymmetry coefficient (to take the leverage effect into account).

Moreover, the APARCH includes seven other ARCH extensions as special cases13:

• ARCH when υ = 2, γi = 0 (i=1,...,p) and β j = 0 (j=1,...,q)

• GARCH when υ = 2 and γi = 0 (i=1,...,p) β j = 0 (j=1,...,q)

• the GARCH of Taylor (1986) and Schwert (1990), when υ = 1 and γi = 0

(i=1,...,p)

• GJR-GARCH when υ = 2

• the Threshold ARCH of Zakoian (1994), when υ = 1

• the Nonlinear ARCH of Higgins and Bera (1992), when γi = 0 (i=1,...,p) and

β j = 0 (j=1,...,q)

• the log-ARCH of Geweke (1986) and Pentula (1986), when υ −→ 0

The parameters in the previous volatility models can be estimated14 by maximizing

the log likelihood corresponding with the conditional normality of εt . As one can never

be sure that the specified distribution of zt is the correct one, an alternative approach is

to ignore the problem and base the likelihood on the normal distribution. This method

is referred to a quasi-maximum likelihood estimation (QMLE). In general, the result-

ing estimates remain consistent and asymptotically normal, provided that the models

for the conditional mean and the conditional variance are correctly specified. The iter-

ative optimization procedures can be used to estimate the parameters. More precisely,

it is necessary to solve the first and second-order derivatives of the log likelihood (LL)

from several algorithms such as the score or the Hessian matrix. The most popular

algorithm for estimating GARCH models is that of Berndt et al. (1974) [BHHH]15.

13Complete developments leading to these conclusions are available in Ding et al. (1993).
14To estimate and forecast these indexes, we use G@RCH 4.2 of Laurent and Peters (2001), a package

dedicated to the estimation and the forecasting of GARCH models and many of theirs extensions.
15BHHH employ only first derivatives (calculated numerically rather than analytically) and approxi-

mations to the second derivatives are calculated.
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The QMLE enables the rate of returns and variance processes to be estimated jointly.

4 Empirical results

We first estimate an ARMA model for each return series to remove any serial corre-

lation in the series16. We employ the Ljung-Box [LB] test for autocorrelation (Ljung

and Box, 1978), the Lagrange Multiplier [LM] test for homoskedasticity (Engle, 1982)

and the BDS test statistic for non-linearity (Brock, Dechert and Scheinkman, 1987).

The LB statistic is not significant for all series, meaning that there is no serial linear

correlation on the return series. The data exhibit conditional heteroskedasticity given

that the LM test is significant for all series. Finally, to test for general non-linearity we

apply the most widely used test: the BDS test. We observe that all the series display

nonlinearity. The latter two results confirm the leptokurticity of the return distributions

observed previously.

In general, the empirical studies (Kiymaz and Berument, 2003; Alagidede, 2008)

estimate the day-of-the-week effect in the return and volatility jointly. Therefore, one

cannot evaluate how asymmetry influences the day-of-the-week effect on either return

or volatility17. Consequently, we have chosen to model the return series with an appro-

priate model before taking into account the presence of the day-of-the-week effect on

return and volatility. This procedure is employed to determine whether incorporating

asymmetric effects on volatility adds a new twist to the understanding of the day-of-

the-week effect on volatility.

In Table 4, we report the estimates of ARMA-GARCH models18 without seasonal

16The results are not reported to save space but they are available from the authors upon request.
17We thank a referee for this important insight.
18Mispecification of the conditional mean equation appears to have very little influence on the

estimated conditional variance in continuous (Nelson, 1990a; 1990b) as well as discrete time (McKenzie,

1997).
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effects for each series to take into account only the previously detected conditional

heteroskedasticity. To check the adequacy of a time series model for the conditional

mean and the conditional variance, we compute a number of misspecification tests19.

The mean equation seems adequate because the LB test up to 10 is not significant for

all series. The LM test up to 10 is not significant, revealing that no further ARCH

effects are detected. The Nyblom test is used to check the constancy of parameters

over time. This test is an approximate LM test of the null hypothesis that the parame-

ter is constant versus the alternative hypothesis, a martingale process20. The Nyblom

stability test suggests that the estimated parameters are quite stable during the investi-

gated period, implying that this model may be used to forecast volatility. Finally, we

test a linear GARCH specification relative to nonlinear alternatives by means of the

joint test developed by Engle and Ng (1993). This test serves to determine whether an

asymmetric model is required for a given series, or whether the symmetric GARCH

model can be deemed adequate. There is substantial evidence of asymmetric ARCH

effects at 5% for all series except the FTSE 100. Nevertheless, the rejection of the null

hypothesis by the test does not give much information concerning which nonlinear

GARCH model might be the appropriate alternative.

To take into account the asymmetry detected on the GARCH residuals, we estimate

an ARMA-GJR-GARCH model without seasonal effects. The estimate for each series

is reported in Table 5. The asymmetric effect is present in all markets, which means

that negative shocks have a greater impact on this market than positive shocks do. The

diagnostic tests of the standardized residuals21 indicate that the LB(10) statistics are

not statistically significant. Thus, we conclude that the residuals are not autocorre-

lated. In addition, the LM(10) tests cannot reject the null hypothesis of no ARCH

effects for all countries. As the Engle-Ng test is significant at 5% for all series, we

may ask whether the hypothetical day-of-the-week effects on volatility do not create

19The results are not reported to save space but they are available from the author upon request.
20See Nyblom (1989), Lee and Hansen (1994) and Hansen (1994).
21The results are not reported to save space but they are available from the author upon request.

12



asymmetry in the data22. Another nonlinear GARCH model or a model that captures

the seasonal effects might be an appropriate alternative.

Finally, we estimate an APARCH model to capture the leverage effect. The results

are presented in Table 6. All coefficients are significant at 5%. The asymmetry is ob-

served through the γ coefficient. All misspecification tests23 are not significant, except

the asymmetry test, which is significant except for the CAC 40, DAX 30 and DJIA

series.

In Section 2 we have detected the presence of the day-of-the-week effect on volatil-

ity for all series but on returns only for the DJIA index. Consequently, we tried to

model these effects using the previous models and the methodology presented in Sec-

tion 3. Results are reported in Tables 7 and 9. We note that, regardless of the volatility

models used, all coefficients are significant, implying the presence of asymmetry in the

volatility equation but also the existence of seasonal effects in the mean and variance

equations. Indeed, the day-of-the-week effects on volatility are detected on Mondays,

Tuesdays and Thursdays for the DAX 30; and on Mondays and Thursdays for the DJIA

for all seasonal volatility models estimated. Nevertheless, we observe some differ-

ences between the estimates of the volatility models and particularly on the detected

seasonal effects for the other indexes. When we consider the ARMA-GJR-GARCH

models with dummies exclusively, we may conclude that there are no day-of-the-week

effects on volatility of the CAC 40. However, when we estimate an ARMA-APARCH

with dummies, for the same series, the results are quite different. Indeed, we note one

day-of-the-week effect on Mondays and one on Tuesdays. There is also a substantial

difference in the estimates for the NIKKEI 225. Indeed, a Tuesday effect is detected

on volatility with ARMA-GJR-GARCH models with dummies, whereas we observed

Tuesday and Monday effects when we estimate the series with an ARMA-APARCH

22It would be interesting to study the impact of seasonal effects on the asymmetry tests from Monte

Carlo simulations in further research.
23The results are not reported to save space but they are available from the author upon request.
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with dummies. Thus, the choice of the volatility model seems very important to de-

tect the day-of-the-week effects on volatility because the results may differ depending

on the model. An inappropriate asymmetric volatility model may lead to a misspec-

ification of the seasonal effects. Nevertheless, when we compare the LL criterion, it

appears that it is highest when an ARMA-APARCH is estimated. Consequently, this

model seems to best capture the characteristics of the financial series used in this study.

Thus, for the FTSE 100, seasonal effects on Mondays and Tuesdays are detected, yet

in this series no conditional asymmetry on volatility has been detected with the Engle-

Ng test.

The diagnostic tests on the standardized residuals of these two seasonal volatility

models are shown in Tables 8 and 10. No ARCH effects or autocorrelation have

been detected. According to the Nyblom test, the coefficients are stable over time,

which is an important result for the forecast framework. Finally, the asymmetry

seems to be well taken into account because the Engle-Ng test is not significant for

all series. Thus we can advance that the seasonal effects may create asymmetry.

Indeed, when the seasonal pattern is not taken into account on volatility process, the

asymmetric conditional volatility test is significant. An alternative solution will be

to use an asymmetric distribution as proposed by Baker et al. (2007)24. Contrary to

these authors, the day-of-the-week effect in both mean and conditional variance is not

sensitive to the distribution assumption. Indeed, such distributions don’t improve the

estimates and the diagnostic tests on residuals25. Consequently, the seasonal effects

can be view as an alternative to model the asymmetry on the conditional variance. The

seasonal effect modelling allows to capture the asymmetry on the conditional variance.

24In this study, we have used the Student and the GED distributions, or the more recent Skewed-Student

distribution.
25The results of these estimates are not reported because they are not significant but they are available

from the author upon request.
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5 Volatility forecasts

In a recent review article, Poon and Granger (2003) present a persuasive case for

why the forecasting of volatility is a critical activity in financial markets. Volatility

forecasts have a very wide sphere of influence including investment, security valuation,

risk management, and monetary policy making. Specifically, they emphasize the

importance of volatility forecasting in: (i) pricing of options, underlined by the recent

massive growth in the trading of derivative securities; (ii) financial risk management

in the global banking sector, stimulated by the Basel Accords; and (iii) US monetary

policy, especially in the wake of major world events such as September 11th.

To simplify the reading of the forecast framework, we use the following notations

• Model 1: ARMA-GARCH without dummies

• Model 2: ARMA-GJR-GARCH without dummies

• Model 3: ARMA-APARCH without dummies

• Model 4: ARMA-GJR-GARCH with dummies

• Model 5: ARMA-APARCH with dummies

We estimate model 1 to model 5 for each series in the in-sample estimation period

(4965 observations). The fitted models are used to obtain one-step ahead forecasts of

conditional variance. The estimation is then moved one day into the future, by delet-

ing the first observation and adding one observation. The various GARCH models are

re-estimated on this new sample and are used to obtain one-step ahead volatility fore-

casts. In this way, we obtain 240 one-step ahead forecasts of the conditional variance.

The fact that the measures of volatility are latent makes it difficult to evaluate the

performance of volatility models. A common solution to this problem is to substitute

a proxy for the true volatility and evaluate the models by comparing their predicted

volatility to the proxy. Nevertheless, the use of a conditionally unbiased, but imper-

fect, volatility proxy can lead to undesirable estimates in standard methods for com-
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paring conditional variance forecasts. Alizadeh et al. (2002) note that the log range,

defined as the log of the difference between the high and low log prices during the

day, is a better measure of volatility in the sense that the log range has fewer measure-

ment errors compared with squared-returns. For instance, on a given day, the price

of an asset fluctuates substantially throughout the day but its closing price happens to

be very close to the previous closing price. If we use the inter-daily squared return,

the value will be low despite the large intra-daily price fluctuations. The log range,

using the highest and lowest values, reflects more precise price fluctuations and can

indicate that the volatility for the day is high. The log range has the advantage of being

robust to certain market microstructure effects. These microstructure effects, such as

the bid-ask spread, are noise that can affect the features of the time series. Moreover,

the distribution of the log range is very close to Normal, which makes it attractive for

use in Gaussian QMLE models. Nevertheless, it has been recognized at least since

Taylor (1986) and Ding et al. (1993) that absolute returns show more persistence than

squared returns. More specifically, it is well known that the persistence of volatility

measures based on squared returns fades even more, whereas the absolute returns are

immune to the presence of jumps (Forsberg and Ghysels, 2007). Therefore, in this

study, we consider two volatility proxies: the log absolute return ln|Rit | and the log

range ln|sup pt − inf pit | where Rit represents the returns of the index i at time t and,

pt the closing daily price of the index i at time t.

It is difficult to compare the forecasting performance of competing models because

of the diverse evaluation criteria used in the literature. In essence statistical measures

evaluate the difference between forecasts at time t and realized values at time t + h.

It is possible to test the null hypothesis that there is no qualitative difference between

the forecasts based on two models by comparing predictive accuracy. Diebold and

Mariano (1995) [DM] proposed tests for equal accuracy between two forecasting

models based on squared and absolute forecast errors. The null hypothesis is the equal

predictive accuracy of the two models. The results are reported on Tables 11 and 12.
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The DM statistics are, in most cases, significant, meaning there is a difference in the

forecasts computed from the two volatility models used. A positive sign of the statistics

implies that model 2 (GJR-GARCH without dummies) or 3 (APARCH without

dummies) is dominated by model 4 (GJR-GARCH without dummies) or 5 (APARCH

without dummies), respectively. A negative sign of the statistics implies that model 2

(GJR-GARCH without dummies) or 3 (APARCH without dummies) dominates model

4 (GJR-GARCH without dummies) or 5 (APARCH without dummies), respectively.

The results indicate that the day-of-the-week effects detected on volatility do

not seem to improve the volatility forecasts. Indeed, the sign of the DM statistics

is negative, implying that the day-of-the week effects observed on volatility do not

provide a better volatility forecast. Note that the volatility forecasts of the FTSE 100

have been computed from a GARCH model (with and without dummies) given that the

Engle-Ng test was not significant. Consequently, the day-of-the-week effects detected

on volatility may be regarded as something that cannot be traded profitably.

6 Conclusion

The previous empirical studies that have investigated the day-of-the-week effect on

volatility from a GARCH framework mainly estimated the seasonal effects and the

volatility jointly. Therefore, one cannot evaluate whether asymmetry influences the

day-of-the-week effect on volatility. Consequently, we propose to determine whether

incorporating asymmetric effects of positive and negative shocks on volatility adds

a new twist to the existing understanding of the day-of-the-week effect on volatility.

First, we show that the choice of the volatility model seems to play an important role in

detecting the day-of-the-week effects on volatility because the results differ depending

on the model used. Second, the asymmetry does not seem to influence the seasonal

effects. A contrario, it is possible that the day-of-the-week effect creates asymmetry

in the series. Third, we investigate the impact of the day-of-the-week effect in major

international stock markets empirically using GARCH family models in a forecast

framework. Indeed, the existence of calendar effects might be interesting only if their
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incorporation in a model results in better volatility forecasts. In this case, investors

could develop a trading strategy to benefit from these seasonal regularities. Our results

indicate that the day-of-the-week effects detected on volatility do not seem to improve

the volatility forecasts, implying that it is not worth integrating these effects in trading

strategies.
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Table 1: Summary statistics of daily closing prices

CAC 40

Weekday Mean Std. Deviation Skewness Kurtosis JB

Monday -0.000691 0.014393 -0.795224∗∗ 9.231824∗∗ 1794.214∗∗

Tuesday 0.000372 0.012491 -0.306796∗∗ 7.808605∗∗ 1019.277∗∗

Wednesday 0.000080 0.012440 -0.439254∗∗ 6.867420∗∗ 682.2331∗∗

Thursday 0.000891 0.013541 0.266541∗∗ 6.912407∗∗ 676.2641∗∗

Friday 0.000689 0.011725 0.077335 5.831395∗∗ 348.7662∗∗

All days 0.000268 0.012959 -0.288916∗∗ 7.834683∗∗ 5141.683∗∗

DAX 30

Weekday Mean Std. Deviation Skewness Kurtosis JB

Monday 0.000295 0.016368 -1.105457∗∗ 12.34201∗∗ 2997.494∗∗

Tuesday 0.000146 0.013559 -0.573542∗∗ 9.368490∗∗ 1816.262∗∗

Wednesday 0.000360 0.013343 -0.140672∗∗ 5.732799∗∗ 327.3661∗∗

Thursday 0.000352 0.013588 0.054833 7.993921∗∗ 1082.262∗∗

Friday 0.000502 0.012994 -0.227433∗∗ 7.036659∗∗ 715.7524∗∗

All days 0.000331 0.014019 -0.506888∗∗ 9.611611∗∗ 9703.235∗∗

DJIA

Weekday Mean Std. Deviation Skewness Kurtosis JB

Monday 0.000688 0.013246 -7.678206∗∗ 142.2678∗∗ 851509.2∗∗

Tuesday 0.000595 0.009897 0.395145∗∗ 6.758283∗∗ 639.7487∗∗

Wednesday 0.000551 0.009597 1.168749∗∗ 14.86838∗∗ 6346.733∗∗

Thursday -0.000180 0.009932 -0.018083 6.775010∗∗ 618.1807∗∗

Friday -0.000033 0.010209 -1.085942∗∗ 9.640348∗∗ 2117.190∗∗

All days 0.000324 0.010664 -2.887988∗∗ 72.87770∗∗ 1066213∗∗

∗∗ means significant at the 5% level.
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Table 2: Summary statistics of daily closing prices

FTSE 100

Weekday Mean Std. Deviation Skewness Kurtosis JB

Monday -0.000292 0.010951 -1.494095∗∗ 17.75499∗∗ 9830.463∗∗

Tuesday 0.000223 0.010629 -1.950180∗∗ 25.59618∗∗ 24810.18∗∗

Wednesday 0.000043 0.009647 0.212018∗∗ 8.398238∗∗ 1271.789∗∗

Thursday 0.000369 0.010299 -0.092353 7.212007∗∗ 770.9958∗∗

Friday 0.000662 0.009765 -0.035891 5.882543∗∗ 360.6288∗∗

All days 0.000201 0.010271 -0.788386∗∗ 14.45900∗∗ 29016.79∗∗

NIKKEI 225

Weekday Mean Std. Deviation Skewness Kurtosis JB

Monday -0.000943 0.015383 -0.147147∗∗ 5.991917∗∗ 392.0308∗∗

Tuesday 0.000331 0.013759 -0.907874∗∗ 27.31375∗∗ 25784.50∗∗

Wednesday 0.000152 0.013880 0.398066∗∗ 6.866685∗∗ 676.0027∗∗

Thursday 0.000393 0.013186 -0.074859 5.195281∗∗ 210.0076∗∗

Friday -0.000204 0.013035 0.240771∗∗ 6.477068∗∗ 534.4616∗∗

All days -0.000054 0.013877 -0.120415 10.30315∗∗ 11 579.81∗∗

∗∗ means significant at the 5% level.
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Table 3: Tests for equality

Tests for equality of variance

Brown-Forsythe’s test

CAC 40 DAX 30 DJIA FTSE 100 NIKKEI 225

p-value 0.02∗∗ 0.00∗ 0.00∗ 0.93 0.00∗

Test for equality of mean

Kruskal Wallis’s test

CAC 40 DAX 30 DJIA FTSE 100 NIKKEI 225

p-value 0.30 0.92 0.02∗∗ 0.22 0.40

∗ and ∗∗ means significant at the 1% and 5% levels, respectively.

Table 4: Estimates of ARMA-GARCH model

CAC40 DAX 30 DJIA FTSE 100 NIKKEI 225

Mean equation

µ0 0.54∗
(0.00)

0.72∗
(0.00)

0.57∗
(0.00)

0.04∗
(0.00)

0.05∗
(0.00)

φ1 - 0.90∗
(0.00)

0.89∗
(0.00)

- −0.95∗

(0.00)

θ1 0.02∗∗∗
(0.08)

−0.90∗

(0.00)
0.71∗
(0.00)

- 0.96∗
(0.00)

Variance equation

α0 3.18∗
(0.00)

4.32∗
(0.00)

1.50∗∗
(0.02)

0.01∗
(0.00)

0.02∗∗
(0.04)

α1 0.08∗
(0.00)

0.10∗
(0.00)

0.08∗
(0.00)

0.08∗
(0.00)

0.11∗
(0.00)

β1 0.89∗
(0.00)

0.87∗
(0.00)

0.90∗
(0.00)

0.89∗
(0.00)

0.87∗
(0.00)

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in

parentheses.
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Table 5: Estimates of ARMA-GJR-GARCH model

CAC40 DAX 30 DJIA NIKKEI 225

Mean equation

µ0 0.27∗∗∗
(0.08)

0.41∗∗
(0.01)

0.31∗∗
(0.01)

1.03E −06
(0.55)

φ1 - 0.51∗
(0.00)

−0.60∗

(0.00)
0.90∗
(0.00)

θ1 0.02∗∗∗
(0.09)

−0.50∗∗

(0.01)
0.62∗
(0.00)

−0.88∗

(0.00)

Variance equation

α0 3.22∗
(0.00)

4.62∗
(0.00)

1.82∗
(0.00)

3.05E −06∗

(0.00)

α1 0.02∗
(0.02)

0.02∗∗
(0.03)

0.01∗∗∗
(0.08)

0.03∗
(0.00)

β 0.91∗
(0.00)

0.88∗
(0.00)

0.91∗
(0.00)

0.88∗
(0.00)

γ 0.09∗
(0.00)

0.12∗
(0.00)

0.11∗
(0.00)

0.16∗
(0.00)

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in

parentheses. LL means the Log Likelihood.
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Table 6: Estimates of ARMA-APARCH model

CAC40 DAX 30 DJIA NIKKEI 225

Mean equation

µ0 0.27∗∗∗
(0.08)

0.37∗∗
(0.02)

0.29∗∗
(0.02)

−2.25E −06
(0.11)

φ1 - 0.60∗
(0.00)

−0.59∗∗

(0.05)
0.92∗
(0.05)

θ1 0.02
(0.11)

−0.59∗

(0.00)
0.61∗∗
(0.03)

−0.90∗

(0.03)

Variance equation

α0 0.86
(0.17)

0.89
(0.12)

0.24∗∗
(0.02)

0.03∗
(0.00)

α1 0.06∗
(0.00)

0.08∗
(0.00)

0.06∗
(0.00)

0.09∗
(0.00)

β 0.92∗
(0.00)

0.90∗
(0.00)

0.92∗
(0.00)

0.89∗
(0.00)

γ 0.52∗
(0.00)

0.51∗
(0.00)

0.84∗
(0.00)

0.57∗
(0.00)

υ 1.48∗
(0.00)

1.43
(0.00)

1.11∗
(0.00)

1.43∗
(0.00)

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in

parentheses.
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Table 7: Estimates of ARMA-GJR-GARCH model with dummies

CAC40 DAX 30 DJIA FTSE 100 NIKKEI 225

Mean equation

µ0 0.29∗∗
(0.04)

0.41∗
(0.00)

0.31∗
(0.00)

0.04∗
(0.00)

9.84E −03
(0.59)

φ1 - 0.58∗∗
(0.02)

−0.52∗∗∗

(0.05)
- −0.98∗

(0.00)

θ1 −0.67∗

(0.00)
−0.57∗∗

(0.04)
0.54∗∗
(0.04)

0.98∗
(0.00)

λ1 - - 0.51∗∗
(0.02)

- -

λ4 - - −0.35∗∗∗

(0.09)
- -

Variance equation

α0 3.29∗
(0.00)

4.42∗
(0.00)

1.77∗
(0.00)

0.02∗
(0.00)

0.03∗
(0.00)

α1 0.02∗
(0.03)

0.04∗
(0.00)

0.01∗∗∗
(0.06)

0.08∗
(0.00)

0.04∗∗
(0.03)

β1 0.91∗
(0.00)

0.89∗
(0.00)

0.91∗
(0.00)

0.89∗
(0.00)

0.88∗
(0.00)

γ 0.09∗
(0.00)

0.10∗
(0.00)

0.11∗
(0.00)

- 0.14∗
(0.00)

δ1 23.16
(0.17)

49.31∗∗∗
(0.07)

−18.85∗∗

(0.04)
0.05∗∗
(0.02)

0.45∗
(0.00)

δ2 −23.53
(0.15)

−51.57∗∗

(0.04)
6.26
(0.21)

−0.08∗

(0.04)
−0.28∗∗

(0.03)

δ3 2.64
(0.68)

3.94
(0.51)

−10.44∗∗

(0.02)
0.01
(0.51)

−0.05
(0.58)

δ4 5.50
(0.37)

−13.52∗∗

(0.05)
3.83
(0.27)

−0.02
(0.39)

2.58E −03
(0.98)

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in

parentheses. Note that we estimate a ARMA-GARCH model with dummies for FTSE 100 series.
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Table 8: Diagnostic tests on residuals of ARMA-GJR-GARCH with dummies

CAC40 DAX 30 DJIA FTSE 100 NIKKEI 225

LL -19999.43 -20175.58 -18723.53 -6745.70 -8437.13

LB(10) 11.42
(0.25)

10.96
(0.20)

5.35
(0.72)

12.75
(0.24)

6.02
(0.64)

LM(10) 0.87
(0.56)

0.38
(0.96)

0.85
(0.58)

1.26
(0.25)

0.40
(0.95)

JT 5.89
(0.13)

6.12
(0.11)

16.54∗∗∗
(0.09)

5.00
(0.17)

6.14
(0.10)

Nyblom’s test

α1 0.37 0.29 0.34 0.16 0.11

β1 0.40 0.32 0.29 0.20 0.49

γ 0.29 0.29 0.24 - 0.08

δ1 0.40 0.10 0.50 0.21 0.60

δ2 0.20 0.42 0.66 0.81 0.23

δ3 0.04 0.34 0.41 0.36 0.14

δ4 0.04 0.49 0.18 0.17 0.22

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in

parentheses. LL means the Log Likelihood. The LB and LM tests follow a χ2 distribution with 10− p− q and 10

degrees of freedom under the null hypothesis of no autocorrelation and homoskedasticity, respectively. JT represents

the joint test of Engle and Ng (1993). It follows a χ2 distribution with 3 degrees of freedom under the null hypothesis

of no asymmetric effects in the volatility. We, only, report the p-values for these two tests. We report only the p-values

for the Nyblom’s test. The Asymptotic 1% (5%) critical value for individual statistics of this test is 0.75 (0.47).
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Table 9: Estimates of ARMA-APARCH model with dummies

CAC40 DAX 30 DJIA NIKKEI 225

Mean equation

µ0 0.33∗∗
(0.03)

0.40∗
(0.01)

0.29∗∗
(0.01)

−0.01
(0.55)

φ1 - - - 0.97∗
(0.00)

θ1 0.02∗∗∗
(0.09)

- - −0.99∗

(0.00)

λ1 - - 0.65∗
(0.00)

-

λ4 - - −0.43∗

(0.04)
-

Variance equation

α0 0.67∗
(0.00)

0.88∗
(0.00)

0.26∗
(0.00)

0.03∗
(0.00)

α1 0.06∗
(0.00)

0.08∗
(0.00)

0.06∗
(0.00)

0.10∗
(0.00)

β1 0.92∗
(0.00)

0.90∗
(0.00)

0.93∗
(0.00)

0.89∗
(0.00)

γ 0.53∗
(0.00)

0.42∗
(0.00)

0.83∗
(0.00)

0.49∗
(0.00)

υ 1.38∗
(0.00)

1.39
(0.00)

1.16∗
(0.00)

1.46∗
(0.00)

δ1 4.70∗
(0.00)

8.84∗
(0.00)

−1.51∗

(0.00)
0.34∗
(0.00)

δ2 −4.68∗

(0.00)
−9.33∗

(0.00)
0.31
(0.30)

−0.18∗∗

(0.06)

δ3 0.59
(0.48)

0.91
(0.29)

−1.16∗

(0.00)
−0.07
(0.50)

δ4 0.96
(0.48)

−2.38∗∗

(0.01)
0.56∗∗∗

(0.07)
0.00
(0.99)

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in

parentheses.
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Table 10: Diagnostic tests on residuals of ARMA-APARCH model with dummies

CAC40 DAX 30 DJIA NIKKEI 225

LL -19997.85 -20166.92 -18703.23 -8430.17

LB(10) 11.79
(0.23)

10.61
(0.22)

5.81
(0.68)

6.08
(0.638)

LM(10) 0.88
(0.55)

0.48
(0.91)

1.01
(0.428)

0.37
(0.958)

JT 6.45
(0.10)

4.66
(0.17)

6.33
(0.12)

4.73
(0.19)

Nyblom’s test

α1 0.32 0.19 0.47 0.04

β1 0.36 0.18 0.57 0.32

γ 0.14 0.17 0.13 0.58

υ 0.53 0.29 0.45 0.03

δ1 0.37 0.16 0.48 0.57

δ2 0.29 0.47 0.63 0.22

δ3 0.04 0.42 0.50 0.23

δ4 0.05 0.64 0.15 0.28

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in

parentheses. LL means the Log Likelihood. The LB and LM tests follow a χ2 distribution with 10− p− q and 10

degrees of freedom under the null hypothesis of no autocorrelation and homoskedasticity, respectively. JT represents

the joint test of Engle and Ng (1993). It follows a χ2 distribution with 3 degrees of freedom under the null hypothesis

of no asymmetric effects in the volatility. We report only the p-values for the Nyblom’s test. The Asymptotic 1% (5%)

critical value for individual statistics of this test is 0.75 (0.47).
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Table 11: Tests of equal accuracy: Model 2 versus Model 4

Proxy: log absolute returns

Asymptotic test Sign test Wilcoxon test Asymptotic test Sign test Wilcoxon test

based on squared forecast errors based on absolute forecast errors

CAC 40 0.31
(0.76)

−1.55
(0.12)

−1.95∗∗∗

(0.05)
−0.29
(0.77)

−1.55
(0.12)

−1.75∗∗∗

(0.08)

DAX 30 −3.21∗

(0.00)
−9.30∗

(0.00)
−3.89∗

(0.00)
−0.44
(0.66)

−9.29∗

(0.00)
−3.77∗

(0.00)

DJIA −3.80∗

(0.00)
−8.65∗

(0.00)
−3.77∗

(0.00)
−6.04∗

(0.00)
−8.65∗

(0.00)
−3.69∗

(0.00)

FTSE 100 −3.33∗

(0.00)
−2.71∗

(0.01)
−2.97∗

(0.00)
−4.22∗

(0.00)
−2.71∗

(0.01)
−3.45∗

(0.00)

NIKKEI 225 −19.92∗

(0.00)
−13.68∗

(0.00)
−13.01∗

(0.00)
−20.08∗

(0.00)
−13.69∗

(0.00)
−13.17∗

(0.00)

Proxy: log range

Asymptotic test Sign test Wilcoxon test Asymptotic test Sign test Wilcoxon test

based on squared forecast errors based on absolute forecast errors

CAC 40 0.28
(0.71)

−1.55
(0.12)

−1.54
(0.13)

−0.29
(0.77)

−1.55
(0.12)

−1.75∗∗∗

(0.08)

DAX 30 0.98
(0.33)

−9.30∗

(0.00)
−3.78∗

(0.00)
−0.44
(0.66)

−9.29∗

(0.00)
−3.73∗

(0.00)

DJIA −6.0∗

(0.00)
−8.78∗

(0.00)
−3.73∗

(0.00)
−6.33∗

(0.00)
−8.74∗

(0.00)
−3.71∗

(0.00)

FTSE 100 −2.07∗∗

(0.04)
−4.26∗

(0.00)
−2.71∗

(0.00)
−1.60
(0.11)

−4.26∗

(0.00)
−2.17∗

(0.00)

NIKKEI 225 −19.92∗

(0.00)
−13.68∗

(0.00)
−13.01∗

(0.00)
−20.08∗

(0.00)
−13.69∗

(0.00)
−13.17∗

(0.00)

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in parentheses. A positive (negative) sign of the statistics implies that model 4 dominates (is

dominated by) model 2. For the FTSE 100 index, we use the model 1, with and without dummies.
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Table 12: Tests of equal accuracy: Model 3 versus Model 5

Proxy: log absolute returns

Asymptotic test Sign test Wilcoxon test Asymptotic test Sign test Wilcoxon test

based on squared forecasts errors based on absolute forecasts errors

CAC 40 −20.58∗

(0.00)
−14.20∗

(0.00)
−13.13∗

(0.00)
−19.86∗

(0.00)
−14.20∗

(0.00)
−13.25∗

(0.00)

DAX 30 −5.46∗

(0.00)
−9.29∗

(0.00)
−3.93∗

(0.00)
0.03
(0.97)

−9.30∗

(0.00)
−3.78∗

(0.00)

DJIA −4.09∗

(0.00)
−7.23∗

(0.00)
−3.48∗

(0.00)
0.05
(0.97)

−7.23∗

(0.00)
−1.05∗

(0.00)

NIKKEI 225 −9.10∗

(0.00)
−3.09∗

(0.00)
−2.69∗

(0.00)
−3.31∗

(0.00)
−3.10∗

(0.00)
−2.69∗

(0.00)

Proxy: log range

Asymptotic test Sign test Wilcoxon test Asymptotic test Sign test Wilcoxon test

based on squared forecasts errors based on absolute forecasts errors

CAC 40 −19.54∗

(0.96)
−14.20∗

(0.00)
−13.25∗

(0.00)
−19.81∗

(0.00)
−14.20∗

(0.00)
−13.24∗

(0.00)

DAX 30 −0.67
(0.50)

−9.29∗

(0.00)
−3.78∗

(0.00)
0.03∗
(0.98)

−9.30∗

(0.00)
−3.77∗

(0.00)

DJIA −0.25
(0.80)

−7.36∗

(0.00)
−3.51∗

(0.00)
0.00
(0.99)

−7.35∗

(0.00)
−3.44∗

(0.00)

NIKKEI 225 −9.10∗

(0.00)
−3.08∗

(0.00)
−2.69∗

(0.00)
−3.31∗

(0.00)
−3.09∗

(0.00)
−2.71∗

(0.00)

Significance at the 1%, 5% and 10% levels is shown by ∗, ∗∗ and ∗∗∗, respectively. The p-values are given in parentheses. A positive (negative) sign of the statistics implies that model 5 dominates (is

dominated by) model 3.

2
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