
HAL Id: hal-00771123
https://hal.science/hal-00771123

Submitted on 8 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Comparison of photosynthesis and antioxidant
performance of several Citrus and Fortunella species

(Rutaceae) under natural chilling stress
Jérémie Santini, Jean Giannettini, Olivier Pailly, Stéphane Herbette, Patrick

Ollitrault, Liliane Berti, Luro François

To cite this version:
Jérémie Santini, Jean Giannettini, Olivier Pailly, Stéphane Herbette, Patrick Ollitrault, et al.. Com-
parison of photosynthesis and antioxidant performance of several Citrus and Fortunella species
(Rutaceae) under natural chilling stress. Trees - Structure and Function, 2013, 27 (1), pp.13.
�10.1007/s00468-012-0769-5�. �hal-00771123�

https://hal.science/hal-00771123
https://hal.archives-ouvertes.fr


1 

 

Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species 

(Rutaceae) under natural chilling stress 

 

Jérémie Santini, Jean Giannettini, Olivier Pailly, Stéphane Herbette, Patrick Ollitrault, Liliane Berti, François 

Luro
 

 

J. Santini, O. Pailly, F. Luro 

INRA, UR 1103 Génétique et Ecophysiologie de la Qualité des Agrumes, F-20230 San Giuliano, France
 

J. Santini, J. Giannettini*, L. Berti 

CNRS, UMR 6134 SPE, Laboratoire Biochimie & Biologie Moléculaire du Végétal, F-20250 Corte, France 

*Corresponding author: Tel: +33495450674; fax: +33495450154. E-mail address: gianetti@univ-corse.fr  

S. Herbette 

 INRA, UMR 547 PIAF, F-63100 Clermont-Ferrand, France 

S. Herbette 

Clermont Université, Université Blaise Pascal, UMR 547 PIAF, BP 10448, F-63000 Clermont-Ferrand, France 

P. Ollitrault 

CIRAD,
 
UPR 75,  Avenue Agropolis, TA A-75/02, F-34398 Montpellier cedex 5, France 

 

Abstract Citrus plants originate from southeastern Asia, in a large area with various climates characterized by a 

broad range of temperatures. Some species have been diversified in temperate climates, others in subtropical 

climates. Temperature is assumed to be a key factor in citrus species adaptation and diversification of basic 

cellular functions. In a field experiment, the tolerance of the three fundamental Citrus species C. medica L., C. 

reticulata Blanco and C. maxima (Burm.) Merr., and Fortunella japonica (Thunb.) Swing. to photooxidative 

stress caused by seasonal climatic changes was evaluated on adult trees by measuring net photosynthesis (Pnet), 

stomatal conductance (Gs), maximum photosynthesis (Pmax) and chlorophyll fluorescence (Fv/Fm). In addition, 

seasonal changes in oxidative status, antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, 

monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) and antioxidant 

metabolites (ascorbate and glutathione) were monitored. Mandarin and pummelo appeared to be the most 

tolerant, showing the lowest down-regulation of photosynthetic parameters, and the lowest accumulation of 

oxidized compounds associated with efficiency of their antioxidant system. Kumquat showed intermediate 

behaviour, with a large diminution of photosynthetic parameters and marked accumulation of hydrogen peroxide, 

whereas the malondialdehyde content remained low, with a strong induction of glutathione synthesis. Finally, 

citron appeared to be the most sensitive genotype with a marked decrease in photosynthetic performance, the 

largest accumulation of oxidative parameters, insufficient induction of antioxidant enzymes and down-regulation 

of ascorbate and glutathione synthesis.  

 

Keywords Antioxidant enzymes, Antioxidant metabolites, Citrus, Oxidative status, Photosynthetic parameters, 
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Introduction 

The citrus plants belong to the subtribe Citrineae of the tribe Citreae in the subfamily Aurantioideae of the 

Rutaceae family (Webber et al. 1967) . Strictly, true citrus plants comprise six genera: Clymenia, Eremocitrus, 

Microcitrus, Poncirus, Fortunella and Citrus (Swingle and Reece 1967). Scora (1975) and Barrett and Rhodes 

(1976) considered that Citrus medica L.(citron), C. maxima (Burm.) Merr. (pummelo) and C. reticulata Blanco 

(mandarin) were the three fundamental species of Citrus. Nicolosi et al. (2000) added a fourth species, 

C. micrantha Wester, involved in the genesis of the lime (C. aurantifolia (Christm.) Swing.). Recently, this 

addition has gained support from various biochemical and molecular studies (Federici et al. 1998; Nicolosi et al. 

2000; Barkley et al. 2006; Fanciullino et al. 2006). Citrus, Poncirus and Fortunella are believed to have their 

primary center of origin in south and southeastern Asia. In particular, C. medica originates from an area covering 

northeastern India, Burma, and western China; C. reticulata from Vietnam, southern China, and Japan; C. 

maxima from the tropical region of Malaysia and Indonesia; Poncirus from Chinese provinces close to the 

Himalayas and Fortunella from southeastern China (Swingle and Reece 1967; Scora 1975; Gmitter and Hu 1990; 

Mabberley 2004). This allopatric evolution has resulted in strong genetic and also phenotypic differentiation 

between these Citrus taxa (Garcia-Lor et al. 2012). Thus each species had initially to develop specific 

physiological and biochemical determinants, depending on climatic conditions in these areas of origin, that 

allowed their cultivation in different parts of the world, particularly at the northern limit of Mediterranean 

agriculture. 

The Mediterranean climate, with its characteristic seasonality, provides a useful opportunity to study the 

adaptation of these species relative to their climate areas of origin. In this region, the summer season is 

characterized by high temperatures and dryness, whereas in winter, day temperature is generally moderate and 

night temperatures often dip below 5 °C.  

Low temperatures can cause a number of physiological and biochemical dysfunctions to occur, such as a 

decrease in enzymatic activities participating in the Calvin cycle and reduced photosynthetic activity (Sevillano 

et al. 2009). Cold temperatures during winter inhibit the enzymatic reactions underlying CO2 fixation, but do not 

affect the light absorption ability of many overwintering evergreens such as citrus(Allen and Ort 2001; Ribeiro 

and Machado 2007). This results in photoinhibition or photooxidative damage or both (Oquist and Huner 2003). 

Such dysfunction has been found in citrus plants in other environmental conditions (Veste et al. 2000; Medina et 

al. 2002; Jifon and Syvertsen 2003), although the genetic response of true citrus species to chilling conditions is 

unknown. 

Cold temperatures reduce CO2 availability and may decrease the CO2/O2 ratio in chloroplasts (Foyer and 

Noctor 2000). This condition facilitates electron flow to molecular oxygen (O2) and superoxide anion (O2
•−

) 

production by the Mehler reaction (Foyer and Noctor 2003). Overproduction of ROS in plant cells under stress 

can damage cell components, including DNA, proteins and membrane lipids (Mittler 2002).   

Plants have evolved efficient antioxidant systems that can protect them from the damaging effects of 

oxidative stress (Asada 1999) even at low temperatures induced by seasonal climatic changes (Polle and 

Rennenberg 1992; Verhoeven et al. 2005; Wang et al. 2009). These antioxidant mechanisms employ (i) ROS-

scavenging enzymes, such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate 

peroxidase (APX, 1.11.1.11), (ii) recycling enzymes of ascorbate-glutathione cycle such as 

monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and 
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glutathione reductase (GR, EC 1.6.4.2) and (iii) low molecular weight antioxidants, such ascorbic acid (Asa) and 

glutathione (Gsh).  

In this study, seasonal climatic changes were used to analyze the response to chilling conditions of four 

ancestral species of Citrus and Fortunella originating from dispersed native areas in southeastern Asia, and 

selected for their ranging behaviour with respect to freezing injuries. Although it is considered to be very tolerant 

to freezing temperatures, the trifoliate orange (Poncirus trifoliata (L.) Raf.) was not included in this study 

because, unlike other citrus species, it is deciduous in winter. This behaviour is a form of physiological 

adaptation to low temperatures but lies outside our study. Among the evergreen citrus species, kumquat 

(Fortunella) is thought to be the most tolerant to freezing temperatures (can withstand −15 °C), while citron is 

considered to be one of the most vulnerable. Pummelos, diversified in tropical regions, are also known to be 

vulnerable to negative temperatures and mandarins to be more tolerant (Yelenosky 1985). This sample of citrus 

species was intended to be representative of different physiological reactions when evergreen citrus trees are 

exposed to chilling conditions. The aim of this study was to investigate the effect of broader seasonal 

temperature variation on citrus photosynthesis regulation and protective mechanisms against oxidative stress.  

 

Materials and methods 

 

Plant material and growth conditions 

 

Experiments were carried out on leaves from 8-year-old trees of genotypes belonging to the Citrus and 

Fortunella genera (Table 1) growing in the experimental orchards of the Station de Recherches Agronomiques 

INRA-CIRAD of San Giuliano, Corsica, France (42° 18′ 55′′ N, 9° 29′ 29′′ E; 51m a.s.l., under a Mediterranean 

climate and on soil derived from alluvial deposits and classified as fersiallitic, pH range 6.0–6.6). Trees were 

spaced at 6 × 4 m and were subjected to homogenous growing conditions to reduce environmental effects. Water 

was supplied every day on the basis of 100% replacement of actual evapotranspiration estimated from the 

equation of Penman-Monteith (1965). Fertilizers were supplied and insects and diseases controlled according to 

the recommendations of the local department of agriculture.  

The experiment in orchards was conducted on 20–21 September 2010 (ambient air temperature 25 °C) and in 

January 2011 (ambient air temperature 6 °C) on one genotype of each of the three basic true species of the Citrus 

genus and on one genotype of the Fortunella genus (Table 1). Average daily minimum air temperatures for each 

of the months from July to January were 18.6 °C, 16.9 °C, 13.8 °C, 10.9 °C, 6.6 °C, 4.1 °C and 4.6 °C, 

respectively. Average daily global radiation for each of the months from July to January at this location was 

2559, 2157, 1725, 942, 685, 546 and 579 J.cm
-2

. For each genotype, three individual trees growing in the same 

field were used. For physiological parameter measurements, the same leaves were used. On each tree, three fully 

expanded leaves from spring of the current year‟s growth were selected in September (end of summer, warm 

period) and January (winter, cold period). Thus nine measurements per genotype were made on sunny mornings 

of each season (between 08:00h and 12:00h). For biochemical assays, on each of the three trees of a genotype, 

two samples of 15 fully expanded leaves from the current year‟s growth were collected on sunny mornings 

(between 08:00h and 12:00h) of each specific sampling date and immediately frozen in liquid nitrogen and 

stored at −80 °C. Thus six samples of 15 leaves were separately analyzed for each genotype and for each season. 
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Before analysis, each leaf sample was ground to a fine powder in liquid nitrogen using a pre-chilled pestle and 

mortar. 

The experiment under controlled conditions was performed on detached leaves from the same trees of each 

genotype (Table 1) in September 2011. On each tree, two fully expanded leaves of the current year‟s growth 

were collected on sunny mornings. Thus six leaves per genotype were collected and incubated independently in 

closed Petri dishes containing tissue paper moistened with distilled water. Petri dishes were then transferred for 

72 hours before cold treatment to a growth chamber in which the temperature was set at 25 °C (equivalent to 

orchard ambient air temperatures during September experiments). The cold treatment was imposed by shifting 

the temperature of the growth chamber to 6 °C (equivalent to orchard ambient air temperatures during January 

experiments), 3 h after the beginning of the day period and for a period of 72 h. A similar experiment was 

performed on detached leaves maintained at 25 °C for at least 168 h to check the absence of changes in Pnet. 

The relative humidity was maintained at 85% for both temperature conditions. The photoperiod was 16 h and 

photon flux density was provided by cool fluorescent lamps (350 µmol.m
-2

.s
-1

). Three measurements per 

genotype were made at each temperature. Air temperature, relative humidity and light level were continuously 

monitored at 1 h intervals in growth chambers throughout the entire experiment.  

 

Gas exchange measurements 

 

Measurements of net photosynthetic rate (Pnet), stomatal conductance (Gs) and maximum photosynthetic 

rate (Pmax) were determined with a portable open gas exchange system (GFS 3000, WALZ, Effeltrich, 

Germany). Air flow rate was 750 µmol.s
-1

. In a gas exchange chamber, photosynthetic photon flux density 

(PPFD) was controlled using a LED radiation source and was fixed at a PPFD of 1400 µmol.m
-2

.s
-1

 for Pnet and 

Gs or at a saturated PPFD of 2000 µmol.m
-2

.s
-1 

for Pmax. The use of this LED source ensured a constant, 

uniform light across all measurements. Carbon dioxide concentration was set at 380 µmol.mol
-1

 for Pnet and Gs 

measurements and at 2000 µmol.mol
-1

 for Pmax measurements.  

 

Chlorophyll a fluorescence measurements 

 

In vivo chlorophyll fluorescence was measured on sunny days on the same leaves previously used for gas 

exchange measurements using a portable chlorophyll fluorometer (Hansatech, Norfolk, England). Intact leaves 

were dark-adapted with leaf clips for 20 min to allow relaxation of fluorescence quenching associated with 

thylakoid membrane energization (Krause et al. 1983). Minimal fluorescence (Fo) and maximal fluorescence 

(Fm) were obtained by imposing a 1 s saturating flash to reduce all the PSII reaction centers. The maximum 

potential photochemical efficiency of PSII was expressed as the ratio Fv/Fm (= (Fm − Fo)/Fm). The degree of 

photoinhibition was evaluated by the reduction in the value of Fv/Fm. Seasonal data were collected on sunny 

mornings at 08:30h for each month (ambient air temperature respectively 16.4 °C and 5.3 °C). 

 

Measurement of H2O2 and MDA 
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H2O2 levels were measured following the protocol described by Zhou B. et al. (2006). For extraction, 200 mg 

of frozen leaf powder was homogenized in 3 mL of trichloroacetic acid (TCA) 5% (w:v) containing 60 mg of 

activated charcoal. The mixture was then centrifuged at 5000  g for 20 min at 4 °C. 

The MDA content of leaves was determined using a thiobarbituric acid (TBA) reaction described by Hodges 

et al. (1999). For extraction, 100 mg of frozen leaf powder was homogenized with inert sand in 2.5 mL of 80% 

ethanol (v/v), followed by centrifugation at 3000  g for 10 min at 4 °C.  

All the measurements were performed using a V-630 spectrophotometer (Jasco Inc., Tokyo, Japan). 

 

Assay of antioxidant enzymes activities  

 

Frozen leaf powder was homogenized in extraction medium (100 mM potassium phosphate buffer, pH 7.5,  

containing 0.1% (v/v) TritonX-100 and 1% (w/v) polyvinylpyrollidone (PVP) for all enzymatic assays) using 27 mg 

FW per mL of buffer. The homogenate was then centrifuged at 13,000  g for 30 min at 4 °C. The supernatant 

was used for the protein and enzyme analysis (except for SOD where the extract was diluted 20-fold). Protein 

concentration was determined by the method of Bradford (Bradford 1976). All kinetic measurements were 

performed using a V-630 spectrophotometer (Jasco Inc., Tokyo, Japan). 

Superoxide dismutase (SOD, EC 1.15.1.1) activity was measured using a modified method of Oberley and 

Spitz (1984). 100 μL of diluted extract was added to a solution containing 1 mM DETAPAC buffer (pH 7.8), 

1.25 units of catalase, 0.07 mM NBT, 0.2 mM xanthine and 0.010 units of xanthine oxidase in a total volume of 

1.0 mL. One unit of SOD was defined as the amount of enzyme causing 50% inhibition of the rate of NBT 

reduction at 560 nm, at 25 °C. 

Catalase (CAT, EC 1.11.1.6) activity was measured according to the method of Aebi (1984). The reaction 

mixture (1.1 mL) contained 100 μL of crude enzyme extract, 37.8 mM sodium phosphate buffer (pH 7.0) and 

4.4 mM H2O2. The decrease in absorbance was measured at 240 nm (ε = 39.4 mM
-1

.cm
-1

). One unit of CAT was 

expressed as 1 μmol H2O2 degraded per min at 25 °C. 

Ascorbate peroxidase (APX, EC 1.11.1.11) activity was determined according to a modified method 

described by Asada (1984). The standard reaction mixture (1.0 mL) contained 0.17 mM ascorbate, 33 μL of 

crude enzyme extract in a 60.3 mM potassium phosphate buffer (pH 7.0). The reaction was triggered when 

4.95 mM H2O2 was added. The rate of ascorbate oxidation was evaluated at 290 nm for 3 min (ε = 

2.8 mM
-1

.cm
-1

). One unit of APX was expressed as the oxidation of 1 μmol ascorbate per min at 25 °C. 

Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activity was established by monitoring the MDHA-

dependent oxidation of NADH according to the method of Drew et al. (2007), slightly modified. 100 μL of crude 

enzyme extract was added to a solution containing 9.7 mM potassium phosphate, 0.125% Triton X100 (pH 8), 

2.5 mM ascorbate, 0.128 units of ascorbate oxidase in a total volume of 1.0 mL. The reaction was started by 

adding 0.2 mM NADH. The decrease in absorbance was measured at 340 nm (ε = 6.3 mM
-1

.cm
-1

). One MDHAR 

unit was defined as the amount of enzyme required to oxidize 1 μmol NADH per min at 340 nm at 25 °C. 

Dehydroascorbate reductase (DHAR, EC 1.8.5.1) activity was assayed by measuring the rate of appearance 

of ascorbate measured at 265 nm (ε = 14.5 mM
-1

.cm
-1

) (1984). The standard reaction mixture (1.0 mL) contained 

41 mM potassium phosphate buffer (pH 6.5), 5 mM Gsh, 0.11 mM EDTA, and 75 μL of crude enzyme extract, 
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with 0.5 mM DHA added to initiate the reaction. One DHAR unit was defined as the amount of enzyme that 

allowed the formation of 1 μmol ascorbate per min at 25 °C. 

Glutathione reductase (GR, EC 1.6.4.2) activity was measured according to the modified method of Smith 

et al. (1988). The standard reaction mixture (1.0 mL) contained 50 mM potassium phosphate buffer (pH 7.0), 

1 mM GssG, 0.75 mM DTNB and 100 μL of crude enzyme extract. 0.1 mM NADPH was added to initiate the 

reaction. The increase in absorbance due to the formation of TNB was measured at 412 nm (ε = 

14.15 mM
-1

.cm
-1

). One GR unit was defined as the amount of enzyme that allowed the formation of 1 μmol TNB 

per min at 25 °C. 

 

Assay of antioxidant metabolites 

 

Total ascorbate (tAsa) and reduced ascorbate (Asa) contents were measured according to the method of 

Gillespie and Ainsworth (2007). For extraction, 40 mg of frozen leaf powder was homogenized in 2.0 mL of a 

6% (w/v) TCA solution and centrifuged at 13,000  g for 5 min at 4 °C.  

Total glutathione (tGsh) and oxidized glutathione (GssG) contents were measured according to the DTNB-

GR recycling procedure of Rahman et al. (2006). For extraction, 50 mg of frozen leaf powder was homogenized 

in 2.0 mL of mixed buffer (100 mM potassium phosphate, pH 7.5, 5mM EDTA, 0.1% (v:v) Triton X-100 and 

23 mM sulfosalicylic acid) and centrifuged at 8000  g for 10 min at 4 °C.  

All measurements were performed using a V-630 spectrophotometer (Jasco Inc., Tokyo, Japan). 

 

Statistical analyses 

 

The experimental designs were split-plot with genotype as the main plot and season (or temperature for the 

second experiment) as the subplot. Differences between genotypes and seasons were analyzed with two-way 

ANOVA and comparisons between means were made with the least significant difference (LSD) test at P < 0.05 

using R statistical software (http://www.R-project.org).  

 

Results 

 

Seasonal changes in Pnet and Gs 

 

Responses of Pnet and Gs for the four species were established on 20–21 September 2010 (warm period) and 

4–5 January 2011 (cold period) (Fig. 1; Table 2). Based on warm period results, several differences could be 

observed on the photosynthetic behaviour of the different varieties studied, CC and MK having the highest Pnet 

and Gs and WLM and PP having the lowest Pnet and Gs (Fig. 1a, b). In the cold period, the reduction in Pnet 

and Gs was significantly greater in CC and MK compared with the warm period (~−64 % and ~−78% for Pnet, 

respectively; ~−53 % and ~−67% for Gs, respectively) than in WLM and PP (~−25% and ~−31% for Pnet, 

respectively; ~−34% and ~−33% for Gs, respectively) (Fig. 1a, b). 

 

Comparison of Pnet under orchard climatic conditions and controlled conditions 

http://www.r-project.org/
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To check that seasonal changes observed in the Pnet values under orchard conditions were due to 

temperature variations and not to leaf senescence, we also measured the previous parameter in the same 

genotypes under controlled conditions at 6 °C and 25 °C. Comparing the Pnet values measured under controlled 

conditions in September 2011 at the same temperature as those obtained in September 2010 (Fig. 2a) and 

January 2011 (Fig. 2b) in the orchards, no significant difference was found, whatever the genotype, between the 

two mean values for each treatment (attached leaves vs. detached leaves). Likewise, no significant variation was 

observed for Gs between attached and detached leaves (data not shown).  

 

Seasonal changes in photosynthetic traits 

 

 Fv/Fm was lower in the cold period for all genotypes, especially when temperatures were close to 0 °C 

(Fig. 3a; Table 2). The leaves of CC and MK had significantly lower Fv/Fm compared with the warm period 

(~−25% and ~−22%, respectively) and were consequently more photoinhibited than leaves of WLM and PP 

(~−15% and ~−10%, respectively) . 

Pmax decreased significantly in the cold period in all the genotypes (Fig. 3b; Table 2), and this reduction was 

greater in CC and MK (~−53% and ~−73%, respectively) than in WLM and PP (~−39%). 

 

Seasonal changes in the oxidative status and antioxidant system 

 

H2O2 and MDA content increased in all the genotypes from the warm to the cold period (Figs. 4a, b; Table 2), 

indicating that all the genotypes were subjected to oxidative stress. CC and MK maintained relatively higher 

levels of leaf H2O2 than WLM and PP in the cold period. CC showed higher basal values of MDA in the warm 

period and in the cold period, indicating a higher lipid peroxidation level. In addition, in the cold period, its 

values reached a very high level compared with the other genotypes and especially MK (~3 times higher).  

We analyzed the activities of various enzymes acting as ROS scavengers, i.e. SOD, CAT and APX (Fig. 5; 

Table 2) or ensuring the supply/regeneration of primary antioxidants, i.e. MDHAR, DHAR and GR 

(Fig. 6;Table 2). Highly variable patterns of enzymatic activity were observed among genotypes. 

SOD activity increased slightly in all genotypes from the warm to the cold period (Fig. 5a), from ~1.12 times 

higher for PP to ~1.27 times higher for MK. Basal CAT levels were higher in CC and MK (54.4 and 

39.1 µmol.min
-1

.mg
-1

 protein, respectively) than in WLM and PP (13.2 and 19.2 µmol.min
-1

.mg
-1

 protein, 

respectively). All the genotypes studied significantly depressed CAT activity in response to cold climatic 

conditions (Fig. 5b). The loss of activity was more substantial in the leaves of CC, MK and WLM (~−45%, 

~−54% and ~−65%, respectively) than in PP (~−24%). APX activity was enhanced significantly in all the citrus 

genotypes from the warm to the cold period (~2.4-, ~1.75- and ~1.77-fold increase for CC, MK and PP, 

respectively) except for WLM, where no significant changes were found (Fig. 5c).  

Seasonal changes had a significant effect on MDHAR activity in MK and PP (~2.9 and ~1.6 times higher in 

the cold than in the warm period, respectively). No significant difference for CC and WLM was found (Fig. 6a). 

However, MDHAR activity in WLM was similar to PP and MK in the cold period and significantly higher than 

in CC. Considering DHAR activity, the increase between the warm and the cold period was identical whatever 
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the genotype concerned (from ~1.21- to ~1.59-fold increases for PP and CC, respectively) (Fig. 6b). The pattern 

of regulation of GR differed according to genotype. Whereas WLM showed a slight diminution (~−17%) in the 

cold period, CC and MK showed significantly contrasting increases (~2.1 and ~1.4 times higher, respectively) 

(Fig. 6c). GR activity in PP showed no significant difference between the two periods, but its level was similar to 

CC and MK in the cold period. Overall, WLM and PP had significantly higher basal levels of the three recycling 

enzymes of the ascorbate-glutathione cycle during the warm period than CC and MK. 

In the cold period conditions, leaves of the four studied varieties accumulated significantly higher levels of 

tAsa, Asa and DHA than in the warm period conditions (Table 2, Table 3). For tAsa and DHA, a significant 

separation of MK had been observed with larger increases (~1.78 and ~2.84 times higher, respectively) than the 

other genotypes (except CC for tAsa) in which the enhancements were equivalent. No greater increase in one 

genotype compared with another was found for Asa. Leaf redox Asa/DHA ratio decreased for all genotypes from 

the warm to the cold period. A significant sharp decrease was observed in MK (~−57%) due to a larger amount 

of DHA which unbalanced redox status. In other genotypes, the decline was much lower (~−29% in CC, ~−27% 

in WLM and ~−19% in PP). However, only CC exhibited a value less than 1. tGsh, Gsh and GssG contents were 

always higher in the cold period (Table 2, Table 4). MK showed significantly higher increases than other 

genotypes, particularly for tGsh and Gsh (~3.53 and ~4.43 times higher than warm period values). GssG, the 

oxidized form of glutathione, accumulated more intensively in CC and MK (~2.58- and ~2.70-fold increases, 

respectively) than in WLM and PP. However, a different pattern of regulation of the redox status was observed. 

Whereas MK showed a significant increase in Gsh/GssG ratio (~1.72 times higher compared with the warm 

period), the ratio remained unchanged in WLM and PP and was depleted in CC (~−40% compared with the 

warm period).   

 

Discussion 

 

The successive cellular events that occur in chilling conditions have often been investigated in different 

species under controlled conditions (Lim et al. 2009; Bonnecarrere et al. 2011). The main studies have been 

conducted on deciduous species in which cold treatments were applied abruptly in a growth chamber, with no 

transition period and under conditions of constant growth. Also, there is still a debate on how best to chill 

sensitive plant species to model cold temperatures. Here we investigated the effect of seasonal climatic changes 

on the photosynthesis and antioxidant system in evergreen varieties from ancestral species of citrus in a marginal 

zone of their areas of origin. We found ranging chilling response among the different citrus genotypes studied. 

 

Seasonal changes in photosynthetic components and photoinhibition 

 

Citrus species have generally a low temperature threshold of around 13 °C, with photosynthetic metabolism 

being severely disrupted at lower temperatures (Ribeiro and Machado 2007). During the experimental period, 

minimum air temperature fluctuated around 15 °C in September and around 4.5 °C in January. Thus 

measurements carried out in September 2010 could correspond to the regular photosynthesis of citrus given their 

areas of origin. Net photosynthetic rate (Pnet), stomatal conductance (Gs), chlorophyll fluorescence (Fv/Fm) and 

maximum photosynthetic rate (Pmax) measurements have been commonly used to investigate the effect of 
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seasonal climatic changes on the functioning of the photosynthetic system (Maxwell and Johnson 2000; Oquist 

and Huner 2003). Under warm conditions, photosynthesis of MK, WLM and PP were clearly stomata-controlled, 

and the interspecific dissimilarities appeared to be mainly due to differences in stomatal aperture. However, 

photosynthesis of CC might be either stomata-controlled or limited by the external CO2 concentration alone (380 

µmol.mol
-1

). The lower photosynthetic activity observed in all the genotypes in the cold period might be 

explained by both a closure of stomata and low temperature (Figs. 1, 3). According to Allen and Ort (2001), the 

decline in photosynthesis during chilling stress in warm-climate plants is caused by stomatal closure, which 

compromises gas exchange and CO2 fixation, and the loss of enzymatic activities participating in the Calvin 

cycle. Low temperature, which occurs at night in both air and soil, is therefore an environmental factor that 

affects plant physiology (Allen and Ort 2001). In „Valencia‟ sweet orange, Ribeiro et al. (2009) had previously 

observed, during seasonal climatic changes, that lower temperatures led to a decrease in stomatal conductance 

with a drop in photosynthetic activity. A decrease in CO2 assimilation linearly with stomatal conductance 

reduction had already been observed during other abiotic stress such as drought stress in „Swingle‟ citrumelo (de 

Campos et al. 2011), salt stress in Cleopatra mandarin (Anjum 2010) and chilling stress in „Valencia‟ sweet 

orange (Santos et al. 2011). Seasonal results of Pnet were confirmed by our experiments conducted on detached 

leaves at 6 °C. Pnet measurements obtained on detached leaves suggested that the temperature sensitivity of 

Calvin cycle enzymes was probably responsible for the drop in photosynthesis (Holaday et al. 1992). It was 

therefore possible to exclude an effect of leaf senescence in orchards from September to January. Although 

trifoliate orange rootstock is known for its relative resistance to cold compared with Volkamer lemon 

(Yelenosky 1985), these measurements on detached leaves also enabled us to exclude an effect of rootstock on 

the photosynthetic parameters estimated in the orchard, as no variation was observed between attached and 

detached leaves. The decline of photosynthesis at low temperature has been previously observed in “Valencia” 

sweet orange placed in a growth chamber where air temperatures were similar to a typical winter day under a 

Mediterranean climate (Santos et al. 2011). Thus the greater decrease in Pnet, Gs, Fv/Fm and Pmax in CC and 

MK than in WLM and PP could suggest a greater sensitivity to cold, as previously shown in Hevea, another 

chill-sensitive species (Mai et al. 2010). This implies that leaves become progressively less efficient at 

processing the incident photon flux, possibly related to an increased proportion of closed, reversibly inactivated 

or destroyed photosystem II reaction centers resulting from enhanced ROS accumulation (Grover et al. 1986). 

During waterlogging stress, Arbona et al. (2009) demonstrated that Cleopatra mandarin, a flooding-sensitive 

rootstock, exhibited severe reductions in Pnet, Gs and Fv/Fm, while Carrizo citrange, a flooding-tolerant 

rootstock, showed only small differences from control. Conversely, during salt stress, Brumos et al. (2009) 

established that Cleopatra mandarin, a salt-tolerant rootstock, exhibited a greater decrease in these three 

parameters than the salt-sensitive Carrizo citrange. They showed that Cleopatra mandarin induced greater stress 

responses in gene expression while repressing central metabolic processes such as photosynthesis. For instance, 

different chitinases, involved in defense responses, were strongly induced in Cleopatra mandarin and repressed 

in Carrizo citrange. Thus studying the response of physiological parameters is a first step in the evaluation of 

tolerance or sensitivity that must be extended by a biochemical analysis of antioxidant systems. 

 

Leaf antioxidant systems and photoprotection 
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Excitation energy not used for photochemistry can be transferred to O2, resulting in the production of ROS 

such as superoxide anion (O2
•−

) and hydrogen peroxide (H2O2). The increased level of H2O2 in winter, 

particularly in CC and MK, could be due to higher superoxide radical dismutation in the presence of a reductant 

or elevated synthesis and (or) decreased activity of CAT and (or) APX. It is noteworthy that leaf H2O2 content 

increased linearly with decreasing CO2 assimilation in all the genotypes. The changes in MDA content are an 

indicator of lipo-peroxidation caused by ROS. The larger increase in this parameter in CC is consistent with its 

probably greater sensitivity and vulnerability to photooxidation previously noted. In addition, the lower 

accumulation of MDA content in MK suggests an efficient scavenging of ROS. There may also be a putative 

relationship between lower H2O2/MDA levels and higher tolerance to stress. The occurrence of an H2O2 and 

MDA burst had previously been observed in citrumelo under waterlogging stress (Hossain et al. 2009), and in 

two rice genotypes under low temperature stress (Bonnecarrere et al. 2011). 

To cope with elevated levels of ROS, aerobic cells have evolved a range of enzymatic and non-enzymatic 

antioxidant reactions. In several studies, the antioxidant enzyme response as indicative of tolerance or sensitivity 

has been explored, and has shown a direct relationship between increased antioxidant activity and stress 

tolerance (Arbona et al. 2008; Hossain et al. 2009). Specific modifications to the enzymatic complement of cells 

overcome the metabolic challenge of cold temperatures in vivo. For instance, the cell can (i) produce more 

enzymes to maintain adequate activity, (ii) increase the activation state or (iii) generate new isozyme forms with 

enhanced catalytic function (Guy 1999). Among antioxidant enzymes, SOD forms the first line of defense 

against ROS and is located in many subcellular compartments (Gill and Tuteja 2010). Our results show an 

increase in SOD activity in all the genotypes with the same pattern as previously shown in citrumelo, Carrizo 

citrange and Cleopatra mandarin under waterlogging stress (Arbona et al. 2008) or in Rhododendron species 

under chilling stress (Wang et al. 2009). According to its cellular localization, H2O2 produced during SOD 

reaction can then be metabolized into oxygen and water by CAT in peroxisomes (Foyer et al. 1994) or by APX 

using Asa as electron donor in the chloroplasts, mitochondria and cytosol (Foyer and Noctor 2000). 

Unexpectedly, CAT decreased in all the genotypes studied as previously reported  in „Sour‟ pummelo and 

„Xuegan‟ orange grown under magnesium-deficiency by Yang et al. (2012). The decline in CAT activity could 

be a consequence of its sensitivity to light and its low temperature lability (Hertwig et al. 1992). Its 

photoinactivation can also be caused by oxidative damage initiated in the chloroplast via direct absorption of 

light by the heme moieties of the enzyme itself (Shang and Feierabend 1999). These data suggest that the 

reduced CAT activity observed at low temperatures during January can account for accumulation of ROS such 

as H2O2. APX isoforms were induced to compensate for deficiencies in CAT activity (Palatnik et al. 2002). In 

this study, the increase in total APX activity did not compensate for the impaired CAT activity, as H2O2 

accumulated as previously reported in Hevea during chilling stress (Mai et al. 2010) or in citrumelo during 

waterlogging stress (Hossain et al. 2009). However, it could be sufficient to prevent a lethal accumulation of 

H2O2 if we consider the lower MDA accumulation in MK, WLM and PP compared with CC. These results are 

consistent with previous reports on two flooding-tolerant rootstocks (Arbona et al. 2008). 

The antioxidants Asa and Gsh are crucial for plant protection against oxidative stress (Noctor and Foyer 

1998). It is believed that the redox status of these metabolites is essential for the proper scavenging of ROS in 

cells and it is therefore related to genotype tolerance. The ratio between reduced and oxidized forms of ascorbic 

acid is controlled by two enzymes, including monodehydroascorbate reductase (MDHAR) and dehydroascorbate 
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reductase (DHAR), which hold the pool of reduced ascorbic acid. High significant levels of MDHAR in MK, 

WLM and PP compared with CC might be sufficient to maintain the ratio above 1 in winter.  However, in CC, 

improving only DHAR activity did not prove sufficient to fight against chilling stress, as the ratio was below 1. 

Thus the levels of MDHAR suggest that this enzyme may help to explain the differences in sensitivity to 

seasonal climatic changes. These results are in close agreement with experiments conducted on tomato fruits, 

where a positive correlation was observed between MDHAR activity and ascorbic acid content under chilling 

stress (Stevens et al. 2008). Consequently, to recycle ascorbic acid efficiently during chilling stress, an increased 

activity of both MDHAR and DHAR seem to be required. Generally, precise metabolic tuning of GR allows the 

cell to maintain the favourable Gsh/GssG ratio for cellular redox regulation. Despite a higher increase in GR 

activity and higher Gsh content in CC than in other genotypes, this increment might be insufficient to recycle 

Gsh pool efficiently, as the decrease in the ratio was very marked in the cold period. For the other genotypes, the 

maintenance or significant increase of Gsh/GssG ratio could additionally suggest de novo glutathione synthesis 

(Queval et al. 2007). Previous observations agree with those of Arbona et al. (2008), who demonstrated that 

during waterlogging stress, the most tolerant genotype, Carrizo citrange, was able to keep active forms of Asa 

and Gsh, while the most sensitive genotype, Cleopatra mandarin, found these responses impaired. Queval et al. 

(2007) demonstrated that in the Arabidopsis photorespiratory mutant cat2, glutathione appeared as a key 

modulator of H2O2 concentration. These results are consistent with the lowest accumulation of MDA in WLM, 

PP and MK. The higher basal levels of the three recycling enzymes in WLM and PP may explain, in part, the 

lower accumulation of stress indicators and oxidized forms of antioxidant metabolites observed during the warm 

period (essentially H2O2, MDA, DHA and GssG). Also, the strong production of H2O2 in MK and its strong 

ability to reduce cellular damage could be explained by an effective regulation of Asa-Gsh cycle and especially 

by the glutathione pool. 

 

Relationships between genotype tolerance to cold photooxidative stress and geographical origins  

 

As no information regarding the chilling behaviour of these genotypes was available in the literature, the 

extent of the decline in photosynthetic parameters, the accumulation of oxidative compounds and the increase in 

antioxidant performance in cold period allowed us to classify three of the four genotypes studied as „sensitive‟ or 

„tolerant‟. Considering our results, PP and WLM showed the lowest loss of photosynthesis and photochemical 

performances, the lowest accumulation of oxidative stress indicators, and the effective activation of antioxidant 

defenses, mainly APX and glutathione (especially in PP). Hence these can be considered as the genotypes most 

tolerant to cold photooxidative stress. CC showed a large decrease in photosynthetic and photochemical 

parameters, a marked accumulation of H2O2 and MDA and an antioxidant system that responded to stress, but 

not effectively. This genotype can be classified as the one most sensitive to cold photooxidative stress. MK 

showed special behaviour with a large decrease in photosynthetic and photochemical parameters, a marked 

accumulation of H2O2 but not of MDA, and an efficient recycling of glutathione.  

These conclusions are only partially in line with the hypothesis of a link between the geographical origins of 

the analyzed citrus species and the tree tolerance to chilling. The subtropical diversification area of citron could 

explain their greater sensitivity. The most northern origin of kumquat, and to a lesser extent of mandarin, could 

explain their greater adaptation to cold. However, by this argument, the tropical origin of pummelo should not 
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have favoured its adaptation to chilling. This theoretical classification, based on origin areas, has been noted by 

some authors who have monitored leaf freezing tolerance (LFT) (Yelenosky 1985; Yelenosky and Guy 1989). 

This parameter is generally used to highlight the very important process in plants known as cold acclimation 

(CA). CA involves changes in gene expression and in many cellular processes that result in modified metabolic 

and biosynthetic pathways enabling tissues to survive cold or freezing conditions (Guy 1990). For example, 

pummelo, classified by Yelenosky (1985) as cold sensitive, can cold-acclimate to survive freezing at −4 °C or 

−5 °C (Moore et al. 2000). Thus differences in classification of pummelo between geographical origins and our 

results could also be explained by an efficient cold acclimation process in this genotype. Additionally, 

photosynthetic traits and antioxidant metabolism are sensitive to many different abiotic stresses, thereby also 

confounding the relationship between genotype tolerance to a specific stress and geographical origins. 

In conclusion, the comparison of physiological and biochemical parameters carried out on genotypes from 

varying areas of origin and belonging to the three basic true species of Citrus and to genus Fortunella 

highlighted contrasting behaviours towards cold photooxidative stress induced by seasonal climatic changes. 

Four conclusions may be drawn: (i) the response of photosynthesis to photooxidative stress is strongly 

influenced by genetic factors, (ii) lower Fv/Fm values can be related to a greater sensitivity of genotypes, (iii) 

APX activity may be insufficient in sensitive genotypes to scavenge all H2O2 produced in excess and (iv) 

MDHAR and the redox status of Gsh and Asa appear crucial in preventing cell oxidative damage in cold 

resistant citrus genotypes. Despite their known sensitivity to cold, our results show different cold tolerance 

capabilities that could be exploited in breeding programs. Taking the present work as a reference, it is now 

possible to investigate and screen the cultivated citrus genotypes for their performance under a Mediterranean 

climate or in other area with cold periods. 
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Table 1 Genotypes used for physiological and biochemical analysis and their corresponding rootstocks 

Genotype  Corresponding rootstock  

Abbreviation Common name Tanaka system ICVN
a
 No. Common name Tanaka system ICVN

a
 No. 

CC 

WLM 

MK 

PP 

Corsican citron 

Willowleaf mandarin 

Marumi kumquat  

Pink pummelo 

Citrus medica L. 

Citrus deliciosa Ten. 

Fortunella japonica (Thunb.) Swingle 

 Citrus maxima (Burm.) Merr. 

0100613 

0100133 

0100482 

0100322 

Volkamer lemon 

Volkamer lemon 

Volkamer lemon 

Trifoliate orange 

Citrus limonia Osbeck 

Citrus limonia Osbeck 

Citrus limonia Osbeck  

Poncirus trifoliata (L.) Raf. 

0100729 

0100729 

0100729 

0110480 

a
International citrus variety numbering.  
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Table 2  Probabilities produced by analysis of variance (ANOVA) on data sets of orchard conditions 

 

 

Pnet Pmax Gs Fv/Fm H2O2 MDA tAsa Asa DHA Asa/DHA tGsh Gsh GssG Gsh/GssG SOD CAT 

 

A (genotype) 

B (season) 

C (A  B) 

 

10
-15 

10
-15 

10
-11 

 

10
-16 

10
-10 

10
-11 

 

10
-8 

10
-15 

10
-5 

 

10
-16 

10
-16

 

10
-7 

 

10
-13 

10
-6 

0.057 

 

10
-14 

10
-16 

0.0004 

 

10
-16

 

10
-6 

0.001 

 

10
-11 

10
-11 

0.798 

 

10
-16 

10
-13 

10
-6 

 

10
-5 

10
-9 

0.051 

 

10
-14 

10
-16 

10
-6 

 

10
-9 

10
-16 

0.0008 

 

10
-12 

10
-9 

10
-5 

 

0.017 

10
-13 

10
-5 

 

10
-9 

10
-6 

0.291 

 

10
-13 

10
-16 

10
-15 

 APX MDHAR DHAR GR 

 

A (genotype) 

B (season) 

C (A  B) 

 

10
-15

 

0.0002 

10
-7 

 

10
-9 

10
-7

 

10
-6 

 

10
-7 

10
-12 

0.621 

 

10
-5 

10
-5 

10
-5 

Initial data were subjected to a two-way analysis of variance. The qualitative factors studied were genotype and season and their interaction. The analyses were performed on 

a group of three trees. The P values showing the level of significance of each qualitative factor are presented.  
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Table 3 Effects of seasonal changes on total ascorbate content (tAsa), reduced ascorbate content (Asa), oxidized 

ascorbate content (DHA) and redox status (Asa/DHA) in leaves of four citrus genotypes. 

 

Genotype 

 

tAsa (µmol.g
-1 

FW) 

 

Asa (µmol.g
-1 

FW) 

 

DHA (µmol.g
-1 

FW) 

 

Asa/DHA 

CC     

     WP  

      CP 

MK 

      WP  

      CP 

WLM 

      WP     

      CP 

PP 

      WP  

      CP 

23.64±1.24
d
 

37.22±0.55
ab

 

 

22.69±0.51
d
 

40.40±1.25
a
 

 

25.25±1.24
d
 

35.06±1.44
b
 

 

20.22±0.33
e   

30.57±0.77
c
 

 

12.67±1.00
f
 

16.68±0.46
de

 

 

15.74±1.00
e
 

20.67±0.73
b
 

 

19.13±0.77
bc

 

24.47±0.94
a
 

 

13.30±0.48
f
 

18.55±0.29
cd

 

 

10.97±0.33
b
 

20.53±0.84
a
 

 

6.94±0.75
c
 

19.72±0.98
a
 

 

6.11±0.68
c 

10.59±0.93
b
 

 

6.91±0.20
c
  

12.02±0.68
b
 

 

1.15±0.07
d
 

0.82±0.05
e
 

 

2.46±0.48
b
 

1.06±0.06
d
 

 

3.27±0.30
a
 

2.39±0.21
b
 

 

1.93±0.11
b
 

1.57±0.10
c
 

 

The data are presented as mean values ± standard errors of six independent replicated samples (n = 6). In the 

same column, statistically significant differences among genotypes at P < 0.05 for Fisher‟s LSD pairwise 

comparisons are indicated for each mean value in the warm period (WP) and the cold period (CP) by different 

letters. 
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Table 4  Effects of seasonal changes on total glutathione content (tGsh), reduced glutathione content (Gsh), 

oxidized glutathione content (GssG) and redox status (Gsh/GssG) in leaves of four citrus genotypes. 

 

Genotype 

 

tGsh (nmol.g
-1 

FW) 

 

Gsh (nmol.g
-1 

FW) 

 

GssG (nmol.g
-1 

FW) 

 

   Gsh/GssG 

CC     

      WP 

      CP      

MK 

      WP 

      CP  

WLM 

      WP 

      CP 

PP 

      WP 

      CP 

751.02±41.04
b
 

1279.13±70.87
a
 

 

198.68±10.02
e
 

701.61±67.87
b
 

 

160.73±13.73
e
 

270.97±13.59
d
 

 

333.7±26.88
d
 

525.82±22.21
c
 

 

634.62±31.35
b
 

978.36±77.97
a
 

 

94.67±3.92
f
 

420.31±49.83
c
 

 

99.58±10.64
f
 

163.13±15.61
e
 

 

230.88±22.69
d
 

366.53±21.09
c
 

 

116.39±11.65
c
 

300.77±21.66
a
 

 

104.01±7.36
c
 

281.29±37.11
a
 

 

61.15±6.53
d
 

107.84±5.15
c
 

 

102.81±9.23
c
 

159.29±7.21
b
 

 

5.64±0.41
a
 

3.39±0.47
b
 

 

0.92±0.05
e
 

1.59±0.20
d
 

 

1.71±0.22
d
 

1.54±0.20
d
 

 

2.30±0.25
c
 

2.32±0.16
c
 

 

The data are presented as mean values ± standard errors of six independent replicated samples (n = 6). In the 

same column, statistically significant differences among genotypes at P < 0.05 for Fisher‟s LSD pairwise 

comparisons are indicated for each mean value in the warm period (WP) and the cold period (CP) by different 

letters.  
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Figure captions 

Fig. 1 Changes in (a) net photosynthetic rate (Pnet) and (b) stomatal conductance (Gs) in four citrus genotypes  

in the warm period (black bars) and cold period (white bars). All data are presented as mean values (±S.E.) of 

nine independent measurements (n = 9). Bars followed by different letters indicate statistically significant 

differences at P < 0.05 for Fisher‟s LSD pairwise comparisons 

Fig. 2 Comparison of net photosynthetic rate (Pnet) of four citrus genotypes under orchard climatic conditions 

(white bars) and growth chamber conditions (black bars). Pnet was measured under (a) September orchard 

conditions and on detached leaves at 25 °C or (b) under January orchard conditions and on detached leaves at 

6 °C. The data are presented as mean values (±S.E.) of 6–9 independent measurements. Bars followed by 

different letters indicate statistically significant differences at P < 0.05 for Fisher‟s LSD pairwise comparisons 

Fig. 3 Changes of (a) maximal quantum yield of photosystem II (Fv/Fm) and (b) maximum photosynthetic rate 

(Pmax) in four citrus genotypes in the warm period (black bars) and cold period (white bars). All data are 

presented as mean values (±S.E.) of nine independent measurements (n = 9). Bars followed by different letters 

indicate statistically significant differences at P < 0.05 for Fisher‟s LSD pairwise comparisons 

Fig. 4 Changes in (a) hydrogen peroxide (H2O2) and (b) malondialdehyde (MDA) content in four citrus 

genotypes in the warm period (black bars) and cold period (white bars). All data are presented as mean values 

(±S.E.) of six independent measurements (n = 6). Bars followed by different letters indicate statistically 

significant differences at P < 0.05 for Fisher‟s LSD pairwise comparisons 

Fig. 5 Changes in the specific activities of (a) superoxide dismutase (SOD), (b) catalase (CAT) and (c) ascorbate 

peroxidase (APX) in four citrus genotypes in the warm period (black bars) and cold period (white bars). All data 

are presented as mean values (±S.E.) of six independent measurements (n = 6). Bars followed by different letters 

indicate statistically significant differences at P < 0.05 for Fisher‟s LSD pairwise comparisons 

Fig. 6 Changes in the specific activities of (a) monodehydroascorbate reductase (MDHAR), (b) 

dehydroascorbate reductase (DHAR) and (c) glutathione reductase (GR) in four citrus genotypes in the warm 

period (black bars) and cold period (white bars). All data are presented as mean values (±S.E.) of six 

independent measurements (n = 6). Bars followed by different letters indicate statistically significant differences 

at P < 0.05 for Fisher‟s LSD pairwise comparisons 
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Figure 3 
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Figure 4 
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Figure 6 
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