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Abstract

This paper reviews the recent developments in the field of the variance-ratio

tests of random walk and martingale hypothesis. In particular, we present the

conventional individual and multiple VR tests as well as their improved modifi-

cations based on power- transformed statistics, rank and sign tests, subsampling

and bootstrap methods, among others. We also re-examine the weak-form effi-

ciency for five emerging equity markets in Latin America.
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1 Introduction

There exists a long tradition in the literature concerning the test of the random walk and

martingale hypothesis, both in macroeconomics and finance. For instance, the random

walk hypothesis [RWH] provides a mean to test the weak-form efficiency – and hence,

non-predictability – of financial markets (Fama, 1970; 1991), and to measure the long-

run effects of shocks on the path of real output in macroeconomics (Campbell and

Mankiw, 1987; Cochrane, 1988; Cogley, 1990).

Given a time series {yt}T
t=1, the RWH correspond to φ = 1 in the first-order

autoregressive model

yt = µ+φyt−1 + εt

where µ is an unknown drift parameter and the error terms εt are, in general, neither

independent nor identically distributed (i.i.d.)1.

Many statistical tests2 were designed to test the RWH but a class of test, based on

the variance-ratio [VR] methodology, has gained tremendous popularity in the recent

years (see, e.g., Campbell and Mankiw, 1987; Cochrane, 1988; Lo and MacKinlay,

1988; Poterba and Summers, 1988). The VR methodology consists of testing the

RWH against stationary alternatives, by exploiting the fact that the variance of random

walk increments is linear in all sampling intervals, i.e., the sample variance of k-period

return (or k-period differences), yt − yt−k, of the time series yt , is k times the sample

variance of one-period return (or the first difference), yt −yt−1. The VR at lag k is then

defined as the ratio between (1/k)th of the k-period return (or the kth difference) to the

variance of the one-period return (or the first difference). Hence, for a random walk

process, the variance computed at each individual lag interval k (k = 2,3, . . . ) should

be equal to unity.

The use of the VR statistic can be advantageous when testing against several interesting

alternatives to the random walk model, most notably those hypotheses associated with

mean reversion. In fact, a number of authors (e.g., Lo and MacKinlay, 1989; Faust,

1992; Richardson and Smith, 1991) found that the VR statistic had optimal power

against such alternative.

However, while the intuition behind the VR test is rather simple, conducting a

statistical inference using the VR test is less straightforward. What makes thing

complicated is that the VR test typically uses overlapping data in computing the

1When the error terms are not an i.i.d. sequence, the random walk process is denominated martingale

process, whereas the sequence {εt}T
t=1 is the so-called martingale difference sequence (m.d.s.). Campbell

et al. (1997) refers to the “random walk 3”.
2Daniel (2001) explores a wider range of possible test statistics.
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variance of long-horizon returns. The use of overlapping was suggested by Lo and

MacKinlay (1988) because it can potentially improve power of the VR test, but the

use of overlapping data also adds to the difficulties of analyzing the exact distribution

of the VR test statistic. However, virtually nothing is often known about the exact

distribution of the VR test statistic that uses overlapping data, and not even its moments

are known3. In practice, asymptotic distribution instead of exact distribution is often

used for conducting statistical inference on the VR test, for fixed k and the sample size

T increasing to infinity.

Lo and MacKinlay (1988) proposed two statistics for testing an individual VR

estimate which are robust under homoscedasticity and heteroscedasticity. In practice,

it is customary to examine the VR statistics for several k values. The null is rejected

if it is rejected for some k value. However, as stressed by Chow and Denning (1993),

this sequential procedure leads to an oversized testing strategy. In this context, multiple

VR tests have been suggested such as multiple comparison tests (Chow and Denning,

1993) and Wald-type joint tests (Richardson and Smith, 1989; Cecchetti and Lam,

1994). Even though the individual Lo-MacKinlay and multiple VR tests are quite

powerful testing for homoscedastic or heteroscedastic nulls, it is critical to note that

these tests are asymptotic tests in that their sampling distributions are approximated by

their limiting distributions. Indeed, the sampling distribution of the VR statistic can

be far from normal in finite sample, showing severe bias and right skewness. These

finite sample deficiencies may give rise to serious size distortions or low power, which

can lead to misleading inferences. This is especially true when the sample size is

not large enough to justify asymptotic approximations (Cecchetti and Lam, 1994). To

circumvent this problem, some alternatives4 have been proposed, such as Chen and

Deo (2006) with a power-transformed VR statistic, Wright (2000) with exact VR tests

based on rank and sign, Whang and Kim (2003) with subsampling method, and Kim

(2006) with bootstrap method, among others. Therefore, because of the important

literature on the VR tests we propose an overview on this subject.

The rest of this paper is organized as follows. The individual and multiple VR tests

are presented in Section 2 and 3, respectively. Section 4 discusses bootstrapping VR

tests. An empirical illustration is proposed in Section 5. Section 6 concludes.

3Recently, Kan (2006) provided analytical formulas for the moments of the sample variance ratio

under both the null and the alternatives. See also Shively (2002) for the case of mean.
4Hoque et al. (2007) proposed a comparison of several variance ratio tests.
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2 Individual variance ratio tests

The VR test is often used (see Cochrane, 1988; Lo and MacKinlay, 1988; Poterba and

Summers, 1988; among others) to test the hypothesis that a given time series or its

first difference (or return), xt = yt − yt−1, is a collection of i.i.d. observations or that it

follows a martingale difference sequence. Define the VR of k-period return as

V (k) =
Var(xt + xt−1 + · · ·+ xt−k+1)/k

Var(xt)

=
Var(yt − yt−k)/k

Var(yt − yt−1)
= 1+2

k−1

∑
i=1

(

(k− i)

k

)

ρi

where ρi is the i-th lag autocorrelation coefficient of {xt}. V (k) is a particular lin-

ear combination of the first (k− 1) autocorrelation coefficients, with linearly declin-

ing weights. The central idea of the variance ratio test is based on the observation

that when returns are uncorrelated over time, we should have Var(xt + · · ·+ xt−k+1) =

kVar(xt), i.e. V (k) = 1. One can therefore think of VR test as a specification test of

H0 : ρ1 = · · · = ρk = 0, i.e., returns are serially uncorrelated.

A test can be constructed by considering statistic based on an estimator of V (k)

V R(k) =
σ̂2(k)

σ̂2(1)

where σ̂2(1) is the unbiased estimator of the one-period return variance, using the

one-period returns xt , and is defined as

σ̂2(1) = (T −1)−1
T

∑
t=1

(xt − µ̂)2

= (T −1)−1
T

∑
t=1

(yt − yt−1 − µ̂)2 (1)

with µ̂ = T−1 ∑T
t=1 xt is the estimated mean. For the estimator of k-period return

variance σ̂2(k), using k-period returns (xt + · · ·+ xt−k+1), there are many ways to

do it. Due to limited sample size and the desire to improve the power of the test,

this estimator is often performed using overlapping long-horizon returns (k-period), as
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advocated by Lo and MacKinlay (1988)5, and it is defined as

σ̂2(k) = m−1
T

∑
t=k

(xt + xt−1 + · · ·+ xt−k+1 − kµ̂)2

= m−1
T

∑
t=k

(yt − yt−k − kµ̂)2

where m = k(T − k + 1)(1− kT−1). The value of m is chosen such as σ̂2(k) is an

unbiased estimator of the k-period return variance when σ2
t is constant over time.

Following Wright (2000), the VR statistic can be written as

V R(x;k) =

{

(T k)−1
T

∑
t=k

(xt + · · ·+ xt−k+1 − kµ̂)2

}

÷
{

T−1
T

∑
t=1

(xt − µ̂)2

}

(2)

Moreover, Cochrane (1988) showed that the estimator of V (k) can be interpreted

in terms of the frequency domain. This estimator which uses the usual consistent

estimators of variance is asymptotically equivalent to 2π the normalized spectral

density estimator at the zero frequency which uses the Bartlett kernel. Formally, we

have

V R f = 2π
f∆y(0)

σ̂2(1)
(3)

where f∆y(0) represents the estimator of the spectrum evaluated at frequency 0 with

2π f∆y(0) = 2π
m

∑
j=1

Wk(λ j)I∆y(λ j)

I∆y = (2πT )−1
∣

∣dy(λ j)
∣

∣

2

dy =
T−1

∑
t=1

[yt − yt−1 − µ̂]e−iλ jt

Wk(λ j) = ∑
| j|≤k

(1−| j|/k)exp(−i jλ) = k−1

[

sin(kλ j/2)

sin(λ j/2)

]2

(4)

where λ j = 2π jT−1, j = 1, . . . ,T − 1, I∆y denotes the periodogram, dy is the discrete

Fourier transform, µ̂ is an estimate of the mean of ∆yt , and W (λ j) is the Bartlett win-

dow.

If the data-generating process of time series is a random walk, the expected value

of V R(x;k) should be equal to unity for all horizons k. If returns are positively

5Lo and MacKinlay (1988) and Campbell et al. (1997) argued that using overlapping data in

estimating the variances allowed to obtain a more efficient estimator and hence a more powerful test.
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(negatively) autocorrelated, the VR should be higher (lower) than unity. Time series (in

level) is said to be mean-reverting if V R(x;k) is significantly lower than unity at long

horizons k. On the contrary, time series is mean averting, i.e. explosive, if V R(x;k) is

significantly higher than unity at long horizons (Poterba and Summers, 1988).

We describe the most popular individual VR tests developed by Lo and MacKinlay

(1988) as well as some of its improvements.

2.1 Lo and MacKinlay (1988) tests

Lo and MacKinlay (1988) proposed the asymptotic distribution of V R(x;k) by

assuming that k is fixed when T → ∞. They showed that if xt is i.i.d., i.e. under

the assumption of homoscedasticity, then under the null hypothesis that V (k) = 1, the

test statistic M1(k) is given by

M1(k) =
V R(x;k)−1

φ(k)1/2
(5)

which follows the standard normal distribution asymptotically. The asymptotic

variance, φ(k), is given by

φ(k) =
2(2k−1)(k−1)

3kT
(6)

To accommodate xt’s exhibiting conditional heteroscedasticity, Lo and MacKinlay

(1988) proposed the heteroscedasticity6 robust test statistic M2(k)

M2(k) =
V R(x;k)−1

φ∗(k)1/2
(7)

which follows the standard normal distribution asymptotically under null hypothesis

that V (k) = 1, where

φ∗(k) =
k−1

∑
j=1

[

2(k− j)

k

]2

δ( j)

δ( j) =

{

T

∑
t= j+1

(xt − µ̂)2(xt− j − µ̂)2

}

÷







[

T

∑
t=1

(xt − µ̂)2

]2






The M2(k) test is applicable to xt’s generated from a martingale difference time series

(see Appendix for a discussion on the assumptions). The usual decision rule for the

standard normal distribution is applied to both tests.

6It has been argued that misleading conclusions may be obtained with VR statistics when time-varying

volatility is present in the data. See, for example, Kim, Nelson and Startz (1991, 1998) and Kim and

Nelson (1998) who also proposed a solution based on a Bayesian approach and the use of a Gibbs sampler.
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The finite-sample properties of the VR test were studied by Lo and MacKinlay

(1989), who found that the two-sided test has size generally quite close to the nominal

level, as long as the test is robustified against any conditional heteroscedasticity.

The VR statistic has been found by several authors (e.g., Richardson and Smith,

1991; Faust, 1992) to be particularly powerful when testing against mean reverting

alternatives to the random walk model, particularly when k is large.

2.2 Chen and Deo (2006) test

It is critical to note that the conventional VR tests, such as the Lo-MacKinlay test, are

asymptotic tests in that their sampling distributions are approximated by their limiting

distributions. Indeed, the practical use of the statistic has been impeded by the fact that

the asymptotic theory provides a poor approximation to the small-sample distribution

of the VR statistic. In general, the ability of the asymptotic distribution to approximate

the finite sample distribution depends crucially on the value of the horizon k. More

specifically, rather than being normally distributed (when standardized by
√

T ) as the

theory states, the statistics are severely biased and right skewed for large k (relative to

T ) (Lo and MacKinlay, 1989), which makes application of the statistic problematic. In

other words, the finite-sample null distribution of the test statistic is quite asymmetric

and non-normal.

A solution is provided in a series of theoretical papers such as those by Richardson

and Stock (1989), Deo and Richardson (2003), Perron and Vodounou (2005) and

Chen and Deo (2006)7. For example, to circumvent this problem, Richardson and

Stock (1989) provided alternative asymptotic distribution of the VR statistic under the

random walk null, assuming that both k and T increase to infinity but in such a way

that k/T converges to a positive constant δ that is strictly less than 18. Through Monte

Carlo simulations, they demonstrated that this new distribution provides a far more

robust approximation to the small-sample distribution of the VR statistic. Most current

applications of the VR statistic cite the k/T → δ > 0 result as justification for using

Monte Carlo distributions (i.e., set at k = δT ) as representative of the VR statistic’s

sampling distribution. Perron and Vodounou (2005) also studied the VR statistic’s

7Kan (2006) presented the exact distributions of the VR test with overlapping data. Moreover, Tse,

Ng and Zhang (2004) suggested a modified VR statistic and proposed to approximate the small-sample

distribution of this statistic using a beta distribution that matches the exact mean and the asymptotic

variance.
8Richardson and Stock (1989) showed that the VR statistic, without any normalization, converges to

a functional of Brownian motion.
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properties under the Richardson and Stock (1989) framework, and characterized the

maximal possible power by taking a continuous-time limit given a fixed data span T .

However, Deo and Richardson (2003) argued that the VR statistic is inconsistent

against an important class of mean reverting alternatives under this framework when

the horizon k is increasing proportional to the sample size, i.e. k/T → δ > 0. Chen

and Deo (2006) also showed that the k/T → δ > 0 asymptotic distribution cannot ap-

proximate the finite-sample distribution of the VR statistic when k/T is small and is

sensitive to conditional heteroscedasticity.

Chen and Deo (2006) suggested a simple power transformation of the VR statistic

that, when k is not too large9, provides a better approximation to the normal

distribution in finite samples and is able to solve the well-known right skewness

problem. They showed that the transformed VR statistic leads to significant gains

in power against mean reverting alternatives. Furthermore, the distribution of the

transformed VR statistic is shown, both theoretically and through simulations, to be

robust to conditional heteroscedasticity10.

First, they defined the VR statistic based on the periodogram as

V Rp(k) =
1

(1− k/T )

4π

T σ̂2

(T−1)/2

∑
j=1

Wk(λ j)I∆y(λ j) (8)

where I∆y(λ j) and Wk(λ j) are defined as in (4). This expression of the VR statistic

is precisely the normalized discrete periodogram average estimate of the spectral

density of a stationary process at the origin (Brockwell and Davis, 1996). To

obtain their transformed VR statistic, noted V R
β
p(k), they applied the following power

transformation11 to V Rp(k)

β = 1− 2

3

(

∑
[(T−1)/2]
j=1 Wk(λ j)

)(

∑
[(T−1)/2]
j=1 W 3

k (λ j)
)

(

∑
[(T−1)/2]
j=1 W 2

k (λ j)
)2

(9)

2.3 Wright (2000) tests

As already noted, the Lo-MacKinlay tests, which are asymptotic tests whose sampling

distribution is approximated based on its limiting distribution, are biased and right-

skewed in finite samples. In this respect, Wright (2000) proposed a nonparametric

9Deo and Richardson (2003) advocated that large values of k should not be used when testing for the

mean reversion using the VR statistics.
10To adjust for conditional heteroscedasticity, Chen and Deo (2006) proposed a modified version of

the standard deviation of the transformed VR statistic (even for standard VR statistic).
11See Chen and Deo (2004) for a discussion on power transformations.
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alternative to conventional asymptotic VR tests using signs and ranks. Wright’s (2000)

tests have two advantages over Lo-MacKinlay test when sample size is relatively small:

(i) as the rank (R1 and R2) and sign (S1 and S2) tests have exact sampling distribution,

there is no need to resort to asymptotic distribution approximation, and (ii) the tests

may be more powerful than the conventional VR tests against a wide range of models

displaying serial correlation, including fractionally integrated alternatives. The tests

based on ranks are exact under the i.i.d. assumption, whereas the tests based on signs

are exact even under conditional heteroscedasticity. Moreover, Wright (2000) showed

that ranks-based tests display low size distortions, under conditional heteroscedasticity.

Given T observations of first differences of a variable, {x1, . . . ,xT}, and let r(x) be

the rank of xt among (x1, . . . ,xT ). Under the null hypothesis that xt is generated from

an i.i.d. sequence, r(x) is a random permutation of the numbers of 1, . . . ,T with equal

probability. Wright (2000) suggested the R1 and R2 statistics, defined as

R1(k) =

(

(T k)−1 ∑T
t=k(r1,t + · · ·+ r1,t−k+1)

2

T−1 ∑T
t=k r2

1,t

−1

)

×φ(k)−1/2 (10)

R2(k) =

(

(T k)−1 ∑T
t=k(r2,t + · · ·+ r2,t−k+1)

2

T−1 ∑T
t=k r2

2,t

−1

)

×φ(k)−1/2 (11)

where the standardized ranks r1,t and r2,t are given by

r1,t =
r(xt)− T+1

2
√

(T −1)(T +1)/12

r2,t = Φ−1 r(x)

T +1

where φ(k) is defined in (6), and Φ−1 is the inverse of the standard normal cumulative

distribution function. The R1 and R2 statistics follow the same exact sampling

distribution. The critical values of these tests can be obtained by simulating their exact

distributions.

The tests based on the signs of first differences are given by

S1(k) =

(

(T k)−1 ∑T
t=k(st + · · ·+ st−k+1)

2

T−1 ∑T
t=k s2

t

−1

)

×φ(k)−1/2 (12)

S2(k) =

(

(T k)−1 ∑T
t=k(st(µ̄)+ · · ·+ st−k+1(µ̄))2

T−1 ∑T
t=k st(µ̄)2

−1

)

×φ(k)−1/2 (13)

where φ(k) is defined in (6), st = 2u(xt ,0), st(µ̄) = 2u(xt ,µ), and

u(xt ,q) =

{

0.5 if xt > q

−0.5 otherwise

9



Similarly to R1 and R2 tests, the critical values of the S1 and S2 tests can be obtained

by simulating its exact sampling distribution.

Note that S1 assumes a zero drift value. In a recent work, Luger (2003) used ranks

and signs to extend the Campbell and Dufour (1997) nonparametric approach to

test for random walk with unknown drift. Belaire-Franch and Contreras (2004) and

Belaire-Franch and Opong (2005a) applied the procedure described in Luger (2003) to

compute S2.

2.4 Correction of size distorsions

As pointed out by Wright (2000), using several k values in the Wright’s tests would

lead to an over rejection of the null hypothesis, as in Lo and MacKinlay’s tests

context (see Belaire-Franch and Opong, 2005). To overcome these test-size distortions,

Belaire-Franch and Contreras (2004) and Belaire-Franch and Opong (2005) proposed

different approaches to control the size of Wright’s tests. They considered the

application of individual VR tests as the application of different individual tests. Then,

they applied different p-value adjustments for multiplicity, in line with Psaradakis

(2000).

• They computed the Sidack-adjusted p-value for each test j as

p̃
(S)
i j = 1− (1− pi j)

m i = 1, . . . ,m

where pi j is the p-value corresponding to the VR test j computed for an

individual k value, and m is the number of k values.

• They also employed the Hochberg (1988) adjusted p-values which are obtained

as

p̃
(H)
i j = min{[k−R(pi j)+1]pi j,1}

Given a significance level α, the decision rule states that, using the VR test j, the

null is rejected if p̃
(S)
j = min1≤i≤m p̃

(S)
i j ≤ α or p̃

(H)
j = min1≤i≤m p̃

(H)
i j ≤ α.

However, these methods assume that the test statistics computed at different

intervals are uncorrelated. In order to take into account possible correlations

among the statistics, Belaire-Franch and Contreras (2004) and Belaire-Franch and

Opong (2005) suggested to compute bootstrap-adjusted p-values as described in

Psaradakis (2000). The goal of the procedure is to obtain an approximation to the

null sampling distribution of min1≤i≤m pi j by resampling with replacement from the

original returns12.

12Note that the p-value adjustments can be applied to other VR tests for a joint hypothesis.
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2.5 Choi (1999) test

When implementing the VR tests, the choice of holding period k is important.

However, this choice is usually rather arbitrary and ad hoc. To overcome this issue,

Choi (1999) proposed a data-dependent procedure to determinate the optimal value

of k. Choi (1999) suggested a VR test based in frequency domain since Cochrane

(1988) showed that the estimator of V (k) which uses the usual consistent estimators of

variance is asymptotically equivalent to 2π the normalized spectral density estimator

at the zero frequency which uses the Bartlett kernel. However, Choi (1999) employed

rather the Quadratic Spectral [QS] kernel because this kernel is optimal in estimating

the spectral density at the zero frequency (Andrews, 1991). The VR estimator is

defined as

V R(k) = 1+2
T−1

∑
i=1

h(i/k)ρ̂(i), (14)

where ρ̂(i) is the autocorrelation function, and h(x) is the QS window defined as

h(x) =
25

12π2x2

[

sin(6πx/5)

6πx/5
− cos(6πx/5)

]

The standardized statistic is

V R f =
V R(k)−1

(2)1/2 (T/k)−1/2
(15)

Under the null hypothesis the test statistic V R f follows the standard normal distribution

asymptotically13. Note that it is assumed that T → ∞, k → ∞ and T/k → ∞.

Various methods for optimally selecting the truncation point for the spectral

density at the zero frequency are available (Andrews, 1991; Andrews and Monahan,

1992; Newey and West, 1994; among others). Choi (1999) employed the Andrews’s

(1991) methods to select the truncation point optimally and compute the VR test.

Note that the small sample properties of this automatic VR test under heteroscedastic-

ity are unknown and have not investigated properly.

3 Multiple variance ratio tests

The Lo-MacKinlay test is an individual test where the null hypothesis is tested for

an individual value of k. The question as to whether or not a time series is mean-

reverting requires that the null hypothesis hold true for all values of k. In view of

13The estimator V R f based on Bartlett window as in Cochrane (1988) also has a limiting normal

distribution. However, Cogley (1990) showed that this estimator seems inappropriate because it is right

skewed. Therefore, Cogley (1990) proposed to approximate this estimator by a multiple of chi-square

variate, giving improvement over the normal.
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this, it is necessary to conduct a joint test where a multiple comparison of VRs over

a set of different time horizons is made. However, conducting separate individual

tests for a number of k values may be misleading as it leads to over rejection of the

null hypothesis of a joint test, above the nominal size. As stressed by Chow and

Denning (1993), this sequential procedure leads to an oversized testing strategy. Thus,

the weakness of Lo-MacKinlay’s test is that it ignores the joint nature of testing for the

RWH.

We present some multiple VR tests based on multiple comparison tests (Chow and

Denning, 1993; Whang and Kim, 2003; Belaire-Franch and Contreras, 2004) and

Wald-type tests (Richardson and Smith, 1991; Cecchetti and Lam, 1993; Chen and

Deo, 2006) that combine the information contained in statistics at several horizons.

These multiple VR tests consider the following joint null hypothesis H0: V (ki) = 1 for

all i = 1, . . . ,m, against the alternative H1: V (ki) 6= 1 for some ki.

3.1 Chow and Denning (1993) tests

Chow and Denning (1993) proposed to using Hochberg’s (1974) procedure for the

multiple comparison of the set of VR estimates with unity, which allow us to examine

a vector of individual VR tests while controlling for overall test size. For a set of m test

statistics, the RWH is rejected if any one of the estimated VRs is significantly different

from one.

To test the joint null hypothesis, Chow-Denning’s (1993) test statistic is defined as

MV1 =
√

T max
1≤i≤m

|M1(ki)| (16)

where M1(ki) is defined in (5). This is based on the idea that the decision regarding the

null hypothesis can be obtained from the maximum absolute value of the individual

VR statistics. In order to control the size of the multiple VR test and because

the limit distribution of these statistics is complex, they applied the Sidak (1967)

probability inequality and give an upper bound to the critical values taken in the

studentized maximum modulus [SMM] distribution. Indeed, the statistic follows the

SMM distribution with m and T degrees of freedom, i.e. SMM(α,m,T ), where m is

the number of k values14. The null hypothesis is rejected at α level of significance if

the MV1 statistic is greater than the [1− (α∗/2)]th percentile of the standard normal

distribution where α∗ = 1− (1−α)1/m.

14The critical values of the test are tabulated in Hahn and Hendrickson (1971) and Stoline and Ury

(1979). It should be noted that when T is large, the critical values of the test can be calculated from the

limiting distribution of the statistic.
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Similarly, the heteroscedasticity-robust version of the Chow-Denning test MV2 can be

written as

MV2 =
√

T max
1≤i≤m

|M2(ki)| (17)

where M2(ki) is defined in (7), and it has the same critical values as MV1. However,

with finite-sample sizes it may be preferable to use critical values obtained by

simulations as done by Chow and Denning themselves. Nevertheless, as pointed out

by Fong et al. (1997), Hochberg’s approach is valid only if the vector of test statistics

is multivariate normal. This condition is satisfied by VRs if there is little overlap in the

data, i.e. if k/T is small.

3.2 Whang and Kim (2003) test

Whang and Kim (2003) developed a multiple VR test which uses a subsampling

technique of Politis, Romano and Wolf (1997), which is a data-intensive method

of approximating the sampling distribution. It can show better properties than the

conventional VR tests when the sample size is relatively small. The Monte Carlo

experiment results reported in Whang and Kim (2003) confirmed that their new VR

test show excellent power in small samples, coupled with little or no serious size

distortions.

To test the joint null hypothesis, Whang and Kim (2003) considered the statistic

MVT =
√

T gN(x1, . . . ,xT ) (18)

where

gt(x1, . . . ,xT ) = max
1≤i≤m

|Mr(ki)|

with Mr(ki)=V R(x;ki)−1, and V R(x;k) is as defined in (2). The sampling distribution

function for the MVT statistic is written as

GT (x) = P
(√

T gt(x1, . . . ,xT ) ≤ x
)

Whang and Kim (2003) showed that the asymptotic null distribution of the statistic is

that of a maximum of a multivariate normal vector with unknown covariance matrix,

which is complicated to estimate. Therefore, they proposed to approximate the null

distribution by means of the subsampling approach.

13



Consider a subsample (xt , . . . ,xt−b+1) of size b for t = 1, . . . ,T − b + 1. The statistic

MVT calculated from the subsample is denoted as gT,b,t = gb(xt , . . . ,xt−b+1). Then,

GT (x) is approximated by the distribution function obtained by the collection of gT,b,t’s

calculated from all individual subsamples. It can be written as

ĜT,b(x) = (T −b+2)−1
T−b+1

∑
t=0

l
(√

bgT,b,t ≤ x
)

where l(.) is the indicator function that takes 1 if the condition inside the bracket is

satisfied and 0 otherwise.

The 100(1−α)% critical value for the test can be calculated as the (1−α)th per-

centile of ĜT,b, while the p-value of the test is estimated as 1− ĜT,b(MVT ). The null

hypothesis that V (ki) = 1 (i = 1, . . . ,m) is rejected at the level of significance α if the

observed MVT is greater than this critical value or if the p-value is less than α. To

implement the subsampling technique, a choice of block length b should be made.

Whang and Kim (2003) recommended that a number of block lengths from an equally

spaced grid in the interval of [2.5T 0.3,3.5T 0.6] be taken. However, they found that the

size and power properties of their test are not sensitive to the choice of the block length.

3.3 Belaire-Franch and Contreras (2004) tests

Recently, Belaire-Franch and Contreras (2004) proposed to substitute the standard VR

tests by Wright’s rank and sign-based tests, in the definition of Chow and Denning

(1993) procedure to create a multiple rank and sign VR tests. The statistics are defined

as

CD(R1) = max
1≤i≤m

|R1(ki)|

CD(R2) = max
1≤i≤m

|R2(ki)|

CD(S1) = max
1≤i≤m

|S1(ki)|

CD(S2) = max
1≤i≤m

|S2(ki)|

The ranks-based procedures are exact under the i.i.d. assumption whereas the signs-

based procedures are exact under both the i.i.d. and martingale difference sequence

assumption. Belaire-Franch and Contreras (2004) showed that the ranks-based tests

CD(R1) and CD(R2) are more powerful than their signs-based counterparts, CD(S1) and

CD(S2)
15.

15Belaire-Franch and Contreras (2004) also suggested to substitute the Wright’s rank and sign-based

14



Moreover, Colletaz (2005) and Kim and Shansuddin (2007) also proposed an extension

to the Wright’s VR methodology following Chow-Denning, but only for the rank (R1)

and sign (S1) tests, respectively.

3.4 Wald-type tests

3.4.1 Richardson and Smith (1991) test

Richardson and Smith (1991) suggested a joint test based on the following Wald

statistic

RS(k) = T (VR−1k)
′ Φ−1 (VR−1k)

where VR is the (k×1) vector of sample k variance ratios, 1k is the (k×1) unit vector,

and Φ is the covariance matrix of VR. The joint RS(k) statistic follows a χ2 distribution

with k degrees of freedom.

The usefulness of this test relies on the fact that, whenever the VR tests are computed

over long lags with overlapping observations, the distribution of the VR test is non-

normal; then, neither the Lo-MacKinlay test nor Chow-Denning procedure is valid for

drawing inferences.

Moreover, Fong et al. (1997) argued that Richardson and Smith’s (1991) joint

VR test can be more powerful than Chow-Denning multiple comparison test for

empirically relevant alternatives, and it displays low size distortion in the presence of

heteroscedastic increments. However, their simulation results are based on an ARCH

process with slope coefficient 0.1, which is “practically” an i.i.d. process. Therefore,

the conclusion of Fong et al. (1997) could not hold under heteroscedasticity.

3.4.2 Cecchetti and Lam (1994) test

Cecchetti and Lam (1994) proposed a multivariate version of the VR statistic to test the

RWH, in order to control the investment horizon. They suggested the following Wald

statistic which incorporates the correlations between VR statistics at various horizons

and weights them according to their variances

S(k) = [VR(k)−E [VR(k)]]′ Σ−1(k) [VR(k)−E [VR(k)]]

where E is the expectation operator, VR a column vector sequence of VR statistics

VR(k) = [V R(2), . . . ,V R(q)], and Σ(k) is a measure of the covariance matrix of VR.

tests in the definition of Richardson and Smith (1991) procedure but found that these tests were inferior

to rank and sign-based CD(.) tests.
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The joint VR S(k) statistic follows a χ2 distribution with k degrees of freedom.

Cecchetti and Lam (1994) studied the empirical distribution of S(k) using Monte Carlo

techniques. For each simulation, they computed a value for the statistic S(k), using the

mean vector and covariance matrix ˜V R(k) and Σ̃(k) taken as the true population values,

and tabulate the distribution16.

However, as suggested by Cecchetti and Lam (1994), the empirical distributions

of the VR have large positive skewness, suggesting that inference based on the χ2

distribution will be misleading.

3.4.3 Chen and Deo (2006) test

Chen and Deo (2006) also proposed a joint VR test based on their individual power

transformed VR statistic. They define the following Wald statistic

QP(k) =
(

Vp,β(k)−µβ

)′
Σ−1

β

(

Vp,β(k)−µβ

)

where Vp,β a column vector sequence of VR statistics Vp,β(k) = [V R
β
p(2), . . . ,V R

β
p(k)]

with V R
β
p(k) the power transformed VR as in (9), µβ and Σ(k)β are a measure of the

expectation and covariance matrix of Vp,β, respectively. The joint VR QP(k) statistic

follows a χ2 distribution with k degrees of freedom. Moreover, Chen and Deo (2006)

showed from Monte Carlo simulations that their joint VR test displayed much higher

power.

Note that the Chen-Deo (2006) test is a joint test with one-sided alternative (H1:

V (ki) < 1, for some ki) while the Richardson-Smith (1991) and Cecchetti-Lam (1994)

tests are joint tests with two-sided alternative (H1: V (ki) 6= 1). Therefore, at α level of

significance, the null hypothesis that V (ki) = 1 is rejected if the test statistic is greater

than the upper 2α critical value of a χ2 distribution for the Chen-Deo (2006) test and

than the upper α critical value of a χ2 distribution for the Richardson-Smith (1991)

and Cecchetti-Lam (1994) tests.

4 Bootstrapping variance ratio tests

As already noted, Wright (2000), based on ranks and signs, and Whang and Kim

(2003), using the subsampling method, proposed the VR tests which do not rely

16Note that Cecchetti and Lam (1994) showed that the empirical distribution of the statistic S(k) is

numerically identical to the quadratic sum of the deviations of the first (k−1) autocorrelations from their

population values, weighted by their covariance matrix.
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asymptotic approximations in order to overcome the difficulties due to using VR

tests based on asymptotic approximations (severe bias and right skewness). As

an alternative, some researchers proposed to employ a bootstrap method, which

is a resampling method that approximates the sampling distribution of a test

statistic (Efron, 1979), to the VR test statistic. The bootstrap is a distribution-free

randomization technique, which can be used to estimate the sampling distribution of

the VR statistic, when the distribution of the original population is unknown. We

describe the two most used bootstrapping VR tests, i.e. those suggested by Kim (2006)

in a theoretical framework and by Malliaropulos and Priestley (1999) in an empirical

framework17.

4.1 Kim (2006) test

Kim (2006) used the wild bootstrap which is a resampling method that approximates

the sampling distribution of the VR statistic, and is applicable to data with unknown

forms of conditional and unconditional heteroscedasticity (see Mammen, 1993;

Davidson and Flachaire, 2001).

Kim (2006) applied the wild bootstrap to Lo-MacKinlay, M2(k), and Chow-

Denning, MV2(ki), VR tests. The wild bootstrap test based on MV2(ki) can be

conducted in three stages as below

(i) Form a bootstrap sample of T observations X∗
t = ηtXt (t = 1, . . . ,T ) where ηt is

a random sequence with E(η) = 0 and E(η2) = 1.

(ii) Calculate MV ∗ = MV2(X
∗;ki), the MV2(X

∗;ki) statistic obtained from the

bootstrap sample generated in stage (i).

(iii) Repeat (i) and (ii) sufficiently many, say m, times to form a bootstrap distribution

of the test statistic {MV2(X
∗;k j; j)}m

j=1.

The p-value of the test can be obtained as the proportion of {MV2(X
∗;k j; j)}m

j=1

greater than the sample value of MV2(ki). The wild bootstrap version of M2(k)

test can be implemented in a similar manner as a two-tailed test, where we obtain

M∗ = M2(X
∗;k) in stage (ii) and {M2(X

∗;k j; j)}m
j=1 in stage (iii).

Conditionally on Xt , X∗
t is a serially uncorrelated sequence with zero mean

and variance X2
t . As such, M∗ and MV ∗ have the same asymptotic distributions

as M2(k) and MV2(ki), respectively. Since X∗
t is a serially uncorrelated sequence,

17Recently, Fleming et al. (2006) developed a bootstrap method for testing multiple inequality

restrictions on VRs.
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wild bootstrapping approximates the sampling distributions under the null hypothesis,

which is a desirable property for a bootstrap test.

To implement the wild bootstrap test, a specific form of ηt should be chosen. Kim

(2006) recommends using the standard normal distribution for ηt since he reports that

other choices provided qualitatively similar small sample results. Note that the wild

bootstrap is valid and the test statistics being bootstrapped are pivotal asymptotically

under the condition that Xt follows a martingale difference sequence18.

Kim (2006) showed that the sub-sampling test of Whang and Kim (2003) displays

small sample properties far inferior to the wild bootstrap test under a small sample

size.

4.2 Malliaropulos and Priestley (1999) test

Malliaropulos and Priestley (1999) used a weighted bootstrap method proposed by

Wu (1986) which is robust to the presence of heteroscedasticity, which is done by

resampling normalized returns instead of actual returns. Basically, the returns are

normalized by multiplying each observation of actual returns, for each one of the

time series of returns, by a corresponding random factor and resample from these

normalized returns19. The bootstrap scheme can be summarized with the following

algorithm

(i) For each t, draw a weighting factor z∗t (t = 1, . . . ,T ) with replacement from

the empirical distribution of normalized returns zt = (rt − r̄)/σ(r), where r̄ =

T−1 ∑T
t=1 rt is the mean and σ(r) =

√

T−1 ∑T
t=1(rt − r̄)2 is the standard error of

return.

(ii) Form the bootstrap sample of T observations r̃∗t = z∗t rt (t = 1, . . . ,T ) by

multiplying each observation of actual returns with its corresponding random

weighting factor.

(iii) Calculate the VR statistic V R∗(k) from the pseudo data r∗t for k = 1, . . . ,K.

(iv) Repeat steps (i) and (ii) M times, obtaining V R∗(k;m) (m = 1, . . . ,M) and

calculate the relevant quantiles, mean, median and standard deviation of

18See MacKinnon (2002) for the advantages of bootstrapping asymptotical pivotal statistics. Note

that there are other possible choices of two-point distributions for the wild bootstrap, which potentially

outperform the standard normal distribution when the sample size is small (Davidson et al., 2007).
19See Malliaropulos and Priestley (1999) and Cajueiro and Tabak (2006) for a detailed discussion on

the weighted bootstrap method proposed by Wu (1986).
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the sampling distribution of V R∗(k) under the null hypothesis of serially

uncorrelated returns.

Using this procedure, resampling from normalized returns instead from actual returns,

the weighted bootstrap method accounts for the possible non-constancy of the variance

of returns. The strongest difficulty with resampling schemes, such as bootstrap, is that

they may generate data that is less dependent than the original data. The main idea of

the weighted bootstrap scheme is to overcome this difficulty20.

Malliaropulos and Priestley (1999) and Cajueiro and Tabak (2006) used this

bootstrap method to approximate the sampling distribution of the Lo-MacKinlay VR

statistics as well as the Wald statistic of the Cecchetti and Lam (1994) test.

Note that Malliaropulos and Priestley (1999) bootstrapped the VR statistics, which

not asymptotically pivotal, under heteroscedasticity in an empirical framework. Their

bootstrap tests are not supported by any asymptotic theory or Monte Carlo evidence to

evaluate their properties in contrast to the bootstrap tests proposed by Kim (2006).

5 Empirical applications

The VR tests have been widely used and their applications have often covered

emerging markets: Asian markets (Kim and Shamsuddin, 2008; Hoque et al., 2007),

Eastern European markets (Smith and Ryoo, 2003), African markets (Smith et al.,

2002; Al-Khazali et al., 2007; Lagoarde-Segot and Lucey, 2008) and Latin American

markets (Chaudhuri and Wu, 2003; Chang et al., 2004). In this section we propose

an illustration by examining the RWH for five emerging markets in Latin American,

including Argentina, Brazil, Chile, Ecuador and Mexico. We use daily market prices

spanning 03 August 1993 to 22 May 2007. All data are collected from Thomson

Financial Datastream.

There have been many studies that tested efficiency of Latin American stock mar-

kets. However, the results are overall mixed and scattered over studies that employ

different sample periods, methods and data frequencies. Urrutia (1995), using the Lo-

MacKinlay VR test, rejected the RWH for the Latin American emerging equity mar-

kets of Argentina, Brazil, Chile and Mexico, whereas the runs test indicated weak form

efficiency over the period 1980:3–1988:12. In contrast, Ojah and Karemera (1999)

20Cribari-Neto and Zarkos (1999) evaluated the performance of this bootstrap methodology by

comparing the weighted with the unweighted bootstrap. Their results suggested that weighted bootstrap

estimators perform very well, outperforming others estimators, even in the case of heteroscedastic errors

and non-normality (fat tails).
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found that the Latin American equity returns follow a random walk and were gener-

ally weak-form efficient. Grieb and Reyes (1999) reexamined the random walk prop-

erties of stocks traded in Brazil and Mexico over the period 1988:12–1995:6, using

the Lo-MacKinlay VR tests, and concluded that the Mexican stock market exhibited

mean aversion whereas the Brazilian stock market showed a tendency toward random

walk. Karemera, Ojah and Cole (1999) also found that Brazil, Chile and Mexico did

not follow the random walk under Lo-MacKinlay test, whereas Argentina did, over

the period 1987:12–1997:5. However, this result changed when they Chow-Denning’s

multiple VR test, showing that Argentina and Brazil followed a random walk. Chaud-

huri and Wu (2003) investigated the efficiency for Argentina, Brazil, Chile, Colombia,

Mexico and Venezuela over the period 1985:1–1997:2. Using Lo-MacKinlay VR test,

they rejected the RWH only for Argentina and Brazil. Chang, Lima and Tabak (2004)

rejected the RWH, using Wald-type test (Cecchetti and Lam, 1994), for Argentina,

Brazil, Chile and Mexico over the period 1991:1–2004:1.

Table 1 presents summary statistics for the stock returns calculated as the first dif-

ferences in the logs of the stock price indexes. The data are all leptokurtic as might

be expected from daily stocks returns. Three series (Argentina, Brazil and Ecuador)

are skewed. To check for nonlinear dependencies, we apply the Lagrange Multiplier

test for autoregressive conditional heteroscedasticity (ARCH) on the residuals of the

ARMA model, where the lag length is selected based on the Akaike and Schwarz in-

formation criterion. This particular specification of heteroscedasticity was motivated

by the observation that in many financial time series, the magnitude of residuals ap-

peared to be related to the magnitude of recent residuals. The LM(10) indicates clearly

that all stocks show strong conditional heteroscedasticity.

Tables 2 and 3 report the results of various individual and multiple VR tests21,

respectively, for the five Latin American markets. Since these stock returns exhibit

conditional heteroscedasticity, we do not consider the Lo-MacKinlay M1(k) and

Chow-Denning MV1 tests. More precisely, for individual VR tests we apply the Lo-

MacKinlay M2(k) test as well as the Wright’s R1, R2 and S2 tests. For multiple

VR tests, we apply the Chow-Denning MV2 test, the Richardson-Smith RS test, the

21Some computational resources for VR tests are available from the different authors. Kim

(2007) provides various VR tests written in R (http://www.r-project.org/) available from http://www-

personal.buseco.monash.edu.au/ jaekim/vrtest.htm. Moreover, a Stata module for the Lo-MacKinlay test

written by Baum (2006) is available from http://fmwww.bc.edu/repec/bocode/l/lomackinlay.ado.
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Whang-Kim subsampling MVT test, the Belaire-Contreras rank-based CD(R1) and

CD(R2) tests as well as the Kim’s bootstrap MV ∗ test22

The holding periods (k) considered are (2, 5, 10, 30). As advocated by Deo and

Richardson (2003), we use relatively short holding periods when testing for the mean

reversion using VR tests. For the wild bootstrap test (MV ∗), as suggested by Kim

(2006)23, the number of bootstrap replications m is set to 1000. As recommended by

Whang and Kim (2003), we take a number of block lengths from an equally spaced

grid in the interval of [2.5T 0.3,3.5T 0.6] for the subsampling test (MVT ).

Some convergence amongst the individual and multiple VR tests is observed for

Chile and Mexico. Indeed, the individual and multiple VR tests reject the RWH for

these two Latin American markets, indicating that these markets have not been weak-

form efficient.

For Argentina, some divergence amongst the individual tests is observed. The

statistics of individual tests do not provide the same results. Nevertheless, as shown by

Wright (2000), the rank-based VR tests are more powerful than the conventional Lo-

MacKinlay and the sign-based VR tests. Thus, in this context, it seems that Argentina

does not follow a random walk. Furthermore, when the RWH is generally rejected

under the multiple VR tests. Consequently, the exchange rate market of Argentina

seems to be inefficiency.

Applying the individual VR tests shows that Brazil follows a random walk.

However, this result changes when the multiple VR tests are employed (except for

Chen-Deo QP(k) test), showing that, as found by Chang et al. (2004), the Brazilian

exchange rate market is not an efficient market. As already noted, conducting

individual tests for a number of k values may be misleading as it leads to over rejection

of the null hypothesis of a joint test, above the nominal size.

Finally, we found mixed results from the various VR tests for Ecuador. Indeed,

the Lo-MacKinlay M2(k) test is not significant, whereas the rank and sign-based tests

as well as Chen-Deo V R
β
p are significant. Furthermore, the Kim’s bootstrap and the

Whang-Kim’s subsampling tests do not reject the RWH while the others multiple VR

tests show that Ecuador follows a random walk. Consequently, it is impossible to

conclude on the weak-form efficiency for Ecuadorian market.

22We do not apply the S1 test suggested by Wright (2001) since it assumes a zero drift which need

not be satisfied in practice as well as the multiple signs-based tests developed by Belaire-Franch and

Contreras (2004) since the rank-based tests are more powerful.
23Following Kim (2006), we use the standard normal distribution for ηt to implement the wild

bootstrap test. He reports that other choices provided qualitatively similar sample results.
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6 Conclusion

This paper reviewed the recent developments in the field of the variance-ratio tests of

random walk and martingale hypothesis. In particular, we presented the conventional

individual and multiple VR tests as well as their improved modifications based on

power- transformed statistics, rank and sign tests, subsampling and bootstrap methods,

among others.

We also re-examined the weak-form efficiency for five emerging equity markets in

Latin America. We found that Argentina, Brazil, Chile and Mexico follow reject the

random walk hypothesis and, consequently, these four Latin American markets are not

weak-form efficient. We do not conclude for Ecuador because the results are mixed.

We did not deal with the possible presence of structural breaks, due to financial or

economic events, which can affect the VR tests. We left this issue to further research

which can be conducted even by applying VR tests using a moving subsample window

(Yilmaz, 2003; Kim and Shansuddin, 2007) or by modifying VR tests to take into

account structural changes (Lee and Kim, 2006).
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Appendix: Assumptions on the VR tests

We present some of the main assumptions for the underlying time series which

drive the VR tests.

The Lo-MacKinlay (1988), Chow-Denning (1993) and Kim (2006) tests are driven

by Assumption H∗ of Lo and Mackinlay (1988) which assumes

H∗1: For all t, E(εt) = 0, and E(εtεt−τ) = 0 for any τ 6= 0.

H∗2: {εt} is φ-mixing with coefficients φ(m) of size r/(2r− 1) or is α-mixing with

coefficients α(m) of size r/(r− 1), where r > 1, such that for all t and for any

τ ≥ 0, there exists some δ > 0 for which

E|εtεt−τ|2(r+δ) < ∆ < ∞

H∗3: lim
T→∞

T−1 ∑T
t=1 E(ε2

t ) = σ2
0 < ∞

H∗4: For all t, E(εtεt− jεtεt−i) = 0 for any nonzero j and i, where j 6= i

Assumption H∗1 is the essential property of the random walk. Assumptions H∗2 and

H∗3 are restrictions on the degree of dependence and heterogeneity which are allowed

and yet still permit some form of law of large numbers and central limit theorem to

obtain. This allows for a variety of forms of heteroscedasticity, including GARCH-

type variances and variances with deterministic changes. Assumption H∗4 implies

that the sample autocorrelations of εt are asymptotically uncorrelated.

The Whang and Kim (2003) test is driven by a relaxed version of Assumption H∗.

Indeed, they do not impose the restriction that the sample autocorrelation of εt are

asymptotically uncorrelated (Assumption H∗4) by assuming

lim
T→∞

T−1
T

∑
t=1

E(ε2
t ) = σ2

0

Their test is then robust to violations of this assumption.

The Wright (2000) tests are driven by Assumption A in which it is considered that

xt = µ+ zt and zt = σtεt . Letting It = {xt ,xt−1,xt−2, . . .}, the assumptions are

A1: zt is i.i.d.

A2: σt and εt are independent, conditional on It−1.

A3: E(εt |It−1) = 0 and 1(εt > 0) is an i.i.d. binomial variable that is 1 with

probability 1
2

and 0 otherwise.
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Assumption A1 stipulates that the first-differences are i.i.d. while the combination of

Assumptions A2 and A3 is sufficient, but not necessary, for xt to be a martingale dif-

ference sequence. Moreover, Assumption A2 is satisfied in a GARCH model and also

by a stochastic volatility model in which the innovations to volatility are independent

of εt . Assumption A3 allows to εt to be t-distributed with time-varying degrees of free-

dom. The rank-based tests of Wright (2000) and Belaire-Franch and Contreras (2004)

on Assumption A1 while their sign-based tests are based on Assumptions A2 and A3.

Finally, the Chen and Deo’s (2006) assumptions on the martingale difference

sequence are also different

B1: {εt} is ergodic and E(εt |Ft) = 0 for all t, where Ft is a sigma field, εt is Ft

measurable, and Ft−1 ⊂ Ft for all t.

B2: E(ε2
t ) = σ2 < ∞.

B3: For any integer q, 2 ≤ q ≤ 8, and for q nonnegative integers si, E
(

∏
q
i=1 εsi

ti

)

= 0

when at least one si is exactly one and ∑
q
i=1 si ≤ 8.

B4: For any integer r, 2≤ r ≤ 4, and for r nonnegative integers si, E
(

∏r
i=1 εsi

ti |Ft

)

= 0

when at least one si is exactly one and ∑r
i=1 si ≤ 4, for all t < ti, i = 1,2,3,4.

B5: lim
T→∞

Var
[

E
(

ε2
t+T ε2

t+T+ j|Ft

)]

= 0 uniformly in j for every j > 0.

B6: lim
T→∞

E
(

ε2
t ε2

t−T

)

= σ4.

Assumptions B1-B6 allow the innovations εt to be a martingale difference sequence

with conditional heteroscedasticity. Chen and Deo (2006) showed that the stochastic

volatility and GARCH models satisfy Assumptions B1-B6. Assumptions B3-B4

state that the series {εt} shows product moment behavior similar to that of an

independent white noise process. Assumptions B5-B6 state that εt and εt−T are

roughly independent for large lags T .
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Table 1: Summary statistics of stock returns

Mean SD Skewness Kurtosis LM(10)

Argentina 0.000468 0.022095 -0.133875∗ 8.158586∗ 402.0338∗

Brazil 0.001866 0.025078 0.550350∗ 13.58173∗ 365.7680∗

Chile 0.000448 0.007172 -0.046965 8.218660∗ 555.2467∗

Ecuador 0.000025 0.018418 1.125265∗ 44.79396∗ 225.6864∗

Mexico 0.000792 0.016019 0.001551 9.235503∗ 380.2590∗

∗ Means significant at 1% level, respectively. LM(10) indicates the lagrange multiplier test for conditional

heteroscedasticity with 10 lags.
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Table 2: Results of individual VR tests

VR tests k Argentina Brazil Chile Ecuador Mexico

M2(k)

2 3.00∗ 2.22∗ 8.74∗ -1.41 3.60∗

5 1.63 1.61 9.87∗ -1.99∗ 2.05∗

10 1.13 1.13 10.11∗ -1.17 1.56

30 1.45 3.78∗ 10.66∗ 0.10 1.44

R1(k)

2 3.34∗ 1.50 16.96∗ 1.33 7.31∗

5 2.45∗ 1.28 17.29∗ 5.11∗ 4.64∗

10 1.91∗ -2.24∗ 16.91∗ 8.61∗ 3.53∗

30 2.93∗ 0.56 17.13∗ 14.55∗ 4.42∗

R2(k)

2 3.10∗ 1.61 15.87∗ 1.10 7.04∗

5 2.23∗ -1.14 16.31∗ 4.14∗ 4.16∗

10 1.61 -2.30∗ 15.73∗ 7.73∗ 3.02∗

30 2.17∗ 0.31 15.34∗ 13.85∗ 3.57∗

S2(k)

2 2.09∗ 0.90 12.79∗ 7.34∗ 5.95∗

5 0.96 0.01 12.79∗ 14.98∗ 3.58∗

10 0.13 -0.01 12.92∗ 21.45∗ 2.37∗

30 1.15 0.41 13.15∗ 34.78∗ 2.68∗

V R
β
p(k)

2 1.63∗∗ 0.71 0.71 0.31 2.83∗

5 1.45∗∗ -0.25 -0.54 0.29 1.28

10 0.95 -1.27 -1.46∗∗ 1.43∗∗ 0.63

30 1.06 -0.88 -0.12 3.31∗ 0.60

∗ and ∗∗ Significant at the 5% and 10% level, respectively. We report the VR statistic for each test.
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Table 3: Results of multiple VR tests

VR tests Block length Argentina Brazil Chile Ecuador Mexico

MV2 3.00∗ 3.78∗ 10.66∗ 1.99 3.60∗

RS 29.94∗ 83.91∗ 380.74∗ 46.94∗ 43.87∗

QP(k) 3.81 6.17 9.63∗ 20.16∗ 9.40∗

MV ∗ 0.01∗ 0.00∗ 0.00∗ 0.10 0.00∗

CD(R1) 3.69∗ 4.85∗ 18.14∗ 13.65∗ 7.84∗

CD(R2) 4.19∗ 6.42∗ 18.31∗ 11.63∗ 7.89∗

MVT

93 0.00∗ 0.00∗ 0.00∗ 0.01∗ 0.00∗

157 0.00∗ 0.00∗ 0.00∗ 0.05 0.00∗

221 0.00∗ 0.00∗ 0.00∗ 0.26 0.00∗

285 0.00∗ 0.00∗ 0.00∗ 0.32 0.00∗

349 0.00∗ 0.00∗ 0.00∗ 0.32 0.00∗

413 0.00∗ 0.00∗ 0.00∗ 0.28 0.00∗

∗ Significant at the 5% level. The p-value are given for the MV ∗ (Kim, 2006) and MVT (Belaire and Contreras, 2004)

tests whereas the VR statistic is reported for the others tests.
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