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Abstract

Learning discrete linear classifiers is known
as a difficult challenge. In this paper, this
learning task is cast as combinatorial op-
timization problem: given a training sam-
ple formed by positive and negative feature
vectors in the Euclidean space, the goal is
to find a discrete linear function that mini-
mizes the cumulative hinge loss of the sam-
ple. Since this problem is NP-hard, we ex-
amine two simple rounding algorithms that
discretize the fractional solution of the prob-
lem. Generalization bounds are derived for
several classes of binary-weighted linear func-
tions, by analyzing the Rademacher complex-
ity of these classes and by establishing ap-
proximation bounds for our rounding algo-
rithms. Our methods are evaluated on both
synthetic and real-world data.

1. Introduction

Linear classification is a well-studied learning prob-
lem in which one needs to extrapolate, from a set
of positive and negative examples represented in Eu-
clidean space by their feature vector, a linear hypoth-
esis h(x) = sgn(〈w,x〉 − b) that correctly classifies fu-
ture, unseen, examples. In the past decades, a wide
variety of theoretical results and efficient algorithms
have been obtained for learning real-weighted linear
functions (also known as “perceptrons”). Notably, it
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is well-known that the linear classification problem can
be cast as a convex optimization problem and solved
in polynomial time by support vector machines if the
performance of hypotheses is measured by convex loss
functions such as the hinge loss (see e.g. Shawe-Taylor
and Cristianini (2000)). Much less is known, how-
ever, about learning discrete linear classifier. Indeed,
integer weights, and in particular {0, 1}-valued and
{−1, 0, 1}-valued weights, can play a crucial role in
many application domains in which the classifier has
to be interpretable by humans.

One of the main motivating applications for this work
comes from the field of quantitative metagenomics,
which is the study of the collective genome of the
micro-organisms inhabiting our body. It is now tech-
nically possible to measure the abundance of bacte-
rial species by measuring the activity of specific tracer
genes for that species. Moreover, it is known that the
abundance of some bacterial species in our body is
related to obesity or leanness. Instead of learning a
standard linear classifier to predict obesity, biologists
would like to find two small groups of bacterial species,
such that if the abundance of bacteria in the first group
is greater than that of the second group, then the in-
dividual is classified as being obese. Given a dataset
in which features represent the abundance of specific
bacterial species, this problem boils down to learning
a linear classifier with {−1, 0, 1}-valued weights.

In other domains such as medical diagnosis, the in-
terpretability of predictive models is also a key aspect.
The most common diagnostic models are M -of-N rules
(Towell and Shavlik, 1993) according to which patients
are classified as ill if at least M criteria among N
are satisfied. However, learning M -of-N rules is hard
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(a proof is provided in appendix). In binary classi-
fication, linear threshold functions with {0, 1}-valued
weights are equivalent to M -of-N rules. Thus, the the-
ory and the algorithms described in this paper can also
be used to learn such rules, as shown in the experimen-
tal section.

Perhaps the major obstacle to the development of dis-
crete linear functions lies in the fact that, in the stan-
dard distribution-free PAC learning model, the prob-
lem of finding an integer-weighted linear function that
is consistent with a training set is equivalent to the
(Zero-One) Integer Linear Programming problem (Pitt
and Valiant, 1988), which is NP-complete. In order
to alleviate this issue, several authors have investi-
gated the learnability of discrete linear functions in
distribution-specific models, such as the uniform dis-
tribution (Golea and Marchand, 1993a; Köhler et al.,
1990; Opper et al., 1990; Venkatesh, 1991), or the
product distribution (Golea and Marchand, 1993b).
Yet, beyond this pioneering work, many questions re-
main open, especially when the model is distribution-
free but the loss functions are convex.

In this paper, we consider just such a scenario by ex-
amining the problem of learning binary-weighted lin-
ear functions with the hinge loss, a well-known surro-
gate of the zero-one loss. The key components of the
classification problem are a set C ⊆ {0, 1}n of boolean
vectors1 from which the learner picks his hypotheses,
and a fixed (yet hidden) probability distribution over
the set Rn×{±1} of examples. For a hinge parameter
γ > 0, the hinge loss penalizes a hypothesis c ∈ C on
an example (x, y) if its margin y 〈c,x〉 is less than γ.

The performance of a hypothesis c ∈ C is measured by
its risk, denoted risk(c), and defined as the expected
loss of c on an example (x, y) drawn from the underly-
ing distribution. Typically, risk(c) is upper-bounded
by the sum of two terms: a sample estimate riskm(c)
of the performance of c and a penalty term Tm(C) that
depends on the hypothesis class C and, potentially,
also on the training set. The sample estimate riskm(c)
is simply the averaged cumulative hinge loss of c on
a set {(xi,yi)}mi=1 of examples drawn independently
from the underlying distribution. The penalty term
Tm(C) can be given by the VC-dimension of C, or its
Rademacher complexity with respect to the size m of
the training set. For binary-weighted linear classifiers,
the penalty term induced by their Rademacher com-
plexity can be substantially smaller than the penalty
term induced by their VC dimension. So, by a sim-
ple adaptation of Bartlett and Mendelson’s framework

1As explained in Section 4.2, {−1, 0, 1}-weighted classi-
fication can be reduced to {0, 1}-weighted classification.

(2002), our risk bounds take the form of:

risk(c) ≤ riskm(c) +
2

γ
Rm(C) +

√
8 ln(2/δ)

m
(1)

where Rm(C) is the Rademacher complexity of C with
respect to m, and δ ∈ (0, 1) is a confidence parameter.

Ideally, we would like to have at our disposal an effi-
cient algorithm for minimizing riskm(c). The resulting
minimizer, say c∗, would be guaranteed to provide an
optimal hypothesis because the other terms in the risk
bound (1) do not depend on the choice of the hypoth-
esis. Unfortunately, because the class C of discrete
linear classifiers is not a a convex set, the convexity of
hinge loss does not help in finding c∗ and, as shown
by Theorem 1 in the next section, the optimization
problem remains NP-hard.

The key message to be gleaned from this paper is
that the convexity of the loss function does help in
approximating the combinatorial optimization prob-
lem, using simple rounding methods. Our first algo-
rithm is a standard randomized rounding (RR) method
that starts from a fractional solution w∗ in the convex
hull of C, and then builds c by viewing the fractional
value w∗i as the probability that ci should be set to 1.
The second algorithm, called greedy rounding (GR),
is essentially a derandomization of RR that iteratively
rounds the coordinates of the fractional solution by
maintaining a constraint on the sum of weights.

For the class C of binary-weighted linear functions, we
show that the greedy rounding algorithm is guaranteed
to return a concept c ∈ C satisfying:

riskm(c) ≤ riskm(c∗) +
X2

2γ

where Xp = maxmi=1 ‖xi‖p, and ‖x‖p is the Lp-norm
of x. We also show that the problem of improving this
bound up to a constant factor is NP-hard. Combining
greedy rounding’s performance with the Rademacher
complexity of C yields the risk bound:

risk(c) ≤ riskm(c∗)

+
X2

2γ
+

2

γ
X1 min

{
1,

√
n

m

}
+

√
8 ln(2/δ)

m

For the subclass Ck of sparse binary-weighted linear
functions involving at most k ones among n, we show
that greedy rounding is guaranteed to return a concept
c ∈ Ck satisfying:

riskm(c) ≤ riskm(c∗) +
X∞
√
k

γ
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Using the Rademacher complexity of Ck, which is sub-
stantially smaller than that of C, we have:

risk(c) ≤ riskm(c∗)

+
X∞
√
k

γ
+

2

γ
X∞k

√
2 log n

k

m
+

√
8 ln(2/δ)

m

Similar results are derived with the randomized round-
ing algorithm, with less sharp bounds due to the ran-
domization process. We evaluate these rounding meth-
ods on a both synthetic and real-world datasets, show-
ing good performance in comparison with standard lin-
ear optimization methods.

The proofs of preparatory lemmas 2 and 5 can be found
in appendix.

2. Binary-Weighted Linear Classifiers

Notation. The set of positive integers {1, · · · , n} is
denoted [n]. For a subset S ⊆ Rn, we denote by
conv(S) the convex hull of S. For two vectors u,v ∈
Rn and p ≥ 1 the Lp-norm of u is denoted ‖u‖p and
the inner product between u and v is denoted 〈u,v〉.
Given a vector u ∈ Rn and k ∈ [n], we denote by u1:k

the prefix (u1, · · · , uk) of u. Finally, given a training
set {(xi, yi)}mi=1, we write Xp = maxmi=1 ‖xi‖p.

In this study, we shall examine classification problems
for which the set of instances is the Euclidean space
Rn and the hypothesis class is a subset of {0, 1}n.
Specifically, we shall focus on the class C = {0, 1}n
of all binary-weighted linear functions, and the sub-
class Ck of all binary-weighted linear functions with at
most k ones among n. The parameterized loss func-
tion `γ : R × {±1} → R examined in this work is the
hinge loss defined by:

`γ(p, y) =
1

γ
max(0, γ − py) where γ > 0

2.1. Computational Complexity

For a training set {(xi, yi)}mi=1, the empirical risk of a
weight vector c ∈ C, denoted riskm(c), is defined by
its averaged cumulative loss:

riskm(c) =
1

m

m∑
i=1

`γ(〈ci,xi〉 , y)

By c∗, we denote any minimizer of the objective func-
tion riskm. Recall that if C is a convex subset of Rn
then c∗ can be found in polynomial time using con-
vex optimization algorithms. However, for the discrete
class C = {0, 1}n, the next result states that the opti-
mization problem is much harder.

Theorem 1. There exists a constant α > 0 such that,
unless P=NP, there is no polynomial time algorithm
capable of learning from any dataset of size m a hy-
pothesis c ∈ C such that:

riskm(c) ≤ min
c′∈C

(
riskm(c′)

)
+ α

X2

γ

Proof. In what follows, we denote by c∗ any vector in
C for which riskm(c∗) is minimal. For an undirected
graph G = (V,E), the Max-Cut problem is to find a
subset S ⊂ V such that the number of edges with one
end point in S and the other in V \S is maximal. Un-
less P=NP, no polynomial-time algorithm can achieve
the approximation ratio of 0.997 for MaxCut in 3-
regular graphs (Berman and Karpinski, 1999).

Based on this result, we first construct a dataset from
a 3-regular graph G = (V,E) having an even number
of vertices. Our dataset consist of n = |V | + 1 fea-
tures and m = 2 |E| examples. The first |V | features
are associated with the vertices of G. For each edge
(j, j′) ∈ E, we build two positively labeled examples
x and x′ in the following way. In the first example x,
j and j′ are set to γ, and all other features are set to
0. In the second example x′, j and j′ are set to −γ,
the feature |V |+1 is set to 2γ and all others are set to
0. Consider any weight vector c where c|V |+1 is equal
to 0. Clearly, setting c|V |+1 to 1 will strictly decrease
the loss of c if at least one coordinate in c is nonzero.
Thus, we will assume from now on and without loss of
generality that c|V |+1 is always set to 1. Observe that
the loss on the two examples x and x′ is

` (〈c,x〉) + ` (〈c,x′〉) =

{
0 if cj 6= cj′

1 otherwise

Let us now define cut(c) = |{(i, j) ∈ E : ci 6= cj}|. By
viewing c as the characteristic vector of a subset of
vertices, cut (c) is the value of the cut in G induced by
this subset. Note we have cut(c) = |E|−2 |E| riskm(c).
Thus, minimizing the loss on the dataset maximizes
the cut on the graph. Consequently, cut (c∗) is the
optimal value of the Max-cut problem.

Finally, suppose by contradiction that for all α > 0,
there is a polynomial-time algorithm capable of learn-
ing from any dataset of size m a vector c satisfying

riskm(c) ≤ riskm(c∗) + α
X2

γ

Notably, in the dataset constructed above, the value
of X2 is γ

√
6. Thus, for this dataset, we get that

riskm(c) ≤ riskm(c∗) + α
√

6, and hence,

cut(c) ≥ cut(c∗)− 2α |E|
√

6 (2)
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To this point, Feige et al. (2001) have shown that
on 3-regular graphs, the optimal cut has a value
of at least |E|/2. By reporting this value into
(2), we obtain cut(c) ≥ cut(c∗) − 4α

√
6 cut(c∗) =

cut(c∗)
(
1− 4α

√
6
)
. Because α can be arbitrarily close

to 0, this implies that Max-Cut is approximable within
any constant factor, which contradicts Berman and
Karpinski’s (1999) inapproximability result.

2.2. Rademacher Complexity

Suppose that our training set S = {(xi, yi)}mi=1 con-
sists of examples generated by independent draws from
some fixed probability distribution on Rn×{±1}. For
a class F of real valued functions f : Rn → R, define
its Rademacher complexity on S to be:

RS(F) = E

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]

Here, the expectation is over the Rademacher ran-
dom variables σ1 . . . σm, which are drawn from {±1}
with equal probability. Since S is random, we can
also take expectation over the choice of S and define
Rm(F) = E [RS(F)], which gives us a quantity that
depends on both the function class and the sample
size. As indicated by inequality (1), bounds on the
Rademacher complexity of a class immediately yield
risk bounds for classifiers picked from that class. For
continuous linear functions, sharp Rademecher com-
plexity bounds have been provided by Kakade et al.
(2008). We provide here similar bounds for two im-
portant classes of discrete linear functions.

Lemma 2. Let σ1, · · · , σm be Rademacher variables.
Then E[|

∑k
i=1 σi|] ≥

√
k/8 for any even k ≥ 2.

Theorem 3. Let C = {0, 1}n be the class of all binary-
weighted linear functions. Then,

Rm(C) ≤ X1 min

{
1,

√
n

m

}
This bound is tight up to a constant factor.

Proof. Consider the hypothesis class:

Fp,v = {x 7→ 〈w,x〉 : w ∈ Rn, ‖w‖p ≤ v}

By Theorem 1 in (Kakade et al., 2008), we have
Rm(F2,v) ≤ vX2/

√
m. Moreover, for any c ∈ {0, 1}n,

we have ‖c‖2 ≤
√
n. It follows that C ⊆ F2,

√
n, and

since ‖ · ‖2 ≤ ‖ · ‖1, we get that:

Rm(C) ≤ R(F2,
√
n) ≤ X2

√
n

m
≤ X1

√
n

m

Now, let us prove that this bound is tight. First, let
us rewrite the rademacher complexity over samples in
a more convenient form:

RS(C) =
1

m

n∑
j=1

E

[
sup

cj∈{0,1}
cj

m∑
i=1

σixi,j

]

=
1

2m

n∑
j=1

E

[
sup

wj∈{−1,1}
wj

m∑
i=1

σixi,j

]

=
1

2m

n∑
j=1

E

[∣∣∣∣∣
m∑
i=1

σi.xi,j

∣∣∣∣∣
]

(3)

For the case n ≥ m, consider a training set S such
that xi,i = X1 for all i ∈ [m], and zero everywhere
else. Clearly, equation 3 implies RS(C) = X1

2 . For the
case n < m, assume m is a multiple of 2n and consider
a dataset S in which each each example contains only
one non-zero value equal to X1, and such that the
number of nonzero values per column is m

n . Then, by
applying Lemma 2 to equation 3, we obtain:

RS(C) ≥ nX1

m

√
m
n

32
= X1

√
n

32m

Theorem 4. For a constant k > 0, let Ck be the class
of binary-weighted linear functions with at most k ones
among n. Then,

Rm(Ck) ≤ X∞k
√

2 log n
k

m

Proof. For a closed convex set S ⊂ Rn+, consider the
hypothesis class:

FS = {x 7→ 〈w,x〉 : w ∈ S}

Using the convex function F (w) =
∑n
j=1

wj
W1

ln
wj
W1

+
lnn, where W1 = maxw∈S ‖w‖1, we get from Theo-
rem 1 in (Kakade et al., 2008):

Rm(FS) ≤ X∞W1

√
2 sup {F (w) : w ∈ S}

m
(4)

For any k, let Sk = conv ({w ∈ {0, 1}n : ‖w‖1 ≤ k}),
where conv(.) is the convex hull. Because F is convex
and Sk is a convex polytope, the supremum of F is
one of the vertices of the polytope. Thus,

sup
w∈Sk

F (w) = sup{F (w) : w ∈ {0, 1}n, ‖w‖1 ≤ k}

≤ lnn+

k∑
l=1

1

k
ln

1

k
= ln

n

k

The result follows by reporting this value into (4).
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Figure 1. (left) Intersection of the l1 ball of radius 2, of the
l∞ ball of radius 1 for non negative coordinates. (right)
The solution to the convex relaxation coincides with the
solution to the original problem.

3. Rounding Methods

This section exploits the convexity of the hinge loss to
derive simple approximation algorithms for minimiz-
ing empirical risk. The overall idea is to first relax
the optimization problem by deriving a fractional so-
lution w∗, and then to round the solution w∗ using
a deterministic or a randomized method. The convex
optimization setting we consider is defined by:

w∗ = argmin
w∈[0,1]n∩S

riskm(w)) (5)

where S = Rn+ for the hypothesis class C = {0, 1}n,
and S = {w ∈ Rn+ : ‖w‖1 ≤ k} for the subclass Ck of
binary-weighted linear functions with at most k ones
among n. Note that the empirical risk minimization
problem for C can be viewed as an optimization prob-
lem over Rn+ under the L∞-norm constraint. The prob-
lem of minimizing empirical risk in the convex hull of
Ck is illustrated in the left part of Figure 1.

The accuracy of rounding methods depend on the
number of non-fractional values in the relaxed solu-
tion w∗. Indeed, if most weights of w∗ are already
in {0, 1}, then these values will remain unchanged by
the rounding phase, and the final approximation c will
close to w∗. Figure 1 illustrates this phenomenon by
representing a case where w∗ and c coincide. The ob-
jective function is represented by ellipses, and the four
dots at the corner of the square are the vectors {0, 1}2.

The hinge loss also takes an important part in the qual-
ity of the rounding process. Increasing the parameter
γ increases the likelihood that weights become binary.
Taking this to the extreme, if γ ≥ X1, then the hinge
loss is linear inside the [0, 1]n hypercube and all convex
optimization tasks described above will yield solutions
with binary weights. We note in passing that a sim-
ilar phenomenon arises in the Lasso feature selection
procedure, where the weight vectors are more likely to
fall on a vertex of the L1-ball as the margin increases.

Algorithm 1 Randomized Rounding (RR)

Parameters: A set of m examples, a convex set S

1. Solve w∗ = argminw∈[0,1]n∩S riskm(w)

2. For each i ∈ [n], set ci to 1 with probability wi

3. Return c

3.1. Randomized Rounding

The randomized rounding (RR) algorithm is one of
the most popular approximation schemes for combi-
natorial optimization (Raghavan and Thompson, 1987;
Williamson and Shmoys, 2011). In the setting of our
framework, the algorithm starts from the fractional
solution of the problem and draws a random concept
c ∈ Ck by choosing each value ci independently to 1
with probability w∗i and to 0 with probability 1− w∗i .
The following lemma (derived from Bernstein’s in-
equality) states that using c instead of w∗ to compute
a dot product yields a bounded deviation.

Lemma 5. Let x ∈ Rn, w∗ ∈ [0, 1]n and c ∈ {0, 1}n
be a random vector such that P [ci = 1] = w∗i for all
i ∈ 1 . . . n. Then, with probability at least 1 − δ, the
following inequalities hold:

〈c,x〉 ∈
[
〈w∗,x〉 ± 1.52‖x‖2 ln

2

δ

]
and

〈c,x〉 ∈
[
〈w∗,x〉 ± ‖x‖∞

(
2

3
+ 1.7

√
‖w∗‖1

)
ln

2

δ

]
Theorem 6. Let c be the vector returned by the ran-
domized rounding algorithm. Then, with probability
1− δ, the following hold:

• For the class C:
riskm(c) ≤ riskm(c∗) + 1.52

γ X2 ln 2m
δ

• For the class Ck:

riskm(c) ≤ riskm(c∗) +
2
3+1.7

√
‖w∗‖1

γ X∞ ln 2m
δ

Proof. Since the γ-hinge loss in 1
γ -Lipschitz, we have:

risk(c)− risk(c∗) ≤ risk(c)− risk(w∗)

≤ 1

γm

m∑
i=1

|〈c,xi〉 − 〈w∗,xi〉| (6)

Taking expectations and applying the union bound on
Lemma 5, we get with probability 1− δ′ that:

P [∃i ∈ [m], |〈c,xi〉 − 〈w∗,xi〉| ≥ t]

≤
m∑
i=1

P [|〈c,xi〉 − 〈w∗,xi〉| ≥ t] ≤ mδ′
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Algorithm 2 Greedy Rounding (GR)

Parameters: A set of m examples, an integer k ≤ n

1. Solve w∗ = argminw∈[0,1]n∩S riskm(w)

2. For k = 1 to n, set

Ak ← {a ∈ {0, 1} : ∀i = 1 . . .m

(θi,k−1 + xi,k(a− w∗k))
2

≤ θ2i,k−1 + x2i,kw
∗
k (1− w∗k)

}
ck ← argmin

a∈Ak
riskm

(
c1, · · · , ck−1, a, w∗k+1, · · · , w∗n

)
3. return (c1 . . . cn)

The result follows by setting δ = mδ′ and re-
porting into (6) the values t = 1.52X2 ln 2

δ′ and
t =

(
2
3 + 1.7

√
‖w∗‖1

)
X∞ ln 2

δ′ .

3.2. Greedy Rounding

Despite its relative weak guarantees, the randomized
rounding procedure can be used as a building block
for constructing more efficient algorithms. Specifically,
the new approximation scheme we propose, called
Greedy Rounding (GR), is essentially a derandomiza-
tion of RR with some improvements. As described in
Algorithm 2, the procedure starts again by comput-
ing the fractional solution w∗ of the optimization task
(Line 1). Then, the coordinates of w∗ are rounded in a
sequential manner by simply maintaining a constraint
on the admissible values (Line 2). The algorithm uses
a matrix Θ = [θi,k] of parameters defined as follows.
For any k ∈ [n], let c1:k = (c1, · · · , ck) be the pre-
fix of the vector c build at the end of step k. Then,
θi,k =

∑k
j=1 xi,j(cj − w∗k) for each i ∈ [m].

The next result, which we call the derandomization
lemma, shows that at each step k of the rounding pro-
cedure, there is a value a ∈ {0, 1} which does not in-
crease the loss too much.

Lemma 7. For any k ≤ n and any (c1 . . . ck−1) ∈
{0, 1}k−1, there exist a ∈ {0, 1} such that for all i ∈
[m],

(θi,k−1 + xi,k(a− w∗k))
2 ≤ θ2i,k−1 + x2i,kw

∗
k (1− w∗k)

Proof. Let z be a random vector taking values in
{0, 1}n such that P[zj = 1] = w∗j for all j ∈ [n].
Clearly, we have E [z −w∗] = 0. For any i ∈ [m],

let fi(z,w
∗) = 〈z −w∗,xi〉2. We can observe that

E [fi(z,w
∗)] =

∑n
j=1 x

2
i,jw

∗
j

(
1− w∗j

)
. Taking condi-

tional expectations, we have:

E [fi(z,w
∗) | z1:k−1 = c1:k−1] =

E
[
〈c1:k−1 −w∗1:k−1,xi,1:k−1〉2 + 〈zk:n −w∗k:n,xi,k:n〉

2
]

In the right hand side of this equation, the squared
sum is equal to the sum of squares because the
term 〈c1:k−1 −w∗1:k−1,xi,1:k−1〉 . 〈zk:n −w∗k:n,xi,k:n〉
is null in expectation. We get that:

E [fi(z,w
∗) | z1:k−1 = c1:k−1] =

=

k−1∑
j=1

xi,j(cj − w∗j )

2

+

n∑
j=k

x2i,jw
∗
j

(
1− w∗j

)
= θ2i,k−1 +

n∑
j=k

x2i,jw
∗
j

(
1− w∗j

)
Now, let U1, · · · , Un denote random variables taking
values in some domain D ⊆ R, and g be a function
from Dn into R. Using the definition of conditional
expectation, we know that for any j ∈ [n] there exists
a value u ∈ D such that E [g(U1, . . . Un) | Uj = u] ≤
E [g(U1, . . . Un)]. By application, there exists a value
ck ∈ {0, 1} such that E [fi(z,w

∗) | z1:k = c1:k] ≤
E [fi(z,w

∗) | z1:k−1 = c1:k−1]. The result follows us-
ing a=ck.

Based on this lemma, the approximation guarantees
of the greedy rounding algorithm are summarized in
the next theorem. Interestingly, a comparison with
the lower bound for the class C obtained in Theo-
rem 1 reveals that the approximation bound of GR
for this class is tight up to a constant factor. In other
words, GR is an optimal approximation algorithm for
the class of binary-weighted linear functions.

Theorem 8. Let c be the vector returned by the GR
algorithm. Then,

• For the class C, riskm(c) ≤ riskm(c∗) +X2/2γ

• For the class Ck, riskm(c) ≤ riskm(c∗)+X∞
√
k/γ

Proof. Since the γ-hinge loss is 1/γ-Lipschitz, we can
use inequality (6) to derive that:

riskm(c)− riskm(c∗) ≤ 1

γm

m∑
i=1

|〈c,xi〉 − 〈w∗,xi〉|

≤ 1

γm

m∑
i=1

〈c−w∗,xi〉

≤ 1

γm

m∑
i=1

|θi,n| (7)



Rounding Methods for Discrete Linear Classification

Now, by application of lemma 7, we know that for
each step k of GR, any value a ∈ Ak is such that
(θi,k−1 + xi,k(a− w∗k))

2 ≤ θ2i,k−1 + x2i,kw
∗
k (1− w∗k) for

all i ∈ [m]. Since ck ∈ Ak, we must have θ2i,k ≤∑
j∈[k] x

2
i,jw

∗
j (1 − w∗j ) for all i ∈ [m] and k ∈ [n]. Re-

porting this inequality into (7),

riskm(c)− riskm(c∗) ≤ 1

γm

m∑
i=1

√√√√ n∑
j=1

x2i,jw
∗
j (1− w∗j )

Let R = riskm(c) − riskm(c∗). For the class C, using
the fact that w∗j (1 − w∗j ) ≤ 1

4 we have R ≤ X2/(2γ).
For the class Ck,, using Hölder’s inequality and the fact
that ‖w∗‖1 ≤ k, we obtain R ≤ X∞

√
k/γ.

4. Experiments

We tested the empirical performance of our algorithms
by conducting experiments on a synthetic problem and
several real-world domains. Besides the Randomized
Rounding (RR) algorithm and the Greedy Rounding
(GR) algorithm, we evaluated the behavior of two frac-
tional optimization techniques: the Convex (Cvx) op-
timization method that returns the fractional solution
of the problem specified by (5), and the Support Vec-
tor Machine (L1-SVM) that solves the `1-constrained
version of the problem. For small datasets, we also
evaluated MIP (mixed integer programming) which is
the exact solution to the combinatorial problem.

In our implementation of the algorithms, we used the
linear programming software CPLEX that returns the
fractional solution of convex optimization tasks.

4.1. Synthetic Data

In order to validate different aspects or our algo-
rithms, we designed a simple artificial dataset gener-
ator. Called with parameters k, n,m, η, the generator
builds a dataset composed of m examples, each with
n features. Examples are drawn from a uniform dis-
tribution over [−10, 10]n. Also, the generator draws
randomly a target function with exactly k ones, and
each example is labeled with respect to this target. Fi-
nally, the coordinates of each example are perturbed
with a normal law of standard deviation η.

We first evaluated the generalization performance of
the optimization algorithms. Setting k = 10, n = 100,
η = 0.1, we generated datasets with an increasing
number m of examples, and plotted the generaliza-
tion zero-one loss measured on test data (upper part of
figure 2). Next, we evaluated the robustness of our al-
gorithms with respect to irrelevant attributes. Setting
k = 10, m = 50, η = 0.1, we generated datasets with

Figure 2. Test error rates on synthetic data, comparing the
number of examples (upper part) and the number of irrel-
evant features (lower part)

n varying from 20 to 800, and plotted again the gener-
alization zero-one loss, measured on test data (bottom
part of figure 2). It is apparent that GR and RR per-
form significantly better than L1-SVM, which is not
surprising, because the target concepts have {0, 1}-
weights. On synthetic data, GR is slightly less ac-
curate than RR, whose performance is close to Cvx.

4.2. Metagenomic Data

In metagenomic classification, discrete linear functions
have a natural interpretation in term of bacterial abun-
dance. We used a real-world dataset containing 38 in-
dividuals and 69 features. The dataset is divided into
two well-balanced classes: obese people and non obese.
Each feature represents the abundance of a bacterial
species. As mentioned in the introduction, the weight
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k L1-SVM Cvx RR GR MIP

10 0.46 0.48 0.41 0.43 0.35
20 0.46 0.44 0.41 0.44
∞ 0.44 0.40 0.39 0.43

run time 0.02s 0.02s 0.04s 0.98s 13s

Table 1. Test error rates and average running time in sec-
onds on metagenomic data

of each feature captures a qualitative effect encoded
by a value in {−1, 0,+1} (negative, null effect, posi-
tive). Let POS (respectively NEG) denote the group
of bacterial species whose feature has a weight of 1
(respectively −1). If the abundance of all bacteria in
POS is greater than the abundance of the bacteria in
NEG , then the individual will be classified as obese.

In order to learn ternary-weighted linear functions
with our algorithms, we used a simple trick that
reduces the classification task to a binary-weighted
learning problem. The idea is to duplicate attributes
in the following way: to each instance x ∈ Rn we
associate an instance x′ ∈ Rd where d = 2n and
x′ = (x1,−x1, x2,−x2, · · · , xn,−xn). Given a binary-
weighted concept c′ ∈ {0, 1}d, the corresponding
ternary-weighted concept c ∈ {−1, 0,+1}n is recov-
ered by setting ci = c′2i−1−c′2i. Based on this transfor-
mation, it is easy to see that `γ(c′;x′, y) = `γ(c;x, y).
So, if c′ minimizes empirical risk on the set {(x′t, yt)},
then c minimizes empirical risk on {(xt, yt)}. If, in
addition, c′ is k-sparse, then c is k-sparse.

The test error rates of algorithms are reported in Ta-
ble 4.2. Test errors was measured by conducting 10
fold cross validation, averaged over 10 experiments. In
light of these results, it is apparent that RR slightly
outperforms both SVM and Cvx, which clearly over-
fit the data even in presence of the L1-ball constraint
(for the first two rows). Unsurprisingly, the MIP solver
generated a model superior to the others. For k ≥ 20,
the mixed integer program did not finish in reasonable
time, so we left the corresponding entries of the table
blank. In a nutshell, we can conclude that the accu-
racy does not suffer from switching to ternary weights,
but this learning task looks challenging.

4.3. Colon cancer

To demonstrate the performance of discrete linear clas-
sifiers for gene selection, we applied our algorithms
to microarray data on colon cancer, which is publicly
available. The dataset consists of 62 samples, 22 of
which are normal and 40 of which are from colon can-
cer tissues. The genes are already pre-filtered, consist-
ing of the 2,000 genes. We launched our algorithms

L1-SVM Cvx RR RR×5

0.15 0.15 0.2 0.164
0.04s 0.04s 0.04s 2.22s

Table 2. Test error rates and average running time in sec-
onds on colon cancer data

If at least 3 of the following conditions are met,
then the mushroom is poisonous

bruises = yes
odor ∈ {almond, foul,musty, none, pungent}

gill attachment = attached
gill spacing = crowded
stalk root = rooted

stalk color above ring = pink
stalk color below ring = pink

ring number = one
ring type ∈ {large, pendant}
spore print color = brown

Table 3. M -of-N rule for the mushrooms dataset

with k = 15 to select 15 genes only. We did not plot
the result of GR because each run of GR took a huge
amount of time. Instead, RR × 5 is a variant of ran-
domized rounding that selects the best out of 5 ran-
dom roundings at each time step. It turns out that
RR × 5 achieves a much better error rate than RR
in this case (but not on the datasets of the previous
subsections). Thus, we obtain a concept much simpler
than the linear hypothesis generated by the SVM, with
comparable accuracy.

4.4. Mushrooms

Finally, we ran experiments on the “mushrooms”
dataset to evaluate how M -of-N rules are learnt using
rounding algorithms. This dataset contains 22 features
which are all nominal. We transformed these features
into binary features, and ran our discrete linear learn-
ing algorithms on this dataset, without imposing any
cardinality constraint.

With an accuracy of 98%, the M -of-N rule shown in
Table 3 was produced. We ran 10 times 10 fold cross
validation with our algorithms (see table 4). Algo-
rithm Cvx achieves a perfect classification. Here, GR
outperforms RR, but running RR several times (and
choosing the best solution) considerably improves the
accuracy results.
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Cvx RR RR×20 GR

0 0.6 0.014 0.023
0.24s 0.26s 0.74s 11s

Table 4. Test error rates and average running time in sec-
onds on colon cancer data

5. supplemental material

Results and proofs shown in this section only appear
in the extended version of this work.

Theorem 9. For a training set {(xi, yi)}mi=1, checking
if there exists a m-of-n rule achieving zero error is NP-
hard.

Proof. By reduction from the exact 3-cover problem.
Let U = {1 . . .m} be a set of elements and C =
{C1 . . . Cn} a collection of 3-subsets of U . There exists
an exact 3-cover of U iff there exists C′ ⊆ C such that
each element of U is covered exactly once by some
subset of C′. Let us build our dataset, consisting of
2m + 3 examples and n + 2 features. As usual, the
ith example is xi = (xi,1 . . . xi,n+2) and its label is yi.
To begin, let us describe the 2m first examples. For
each i ∈ U , we have a positive example xi and a nega-
tive example xm+i. We have xi,n+2 = 1 and xi,n+1 =
xm+i,n+1 = xm+i,n+2 = 0. Also, for all i ∈ {1 . . .m}
and i ∈ {1 . . . n}, we have xi,j = xm+i,j = 1 if i ∈ Cj ,
otherwise xi,j = xm+i,j = 0. The last three exam-
ples are build as follows. We have y2m+1 = +1 and
y2m+2 = y2m+3 = −1. Finally, we have x2m+1,n+1 =
x2m+1,n+2 = x2m+2,n+1 = x2m+3,n+1 = 1. All other
attributes of last three examples are set to zero. This
construction is summarized on figure ??.

Let us now prove that C′ is a solution to the exact
3-cover problem if and only if there is a rule classify-
ing the data correctly. Let us start with the only if
part. It is straightforward to check that if C′ is a so-
lution to the X3C problem, then the rule “if at least 2
features among the subset C′ ∪ {n+ 1, n+ 2} are set
to one, then the example is positive” correctly classi-
fies the data. Now the if part. Assume there exists
some learnt rule correctly classifying the data. To cor-
rectly classify the last three examples, such a learnt
rule must necessarily be of the form “if at least 2 fea-
tures among the subset C′ ∪ {n+ 1, n+ 2} are set to
one, then the example is positive”. So each positive
examples must be covered by at least two features.
Let us show that each positive example is covered by
exactly two features. First note that each example xi
for i ∈ {1 . . .m} is covered once by the feature n + 2.
Assume by contradiction that example xi is also cov-
ered more than once by the first n features. Then, the

a1 . . . an an+1 an+2 lab

C1 . . . Cn

0
...
0

1
...
1

+
...
+

C1 . . . Cn

0
...
0

0
...
0

−
...
−

0 1 1 +
0 0 1 −
0 1 0 −

Table 5. Summary of the construction of theorem ??

negative example xi+m would be incorrectly classified.
Thus, the set C′ consists in an exact 3-set cover.

Proof. of lemma 2

Let σ1 . . . σn denote rademacher random variables. Let

us show that for any k ≥ 2, we have E
[∣∣∣∑k

i=1 σi

∣∣∣] >√
k
8 is k is even, and E

[∣∣∣∑k
i=1 σi

∣∣∣] > √
k−1
8 is k is

odd. Let z be a binomial random variable with pa-
rameters p = 1

2 and k. Then the mean deviation (see
e.g. (?) for the definition) is MD = E [|z − E [z]|] =
1
2k

(⌊
k
2

⌋
+ 1
) (

k
b k2 c+1

)
. If k is even, then

(
k

b k2 c+1

)
=

k! k2
k
2 !
k
2 !(

k
2+1)

=
(
k
k
2

)
k
k+2 ≥

1
2

(
k
k
2

)
for k ≥ 2. Then from

Stirling’s formula, we get
(
k
k
2

)
> 2k−1√

k
2

= 2k√
2k

(see e.g.

corrolary 2.9 of (?)). Thus, MD > k
4
√
2k

= 1
4

√
k
2 . Now

note that E
[∣∣∣∑k

i=1 σi

∣∣∣] = 2E [|z − E [z]|]. Thus, for

even k, we get E
[∣∣∣∑k

i=1 σi

∣∣∣] >√k
8 . Also, if k is odd,

we can write E
[∣∣∣∑k

i=1 σi

∣∣∣] > E
[∣∣∣∑k−1

i=1 σi

∣∣∣] >√k−1
8 .

Let us now derive the upper bound: E
[∣∣∣∑k

i=1 σi

∣∣∣] ≤√
E
[(∑k

i=1 σi

)2]
=

√
V ar

(∑k
i=1 σi

)
=
√
k.

Proof. of lemma 5 Let z ∈ Rn be a random vec-
tor defined as follows zi = xi (ci − wi). Then,
we have E [zi] = 0 and E

[
z2i
]

= x2i
(
wi − w2

i

)
=

x2iwi (1− wi) ≤ x2
i

4 . Because the variables zi are in-
dependent zero mean random variables, we can apply
the following Bernstein’s inequality:

P
[∣∣∣∑ zi

∣∣∣ > t
]
≤ 2 exp

{
− t2/2∑

i Ez2i + ‖z‖∞ t/3

}
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To derive the first bound, we start by noting that∑
i Ez2i ≤

1
4 ‖x‖

2
2. Thus, rewritting Bernstein inequal-

ity and bounding it by δ yields

P
[∑

zi > t
]
≤ 2 exp

{
− t2/2

1
4 ‖x‖

2
2 + ‖x‖∞

t
3

}
≤ δ

By taking the logarithm, this last inequation becomes

t2

2 − ln 2
δ

(
1
4 ‖x‖

2
2 + ‖x‖∞

t
3

)
≥ 0, which is a polyno-

mial inequation of the form at2 + bt + c ≥ 0 with
a = 1

2 , b = − 1
3 ‖x‖∞ ln 2

δ and c = − 1
4 ‖x‖

2
2 ln 2

δ . Let

t∗ = −b+
√
b2−4ac
2a . First note that any t ≥ t∗ is a solu-

tion to this inequation. We will be interested in finding
an t ≥ t∗ (thus satisfying Bernstein’s inequality) which
has a more readable form than t∗.

t∗ =
−b+

√
b2 − 4ac

2a

≤ −2b+
√
−4ac

2a

= 2
3 ln 2

δ ‖x‖∞ +
√

1
2 ln 2

δ ‖x‖
2
2

≤ ln 2
δ

(
2
3 ‖x‖∞ + ‖x‖2

1√
2 ln 2

δ

)
≤ ln 2

δ ‖x‖2

(
2
3 + 1√

2 ln 2
δ

)
≤ 1.52 ‖x‖2 ln 2

δ = t

Note that the first inequality holds because
√
u+ v ≤√

u +
√
v. Also the last inequality holds because for

any δ ≤ 1, we have 2
3 + 1√

2 ln 2
δ

≤ 1.52.

Now let us proove the second bound with the exact
same technique. Note that

∑
i Ez2i ≤

∑
i x

2
iwi ≤

‖x‖2∞W1. Plugging this formula into Bernstein’s
bound, we get:

P
[∑

zi > t
]
≤ 2 exp

{
− t2/2

W1 ‖x‖2∞ + ‖x‖∞
t
3

}
≤ δ

Again, this can be written as a polynomial inequation
at2 + bt + c ≥ 0 where a = 1/2, b = −‖x‖∞

1
3 ln 2

δ ,

c = −W1 ‖x‖2∞ ln 2
δ . A solution is t† = −b+

√
b2−4ac
2a .

Looking for an upper bound on t†, we get

t† =
−b+

√
b2 − 4ac

2a

≤ −2b+
√
−4ac

2a

= 2
3 ‖x‖∞ ln 2

δ +
√

2W1 ‖x‖2∞ ln 2
δ

≤ ‖x‖∞ ln 2
δ

(
2
3 +

√
2

ln 2
δ

.
√
W1

)
≤ ‖x‖∞ ln 2

δ

(
2
3 + 1.7

√
W1

)
Last line holds because

√
2

ln 2
δ

≤ 1.7 for any δ ≤ 1
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