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ON QUATERNIONIC FUNCTIONS
PIERRE DOLBEAULT

ABSTRACT. Several sets of quaternionic functions are described and
studied. Residue current of the right inverse of a quaternionic function
is introduced in particular cases.

1. INTRODUCTION

We will work with the definition of quaternions using pairs of complex
numbers and with a modified Cauchy-Fueter operator that have been in-
troduced in [CLSSS 07]. We will only use right multiplication; the (right)
inverse of a nonzero quaternion is defined. We will consider (for simplic-
ity) C*° IHl-valued quaternionic functions defined on an open set U of IHl
containing 0. If such a function does not vanish over U, it has an (alge-
braic) inverse which is defined almost everywhere on U. Examples are given
(section 2).

The origin of this research is a tentative of extension to right inverse
of a quaternionic function of the notion of residue current of a meromor-
phic differential 1-form of one complex variable, which will be developed
in section 5. In one complex variable, if the given function is holomorphic,
with isolated zeros of finite multiplicity, its inverse is meromorphic, then
holomorphic outside the set of poles; so it is natural to search when this
property extends to hyperholomorphic functions.

In section 3, we characterize the quaternionic functions which are hyper-
holomorphic and whose inverses are hyperholomorphic almost everywhere,
on U, as the solutions of a system of two non linear PDE. We only find non
trivial examples of a solution, showing that the considered space of func-
tions is significant: we will call theses functions hypermeromorphic. This
also defines a space of germs of functions at 0.

In section 4, we try to describe a subspace Hy of hyperholomorphic
and hypermeromorphic functions defined almost everywhere on U, having

”good properties for addition and multiplication”; we obtain again systems
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2 P. DOLBEAULT

of non linear PDE, and we give first results on, mainly unknown, spaces of
functions.

In section 5, we first recall Cauchy principal value and residue current in
C, locally at 0. Afterwards, we define and study, locally, Cauchy principal
value and residue current for the inverse of a quaternionic function, in very
particular cases, and in relation with the classical theory in two complex
variables.

This paper is a first announcement of a more complete one in progress.

2. QUATERNIONS. JH[-VALUED FUNCTIONS. [CLSSS 07]

2.1. Quaternions. If ¢ € HHI, then ¢ = z; + 25 where 2y, 25 € C, hence
IH = C? = [R* as complex or real vector space. We have: z,j = jz; (by
computation in real coordinates); by definition, the modulus of q is | q |=
(ol + |22 f) 2.

The conjugate of q is § = Z; — 2oj. Let * denote the (right) multiplication
in Hl:

q*q = (21 +20)) % (Z1 — 22J) = |21|* — 2122 + 22j21 — 2020 = |21]* + | 22]%,
then: the (right) inverse of ¢ = 21 + 29 is: (|z1]* + |22]*)7'q = (|21]* +
|22|) 71 (Z1 — 22]). Moreover: (|z1]? +|22|?) "1 (Z1 — 22j) * (21 + 29j) = 1, so the

right inverse of ¢! is g.

2.2. Quaternionic functions. Let U be an open set of IJH = C? and
feC®U,H), then f = fi + faj, where f1, fo € C>°(U,C). The complex

valued functions fi, fo will be called the components of f.

Remark that [Hl is a real vector space in which real analysis is valid, in

particular differential forms, distributions and currents are defined in IHI.

Ofi. .0f,

R k that —
emark tha ERA 821

and analogous relations.

2.3. Modified Cauchy-Fueter operator D. Hyperholomorphic func-
tions. ([CLSSS 07], [F 39]). For f € C(U, HI), with f = fi+ f2j, where
f17f2€COO(U7©>7 _
1,0 0 1,0fi 0Of, 1.0f Of,
D - (L 2 _ )2 (2 P2
1@) =5 (55 Higg M@ =555 — )@ +i5(5 + 55) @
A function f € C>(U, H) s said to be hyperholomorphic 1f Df =0.

Ofi  9fy

Characterization of the hyperholomorphic function f on U: =— — —= =

851 622
ofi | Ofs
0; = + == 9 =0,on U.
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The conditions: f; is holomorphic and: f5 is holomorphic are equivalent.
So holomorphic functions will be identified with hyperholomorphic functions
f such that fo = 0.

Let f" = f{ 4+ f53, f7 = f71+ f”2j be two hyperholomorphic functions.

For every a € HI, D(f'a) =0, D(f'+ f7) =Df + Df” = 0.

Proposition 2.1. The set H of almost everywhere defined hyperholomor-
phic functions is an IHI -right vector space.

Proposition 2.2. Let f', f” be two hyperholomorphic functions. Then,
their product ' 7 satisfies:

3£ 8 2
DI ) = Df il + (1) + g )]
Proof. f"= fi+ f53, [7 = [71+ [72] be two hyperholomorphic functions.

We have: f'x 7 = (fi+f3)(f 1+ f720) = FF 1= fof ot (£ o foF71)i
Compute

1

> +Ja— VA = B2+ (F7+ £ 1))

By derivation of the first factors of the sum f’ x f”, we get the first term:

LGB iy )+ R 2 - T
L OR ORI e e oy OSSO0 e s e .
=555, TG UMt 7 + 5 (G0 +ig )ilf7ad + f7) = Df +jf

By derivation in
R R RS AT AR ER VAN RN TaN)
2°0z7 0%
of the second factors of the sum f'x f” we get the second term (up to factor
l)-
5):

,0f71 . 0f"1 af
Ji—— 77, +f1 07, +f1

2 af’ Of’o. —.0fs .,.0f"1 —..0f"1
J+f1 0% J+fzJ o Jt+fo 0% +fo) o +f0ii 0%

0 —
= (fitFad) (5 )(f” +/720)+ (f1+fzJ)J8_ (f”1+f”2j)=((f{+f£j)(8—zl)+(f1+fzJ)J8_)(f” +/72))

= (g2 + Tipe)f

21



4 P. DOLBEAULT

If the components of f" and f” are real, the second term is:

S+ DG + T ) (1 £72d) = DS

i.e.

Corollary 2.3. The set H of almost everywhere defined hyperholomorphic
functions whose components are real is an IR-right algebra.

2.4. Null set and inverse of a quaternionic function. We call inverse
of a function f : ¢ — f(q), the function f~': g+ f(q)~t. Let f = fi + fo]
be a quaternionic function on U. The null set Z( f) satisfies: f; = 0; fo =0
then Z(f) is of measure 0 in U. Ex.: f; = Z1; fo = Zo, then Z(f) = {0}. Note
that if f is holomorphic, then, f, = 0 and Z(f) is a complex hypersurface
in C2.

Inversion and hyperholomorphy. The inverse of the quaternionic function

f is the peculiar quaternionic function defined almost everywhere on U:
= (AP +1LP) T = f3) = f17'F

where f is the (quaternlonlc) conjugate of f.

1
Assume f to be hyperholomorphic and Z(f) = {0}, then 7 is not neces-
sarily hyperholomorphic outside {0}.

Ex.: f =7Z, + Z5j, then
1

! 71+ 29%2) N2 — Zaj); D(5
?Z(Z1Z1+222’2) (21 23); D(f)%oa

Example of a function hyperholomorphic outside 0.
H(q) = (2171 + 2222)"%(Z1 — Z2j) is hyperholomorphic since:

1
DH((]) = 5 (2121 + 2222)_3(—22151 + 2151 + 2252 — 22222 + (2’121 + 2’222)) = O

But F = 2, +7%,j is not hyperholomorphic: the conjugate of F is F = Z; —Zsj;

(21 +7Z2)) * (Z1 —Z2)) = z1Z1 + 2’222 So F~1 = (z; — 22j) (2121 + 2272) !

-1
H(q) = Fﬁ (lel + 2252)71 = W

(H is the Cauchy kernel for the modified Cauchy-Fueter operator D).
Inverse of a holomorphic function.

Let f = f; + 0j be a hyperholomorphic function. Then f~' = f;! + 0j

and f~! is hyperholomorphic outside of the complex hypersurface Z(f).

, and

Remark that Z(f) is a subvariety of complex dimension 1, then of measure
zero, in U.

We will consider almost everywhere defined hyperholomorphic functions
on U. Ex.: holomorphic, meromorphic functions.
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3. HYPERHOLOMORPHIC FUNCTIONS WHOSE INVERSES ARE
HYPERHOLOMORPHIC ALMOST EVERYWHERE.

Proposition 3.1. The following conditions are equivalent
(1) the function f = f1+ foj and its right inverse are hyperholomorphic,
when they are defined;

(71) we have the equations:

8f1 e afy _
3) (Fi- G2 — P — et =0
- on T, o, _
(4) anzl + 821 (f fl) f2 822 =0.
Proof. Let f = f1 + foj be a hyperholomorphic function and g = ¢; +
goj = [f17N(F) — fai) its inverse; so gi = |f]71Fy; g2 = —|f|"Lfa, where

|fl = (fuf1 + fofa).

1, 0 .0 1
Dy(q) = 5(8—21 +Ja—22)9(Q)

(ag1 992 (g) + 1(% + 992)(y)

2 0z, 0Oz 230zZy 0z
of ofy of1 of,  0fs of,
=17 f —1I7R(5 ff1+f1 f +—ff2+f2 / — ), etc
(o0) 20Dy = (17, 1T (L4 W2y 5, 1, 00 57,00, 00
RACTES R T A T S R
of, 0Of, of, ofy - . 0f,
TR (VA AT T I AL LT A O
TSR TN AT AR fzfzaf L)
f being hyperholomorphic, g hyperholomorphlc is equlvalent to:
9fy 3f1 ofi f N Of2
() +f1f18 +f2f2 f1f1a_ f1f2 f1f28 foZa
+f2§1‘2<f T =0
8f1 Of2 3f2 2 =, 77 9N + 0f,
+f2f2 ff?a— f1f2 f18_ (fl—f1)+f1an—zlJrflan—Z1
Of2 _
+f2f28—z1 =0

After conjugaison of the first equation, and using
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6;}1 6]2 éJl 6J2
1 =5 =0+ 5==0
( ) 851 822 8_2 82'1 ’

we get:
(s5)
- 0 of of of
T A LA AL TR R R R YA TR L
e — of 0 of
TS ATV BYAUIR S K0 O K VRS SN AT NI

Assume f; # 0, fo # 0. After multiplication of the first equation by f1
and of the second by — f5, and sum, we get

8f \ +0f L Ofy

(f1— fl) 92 25, =0
By an analogous process, we get:

= 0f1 | Ofy 8f 5

f2azl azl (f fl) f2 _0

0

Corollary 3.2. If f satisfies the conditions of the Proposition, the same 1is
true for af with o € IR.

Let f = fi1+0j be an almost everywhere holomorphic function, then the
condition (i7) of Proposition 3.1 is satisfied.

Now give another example of quaternionic function satisfying the condi-
tions of Proposition 3.1:

Proposition 3.3. Let f = fi + fo], with fi = 21 +Z1 + 20 + Z2 + A,
fo=—21—Z1+2n+7Z+B, A, B c IR, then: f and f~! outside the zero set
of f, are hyperholomorphic The null set of f = f1+ fa], for fi, f2 as above,
for A= B =0, is:

21+ 21+ 29 + 29 :0;—21 — 21+ 29+ 2o =0
i.e, by difference and sum: Z1 + 2y = 0520+ 29 = 0, i.e. 11 = 0;29 = 0 in
R*.
Proof. fi = 21 +Z1 + 22 + Zo + A, A constant; then:

of, of. . ap,
3) —n‘f—Q‘f— »e—ngg—ﬁ:o,
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0
Try: fs real. Then a_fz =—land fo = —2 + C(Z1,22,22) = —21 — Z1 +
21
ocC’
C'(Z1, 22, 2Z2), with C’ real and o 0.
21
0 oc’
From (4), a_—Z = 852 =l,and " =2+ 2+ C” (5(;;2)7 Withag” real.
fo=—21—Z1+ 20+ 22+ C"(Z1, 22), with C” real, and — =0, — = 0.
822 821
C” being holomorphic in 2z, and Z; is a constant B.
Hence: fo = —21 —Z1 + 20 + 2o + B, with B € IR. O

4. ON THE SPACE OF HYPERALGEBRAIC FUNCTIONS

4.1. Definition. Let U be an open neighborhood of 0 in IH = C2. From
now on,we will only consider the quaternionic functions f = f1 + faj having
the following properties:

(1) when f; and fy are not holomorphic, the set Z(f1) N Z(f2) is discrete
on U;

(i) for every q € Z(f1) N Z(f2), J3(.) denoting the jet of order o at q
[M 66], let m; = sup JJ"(f;) = 0; my, i = 1,2, is finite.

Define: my = 1rallf m;.

Remark that, 1;1 this paper, the considered peculiar examples of quater-
nionic functions f satisfy: the set Z(f1) N Z(f2) is reduced to one point and
that o; = 1.

Let f = fi 4+ f2j be a quaternonic function on U and g = ¢ + ¢oj =
F17NF, = fai) its inverse; so gy = /17y g2 = —If1"fo, where [f]
(fifi+ fafs)-

The right inverse of g is h = hy + hoj, with hy = |g|71g,; he = —|g| ' g2;
9l = F12Fufy + Fake) = |FI% then: hy = g9, = fi. ... So the right

wverse of g is f.

4.2. Definition. We will call hypermeromorphic function, on U, any al-
most everywhere defined hyperholomorphic function whose right inverse is
hyperholomorphic almost everywhere.

Thanks to Definition 4.1, meromorphic functions in one complex varable
are hypermeromorphic.

From Proposition 3.3, the set M of hypermeromorphic functions is not
reduced to the space of meromorphic functions in one complex variable.

Let My be the set of elements f of M described in Proposition 3.3. M,

is an IR-vector space; it also contains f~! and the products f * f~! = 1.
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Proposition 4.1. Let f , g be two hypermeromorphic functions on U, then
the following conditions are equivalent:

() the product f x g is hypermeremorphic;

(ii) f and g satisfy the system of PDE:

df1 8fz +.991 | = Og 99,
_ 2L — 1,222
(821+82)+(f1 f1)8§1+f262 anzl
df1 8?2 - g1 Jgs
ZJL_ZJ2 _ 222
g<82’2 621) (fl f) fZal 2852
Proof. Let f = f1+ foj and g = ¢1 + g2j two hypermeromorphic functions
0
and fxg= fign — f2G5 + (f192 — f2g;)j their product, then —afl — —f2 =
_ 21 622
0; a—fl + % = 0 and..., on U and, the conditions for the product to be
82’2 82’1

hyperholomorphic are:

I(fig1 — f232) _ A(f192 — f291) _
851 622 n

dfi 8f2 g1
(821 82) fl =

O(f191 — f295) i (f192 - fzgl) _
822 821 n

Jdg 0 Jq
f1 92 angl p2 p) —0

z2 82’1

ofi 9f g1 39
(ﬁ_a—zf)Jrfl +f1 == fy

991 . 09,
0z 207,
O

Corollary 4.2. Let f, g be two hypermeromorphic functions on U,whose
components are real, then the following conditions are equivalent:

(1) the product f * g is hypermeremorphic;

(13) f and g satisfy te system of PDE:

afi  0fs I a92 .
(821+822)+f282 f2
J1 dfs g1 992 .
gl(&Zz B 821> f2821 B 2652 =0

4.3. Definition. We will call hyperalgebraic the hypermeromorphic func-

tions whose sum and product are hypermeromorphic: see section 4.2.

Proposition 4.3. The set M of hypermeromorphic functions on U is a
subalgebra of the algebra of quaternionic functions.
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Proposition 4.4. The set A of hyperalgebraic functions on U is a "field”

with only associativity of the multiplication.

5. ABOUT RESIDUE CURRENT IN QUATERNIONIC ANALYSIS: PARTICULAR
CASES.

5.1. Residue current in an open set of C. [D10al,[D10b]
Let w = ¢(z)dz be a meromorphic 1-form on a small enough open set
0 € U C C having 0 as unique pole, with multiplicity k:

k
g= Z % + holomorphic function

=1
Note that w is d-closed.
Let ¢ = vodz € D}(U) be a 1-test form. In general g1 is not integrable,
but the Cauchy principal value

Vplol) =lm [ wA

e—0
|z|>€
exists as a current, and dVplw] = d”Vp|w] = Res|w] is the residue current

of w. For any test function ¢ on U,

Res|w](¢) = lim wAp

e—0 ‘Z‘ZE

k—1 »
j
Then Res[w]| = 271 reso(w)dg + dB = g bj%éo where resg(w) = a_;
2
=0

is the Cauchy residue. We remark that J, is the integration current on the

k—1 y

subvariety {0} of U, that D = E bj% with b; = Aja_; where the \; are
2
i=0

universal constants.
Conversely, given the subvariety {0} and the differential operator D, then
the meromorphic differential form w is equal to gdz, up to holomorphic form;

hence the residue current Res|w] = Ddy, can be constructed.

5.2. Cauchy principal value of a quaternionic 1-form. Let f be a
quaternionic function on an open neighborhood U of 0 in IHl satisfying the
conditions of Definition 4.1, with m; = 1,7 =1, 2.

d 1
Let w = Tf = ?(dfl + df>j). We want to extend w into a current of

degree 1; first, consider the part of type (1,0). Let ¢ = ¢y dz; A dzs A dZy +
Podzy N\ dzZ1 N\ dZo be a test form.
Define:
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Vplw](¢)) = lim (L1 P+1f2?) 7 (1= fod) (df+dfod) A1 dZy Adza AdZo +1pad 2y AdZ1 AdZ)

=20 f1e
We have to prove the existence of Vplw] at least if f is hyperholomorphic
(Check the proof in the classical case where f is holomorphic in one complex
variable or in two complex variables where the proof is less easy, but don’t
need the resolution of singularities).

(dfy + df2j) A (Y1dZzy A dza A dZs + adzy A dZy A dZ2)

N 3f1 Of2—  Ofa— .. _ _
=5 o dzy Ndzy Ndze N d
(8zl¢ % (a_lﬁ/) az2@/)2).]) Z1 Ndzy N dzy N\ azy
Take polar coordinates: A =| ¢ |= (]z1]> + |22/2)? and the spherical

coordinates on AS?. Let do be the volume element on S*, and K a convenient

universal constant, then:
le AN dgl N dZQ A d§2 = KX\ Ndo

(8f1 afl 8f2

Vollw) =tm [ (APHRPR) T fad) (5 vt g (O

0 p1>e 0z

U — 1/12) ) KAdANdo

Same result for the part of type ((0,1) of Vp[w].

We will prove the existence of Vp[w] in a particular case:

5.2.2. Particular case: fi = Z1; fo = Z3. Then: Df = 0.

Vp[CU] (?/)) = lim (|§1|2+|§2|2)_1(§1—22.])(d21+dzgj)/\(’(/)1d§1/\dZQ/\d§2+’l7Z)2d21/\d§1/\d§2)
flz

Vplw](y) = lim (1717 + [2) 7' (21 — 220) (adz1 A dZ1 A d2y A d75))

20 J)f1ze
Vplw](¢p) = lim A2(Z1 — 22)) (Ko AdA A doj)
e—0 A>e
Same result for the part of type ((0,1) of Vplw].

This defines a current of order 0 on IH.
523. If fo =0 and f = f; is holomorphic, then

d
Vplw](v) = lim 7f A (V1dZy A dza N\ dZog + adzy A dZy N dZs)

1
8f f ’QZ) )d21 A d21 N dZQ N dZQ

77Z) +82’2



ON QUATERNIONIC FUNCTIONS 11
5.3. Residue.

5.3.1. Assume: Z(f) = {0}. We want to define a current, Res[w], and first
its part of type (1,1), on a test form ¢ = ¢11dz; A dZ1 + @12dz; A dZo +
wo1dzy A\ dZ1 + paodze N dZo, as follows:

) Reslolle) =iy [ (A7 + 1577~ )+ i) )

(dfy + df2j) (@) =

0 0 0 0
= (idzﬁ—id@—(#dil—@d?g)j)((plldzl/\d§1+<p12dzl/\d?g—l—gomdzg/\dil+9022d22/\d52)
82’1 82’2 82’1 622
. 8f1 — — afl = =
= 87(121/\((pgleQAle+(,022d2’2/\d22)+87d22/\((,011d21/\d21+(,012d21/\dZQ)
1 2
Ofa . _ v, Ofa . _ _
——d21JA<(p21d22Ad21+g022d22/\d22>+TdZQJ/\(QOHle/\le—'—(,OleZl/\dZQ)
851 8ZQ
0 0 0 0
= (—8—2@21 —+ 8—2()011)6121 ANdzi AN dzy + (a—2@22 - 8—29012)le N dza N\ dzy
Ofs_  0fa_ . _ Ofs  Ofa_ . _
+(a_7j<ﬂ21 - 8_72<P11).]d21 NdzZy Ndzy + (= 8—59022 - 6—72%2)-]‘&1 Ndz Ndz

= (A+ Bj)dzy NdzZy Ndzy + (C + Dj)dzy N dzy N dzo
Take polar coordinates: A =| ¢ |= (Jz1]*> + |22/%)2 and the spherical
coordinates on S*. Let do the volume element on S?, and K;, (j = 1,2) a
convenient universal constant:
dzy AN dzy N dzl|gs = Kid\ N\ do
dz1 N dzs N\ dZslgs = KedA N\ do

Same result for the part of any type of Res[w].
5.3.2. Particular case. f; =Z1; fo = Z3. Then: Df = 0.
(dZy + dZ2j) () = Y2dZi A dza A dZy + dZaj A p12dzy A dZs
= ©aodzy A dzy A dZs + Prpdzy A dzo A dZo

RQS [w] ((p) = hm (|21 |2+|22|2)_1 (21 —52.]) (SOQngl AdZQAdEQ+¢12d§1/\dZQ/\d§2j)

e—0 ‘f|:€

= lim (1] + [2[*) 7 (21 — Z2d) (22 — Prod)dZ1 A dzy A dZs)
=20 J1f1=<
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= lim/ (Iz1]* 4 |22]?) ' (21 — Z2J) (22 — Praj)edo
e—0 g3

= resw] (22 — P123)(0) = do(p22 — P12)
/ means the integration on £S3, where S? is the unit 3-sphere and
Ifl=e

do the volume element on S?, res[w], a constant playing the part of the
Cauchy residue, and dy the Dirac measure at 0.

Same result for the part of any type of Res[w].
5.3.3. f holomorphic. If fo =0 and f = f; is holomorphic,

: dfr
Res|w]|(¢) = lim —
[w](p) = lim i o
Assume f; = z;, then: z; = £, and
21
Res[w](¢) = lim id@cpgvg(eew, 29)dzy N\ dZy = 27i[Z(21)](p)

e—0 0

(¢)

Same result for any holomorphic f; since f; = ce®.
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