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Several sets of quaternionic functions are described and studied. Residue current of the right inverse of a quaternionic function is introduced in particular cases.

Introduction

We will work with the definition of quaternions using pairs of complex numbers and with a modified Cauchy-Fueter operator that have been introduced in [CLSSS 07]. We will only use right multiplication; the (right) inverse of a nonzero quaternion is defined. We will consider (for simplicity) C ∞ IHI-valued quaternionic functions defined on an open set U of IHI containing 0. If such a function does not vanish over U, it has an (algebraic) inverse which is defined almost everywhere on U. Examples are given (section 2).

The origin of this research is a tentative of extension to right inverse of a quaternionic function of the notion of residue current of a meromorphic differential 1-form of one complex variable, which will be developed in section 5. In one complex variable, if the given function is holomorphic, with isolated zeros of finite multiplicity, its inverse is meromorphic, then holomorphic outside the set of poles; so it is natural to search when this property extends to hyperholomorphic functions.

In section 3, we characterize the quaternionic functions which are hyperholomorphic and whose inverses are hyperholomorphic almost everywhere, on U, as the solutions of a system of two non linear PDE. We only find non trivial examples of a solution, showing that the considered space of functions is significant: we will call theses functions hypermeromorphic. This also defines a space of germs of functions at 0.

In section 4, we try to describe a subspace H U of hyperholomorphic and hypermeromorphic functions defined almost everywhere on U, having "good properties for addition and multiplication"; we obtain again systems of non linear PDE, and we give first results on, mainly unknown, spaces of functions.

In section 5, we first recall Cauchy principal value and residue current in C, locally at 0. Afterwards, we define and study, locally, Cauchy principal value and residue current for the inverse of a quaternionic function, in very particular cases, and in relation with the classical theory in two complex variables.

This paper is a first announcement of a more complete one in progress.

Quaternions. IHI-valued functions. [CLSSS 07]

2.1. Quaternions. If q ∈ IHI, then q = z 1 + z 2 j where z 1 , z 2 ∈ C, hence IHI ∼ = C 2 ∼ = IR 4 as complex or real vector space. We have: z 1 j = jz 1 (by computation in real coordinates); by definition, the modulus of

q is || q ||= (|z 1 | 2 + |z 2 | 2 ) 1 2 . The conjugate of q is q = z 1 -z 2 j. Let * denote the (right) multiplication in IHI: q * q = (z 1 + z 2 j) * (z 1 -z 2 j) = |z 1 | 2 -z 1 z 2 j + z 2 jz 1 -z 2 jz 2 j = |z 1 | 2 + |z 2 | 2 , then: the (right) inverse of q = z 1 + z 2 j is: (|z 1 | 2 + |z 2 | 2 ) -1 q = (|z 1 | 2 + |z 2 | 2 ) -1 (z 1 -z 2 j). Moreover: (|z 1 | 2 + |z 2 | 2 ) -1 (z 1 -z 2 j) * (z 1 + z 2 j) = 1, so the right inverse of q -1 is q. 2.2. Quaternionic functions. Let U be an open set of IHI ∼ = C 2 and f ∈ C ∞ (U, IHI), then f = f 1 + f 2 j, where f 1 , f 2 ∈ C ∞ (U, C).
The complex valued functions f 1 , f 2 will be called the components of f . Remark that IHI is a real vector space in which real analysis is valid, in particular differential forms, distributions and currents are defined in IHI.

Remark that

∂f 1 ∂z 1 j = j ∂f 1 ∂z 1 and analogous relations.

Modified Cauchy

-Fueter operator D. Hyperholomorphic func- tions. ([CLSSS 07], [F 39]). For f ∈ C ∞ (U, IHI), with f = f 1 +f 2 j, where f 1 , f 2 ∈ C ∞ (U, C), Df (q) = 1 2 ∂ ∂z 1 + j ∂ ∂z 2 f (q) = 1 2 ∂f 1 ∂z 1 - ∂f 2 ∂z 2 (q) + j 1 2 ∂f 1 ∂z 2 + ∂f 2 ∂z 1 (q). A function f ∈ C ∞ (U, IHI) s said to be hyperholomorphic if Df = 0.
Characterization of the hyperholomorphic function f on U:

∂f 1 ∂z 1 - ∂f 2 ∂z 2 = 0; ∂f 1 ∂z 2 + ∂f 2 ∂z 1 = 0, on U.
The conditions:f 1 is holomorphic and: f 2 is holomorphic are equivalent. So holomorphic functions will be identified with hyperholomorphic functions f such that f 2 = 0.

Let

f ′ = f ′ 1 + f ′ 2 j, f " = f " 1 + f " 2 j be two hyperholomorphic functions. For every α ∈ IHI, D(f ′ α) = 0, D(f ′ + f ") = Df ′ + Df " = 0.
Proposition 2.1. The set H of almost everywhere defined hyperholomorphic functions is an IHI-right vector space.

Proposition 2.2. Let f ′ , f " be two hyperholomorphic functions. Then, their product f ′ * f " satisfies:

D(f ′ * f ") = Df ′ * jf " + f ′ ( ∂ ∂z 1 ) + f ′ j ∂ ∂z 2 f " Proof. f ′ = f ′ 1 + f ′ 2 j, f " = f " 1 + f " 2 j be two hyperholomorphic functions. We have: f ′ * f " = (f ′ 1 +f ′ 2 j)(f " 1 +f " 2 j) = f ′ 1 f " 1 -f ′ 2 f " 2 +(f ′ 1 f " 2 +f ′ 2 f " 1 )j Compute 1 2 ∂ ∂z 1 + j ∂ ∂z 2 f ′ 1 f " 1 -f ′ 2 f " 2 + (f ′ 1 f " 2 + f ′ 2 f " 1 )j
By derivation of the first factors of the sum f ′ * f ", we get the first term:

1 2 ∂f ′ 1 ∂z 1 + j ∂f ′ 1 ∂z 2 (f " 1 + f " 2 j) + 1 2 ∂f ′ 2 ∂z 1 + j ∂f ′ 2 ∂z 2 jj(f " 2 -f " 1 j) = 1 2 ∂f ′ 1 ∂z 1 + j ∂f ′ 1 ∂z 2 (f " 1 + f " 2 j) + 1 2 ∂f ′ 2 j ∂z 1 + j ∂f ′ 2 j ∂z 2 j(f " 2 j + f " 1 ) = Df ′ * jf " By derivation in 1 2 ∂ ∂z 1 + j ∂ ∂z 2 f ′ 1 f " 1 + f ′ 2 jf " 2 j + (f ′ 1 f " 2 j + f ′ 2 jf " 1 )
of the second factors of the sum f ′ * f ", we get the second term (up to factor 1 2 ):

f ′ 1 ∂f " 1 ∂z 1 +f ′ 1 j ∂f " 1 ∂z 2 +f ′ 1 ∂f " 2 ∂z 1 j+f ′ 1 j ∂f " 2 ∂z 2 j+f ′ 2 j ∂f " 2 ∂z 1 j+f ′ 2 j ∂f " 2 ∂z 2 +f ′ 2 j ∂f " 1 ∂z 1 +f ′ 2 jj ∂f " 1 ∂z 2 = (f ′ 1 +f ′ 2 j)( ∂ ∂z 1 )(f " 1 +f " 2 j)+(f ′ 1 +f ′ 2 j)j ∂ ∂z 2 (f " 1 +f " 2 j) = (f ′ 1 +f ′ 2 j)( ∂ ∂z 1 )+(f ′ 1 +f ′ 2 j)j ∂ ∂z 2 (f " 1 +f " 2 j) = f ′ ( ∂ ∂z 1 ) + f ′ j ∂ ∂z 2 f "
If the components of f ′ and f " are real, the second term is:

1 2 (f ′ 1 + f ′ 2 j)( ∂ ∂z 1 + j ∂ ∂z 2 )(f " 1 + f " 2 j) = f ′ * Df " i.e.
Corollary 2.3. The set H IR of almost everywhere defined hyperholomorphic functions whose components are real is an IR-right algebra.

2.4. Null set and inverse of a quaternionic function. We call inverse of a function f : q → f (q), the function

f -1 : q → f (q) -1 . Let f = f 1 + f 2 j be a quaternionic function on U. The null set Z(f ) satisfies: f 1 = 0; f 2 = 0, then Z(f ) is of measure 0 in U. Ex.: f 1 = z 1 ; f 2 = z 2 , then Z(f ) = {0}. Note that if f is holomorphic, then, f 2 ≡ 0 and Z(f ) is a complex hypersurface in C 2 .
Inversion and hyperholomorphy. The inverse of the quaternionic function f is the peculiar quaternionic function defined almost everywhere on U:

1 f = (|f 1 | 2 + |f 2 | 2 ) -1 (f 1 -f 2 j) = |f | -1 f
where f is the (quaternionic) conjugate of f .

Assume f to be hyperholomorphic and

Z(f ) = {0}, then 1 f is not neces- sarily hyperholomorphic outside {0}. Ex.: f = z 1 + z 2 j, then 1 f = (z 1 z 1 + z 2 z 2 ) -1 (z 1 -z 2 j); D( 1 f ) = 0,
Example of a function hyperholomorphic outside 0.

H(q) = (z 1 z 1 + z 2 z 2 ) -2 (z 1 -z 2 j) is hyperholomorphic since: DH(q) = 1 2 (z 1 z 1 + z 2 z 2 ) -3 (-2z 1 z 1 + z 1 z 1 + z 2 z 2 -2z 2 z 2 + (z 1 z 1 + z 2 z 2 )) = 0. But F = z 1 +z 2 j is not hyperholomorphic: the conjugate of F is F = z 1 -z 2 j; (z 1 + z 2 j) * (z 1 -z 2 j) = z 1 z 1 + z 2 z 2 . So F -1 = (z 1 -z 2 j)(z 1 z 1 + z 2 z 2 ) -1
, and

H(q) = F -1 (z 1 z 1 + z 2 z 2 ) -1 = F -1 |F | .
(H is the Cauchy kernel for the modified Cauchy-Fueter operator D). Inverse of a holomorphic function.

Let f = f 1 + 0j be a hyperholomorphic function. Then f -1 = f -1 1 + 0j and f -1 is hyperholomorphic outside of the complex hypersurface Z(f ). Remark that Z(f ) is a subvariety of complex dimension 1, then of measure zero, in U.

We will consider almost everywhere defined hyperholomorphic functions on U. Ex.: holomorphic, meromorphic functions.

Hyperholomorphic functions whose inverses are

hyperholomorphic almost everywhere.

Proposition 3.1. The following conditions are equivalent (i) the function f = f 1 + f 2 j and its right inverse are hyperholomorphic, when they are defined;

(ii) we have the equations:

(3) (f 1 -f 1 ) ∂f 1 ∂z 1 -f 2 ∂f 2 ∂z 1 -f 2 ∂f 1 ∂z 2 = 0, (4) f 2 ∂f 1 ∂z 1 + ∂f 2 ∂z 1 (f 1 -f 1 ) -f 2 ∂f 2 ∂z 2 = 0. Proof. Let f = f 1 + f 2 j be a hyperholomorphic function and g = g 1 + g 2 j = |f | -1 (f 1 -f 2 j) its inverse; so g 1 = |f | -1 f 1 ; g 2 = -|f | -1 f 2 , where |f | = (f 1 f 1 + f 2 f 2 ). Dg(q) = 1 2 ∂ ∂z 1 + j ∂ ∂z 2 g(q) = 1 2 ∂g 1 ∂z 1 - ∂g 2 ∂z 2 (q) + j 1 2 ∂g 1 ∂z 2 + ∂g 2 ∂z 1 (q) ∂g 1 ∂z 1 = |f | -1 ∂f 1 ∂z 1 -|f | -2 f 1 ∂f 1 ∂z 1 f 1 + f 1 ∂f 1 ∂z 1 + ∂f 2 ∂z 1 f 2 + f 2 ∂f 2 ∂z 1 , etc ( * * ) 2|f | 2 Dg = (f 1 f 1 + f 2 f 2 )( ∂f 1 ∂z 1 + ∂f 2 ∂z 2 ) -f 1 f 1 ∂f 1 ∂z 1 -f 1 f 1 ∂f 1 ∂z 1 -f 1 f 2 ∂f 2 ∂z 1 -f 1 f 2 ∂f 2 ∂z 1 -f 1 f 2 ∂f 1 ∂z 2 -f 1 f 2 ∂f 1 ∂z 2 . -f 2 f 2 ∂f 2 ∂z 2 -f 2 f 2 ∂f 2 ∂z 2 +j (f 1 f 1 + f 2 f 2 )( ∂f 1 ∂z 2 - ∂f 2 ∂z 1 ) -f 1 f 1 ∂f 1 ∂z 2 -f 1 f 1 ∂f 1 ∂z 2 -f 1 f 2 ∂f 2 ∂z 2 -f 1 f 2 ∂f 2 ∂z 2 +f 1 f 2 ∂f 1 ∂z 1 + f 1 f 2 ∂f 1 ∂z 1 + f 2 f 2 ∂f 2 ∂z 1 + f 2 f 2 ∂f 2 ∂z 1 f being hyperholomorphic, g hyperholomorphic is equivalent to: ( * * ) +f 1 f 1 ∂f 2 ∂z 2 + f 2 f 2 ∂f 1 ∂z 1 -f 1 f 1 ∂f 1 ∂z 1 -f 1 f 2 ∂f 2 ∂z 1 -f 1 f 2 ∂f 1 ∂z 2 -f 2 f 2 ∂f 2 ∂z 2 +f 2 ∂f 2 ∂z 1 (f 1 -f 1 ) = 0 +f 2 f 2 ∂f 1 ∂z 2 -f 1 f 2 ∂f 2 ∂z 2 -f 1 f 2 ∂f 2 ∂z 2 + f 1 ∂f 1 ∂z 2 (f 1 -f 1 ) + f 1 f 2 ∂f 1 ∂z 1 + f 1 f 2 ∂f 1 ∂z 1 +f 2 f 2 ∂f 2 ∂z 1 = 0
After conjugaison of the first equation, and using

(1)

∂f 1 ∂z 1 - ∂f 2 ∂z 2 = 0; ∂f 1 ∂z 2 + ∂f 2 ∂z 1 = 0,
we get:

( * * ) +f 2 f 2 ∂f 1 ∂z 1 +f 1 (f 1 -f 1 ) ∂f 1 ∂z 1 -f 1 f 2 ∂f 2 ∂z 1 +f 2 ∂f 2 ∂z 1 (f 1 -f 1 )-f 1 f 2 ∂f 1 ∂z 2 -f 2 f 2 ∂f 2 ∂z 2 = 0 +f 1 f 2 ∂f 1 ∂z 1 +(f 1 -f 1 )f 2 ∂f 1 ∂z 1 +f 2 f 2 ∂f 2 ∂z 1 +f 1 ∂f 1 ∂z 2 (f 1 -f 1 )+f 2 f 2 ∂f 1 ∂z 2 .-f 1 f 2 ∂f 2 ∂z 2 = 0
Assume f 1 = 0, f 2 = 0. After multiplication of the first equation by f 1 and of the second by -f 2 , and sum, we get

(f 1 -f 1 ) ∂f 1 ∂z 1 -f 2 ∂f 2 ∂z 1 -f 2 ∂f 1 ∂z 2 = 0
By an analogous process, we get:

f 2 ∂f 1 ∂z 1 + ∂f 2 ∂z 1 (f 1 -f 1 ) -f 2 ∂f 2 ∂z 2 = 0
Corollary 3.2. If f satisfies the conditions of the Proposition, the same is true for αf with α ∈ IR.

Let f = f 1 + 0j be an almost everywhere holomorphic function, then the condition (ii) of Proposition 3.1 is satisfied. Now give another example of quaternionic function satisfying the conditions of Proposition 3.1:

Proposition 3.3. Let f = f 1 + f 2 j, with f 1 = z 1 + z 1 + z 2 + z 2 + A, f 2 = -z 1 -z 1 + z 2 + z 2 + B, A, B ∈ IR, then: f and f -1 outside the zero set of f , are hyperholomorphic The null set of f = f 1 + f 2 j, for f 1 , f 2 as above, for A = B = 0, is: z 1 + z 1 + z 2 + z 2 = 0; -z 1 -z 1 + z 2 + z 2 = 0
i.e, by difference and sum:

z 1 + z 1 = 0; z 2 + z 2 = 0, i.e. x 1 = 0; x 2 = 0 in IR 4 . Proof. f 1 = z 1 + z 1 + z 2 + z 2 + A, A constant; then: (3) -f 2 ∂f 2 ∂z 1 -f 2 ∂f 1 ∂z 2 = 0, i.e. -f 2 ∂f 2 ∂z 1 -f 2 = 0, Try: f 2 real. Then ∂f 2 ∂z 1 = -1 and f 2 = -z 1 + C(z 1 , z 2 , z 2 ) = -z 1 -z 1 + C ′ (z 1 , z 2 , z 2 ), with C ′ real and ∂C ′ ∂z 1 = 0. From (4), ∂f 2 ∂z 2 = ∂C ′ ∂z 2 = 1, and C ′ = z 2 + z 2 + C"(z 1 , z 2 ), with C" real. f 2 = -z 1 -z 1 + z 2 + z 2 + C"(z 1 , z 2 )
, with C" real, and ∂C" ∂z 2 = 0, ∂C" ∂z 1 = 0.

C" being holomorphic in z 2 and z 1 is a constant B. Hence:

f 2 = -z 1 -z 1 + z 2 + z 2 + B, with B ∈ IR.
4. On the space of hyperalgebraic functions 4.1. Definition. Let U be an open neighborhood of 0 in IHI ∼ = C 2 . From now on,we will only consider the quaternionic functions f = f 1 + f 2 j having the following properties: (i) when f 1 and f 2 are not holomorphic, the set Z(f 1 ) ∩ Z(f 2 ) is discrete on U;

(ii) for every q ∈ Z(f 1 ) ∩ Z(f 2 ), J α q (.) denoting the jet of order α at q [M 66], let m i = sup

α i J α i q (f i ) = 0; m i , i = 1, 2, is finite. Define: m q = inf i m i .
Remark that, in this paper, the considered peculiar examples of quaternionic functions f satisfy: the set Z(f 1 ) ∩ Z(f 2 ) is reduced to one point and that α i = 1.

Let f = f 1 + f 2 j be a quaternonic function on U and g = g 1 + g

2 j = |f | -1 (f 1 -f 2 j) its inverse; so g 1 = |f | -1 f 1 ; g 2 = -|f | -1 f 2 , where |f | = (f 1 f 1 + f 2 f 2 ). The right inverse of g is h = h 1 + h 2 j, with h 1 = |g| -1 g 1 ; h 2 = -|g| -1 g 2 ; |g| = |f | -2 (f 1 f 1 + f 2 f 2 ) = |f | -1 ; then: h 1 = |g| -1 g 1 = f 1 , ... So the right inverse of g is f .
4.2. Definition. We will call hypermeromorphic function, on U, any almost everywhere defined hyperholomorphic function whose right inverse is hyperholomorphic almost everywhere.

Thanks to Definition 4.1, meromorphic functions in one complex varable are hypermeromorphic.

From Proposition 3.3, the set M of hypermeromorphic functions is not reduced to the space of meromorphic functions in one complex variable.

Let M 0 be the set of elements f of M described in Proposition 3.3. M 0 is an IR-vector space; it also contains f -1 and the products f * f -1 = 1. Proposition 4.1. Let f , g be two hypermeromorphic functions on U, then the following conditions are equivalent:

(i) the product f * g is hypermeremorphic;

(ii) f and g satisfy the system of PDE:

g 1 ( ∂f 1 ∂z 1 + ∂f 2 ∂z 2 ) + (f 1 -f 1 ) ∂g 1 ∂z 1 + f 2 ∂g 1 ∂z 2 -f 2 ∂g 2 ∂z 1 = 0 g 1 ( ∂f 1 ∂z 2 - ∂f 2 ∂z 1 ) + (f 1 -f 1 ) ∂g 1 ∂z 2 -f 2 ∂g 1 ∂z 1 -f 2 ∂g 2 ∂z 2 = 0 Proof. Let f = f 1 + f 2 j and g = g 1 + g 2 j two hypermeromorphic functions and f * g = f 1 g 1 -f 2 g 2 + (f 1 g 2 -f 2 g 1 )j their product, then ∂f 1 ∂z 1 - ∂f 2 ∂z 2 = 0; ∂f 1 ∂z 2 + ∂f 2
∂z 1 = 0 and..., on U and, the conditions for the product to be hyperholomorphic are:

∂(f 1 g 1 -f 2 g 2 ) ∂z 1 - ∂(f 1 g 2 -f 2 g 1 ) ∂z 2 = g 1 ( ∂f 1 ∂z 1 + ∂f 2 ∂z 2 ) + f 1 ∂g 1 ∂z 1 -f 1 ∂g 2 ∂z 2 + f 2 ∂g 1 ∂z 2 -f 2 ∂g 2 ∂z 1 = 0 ∂(f 1 g 1 -f 2 g 2 ) ∂z 2 + ∂(f 1 g 2 -f 2 g 1 ) ∂z 1 = g 1 ( ∂f 1 ∂z 2 - ∂f 2 ∂z 1 ) + f 1 ∂g 1 ∂z 2 + f 1 ∂g 2 ∂z 1 -f 2 ∂g 1 ∂z 1 -f 2 ∂g 2 ∂z 2 = 0
Corollary 4.2. Let f , g be two hypermeromorphic functions on U,whose components are real, then the following conditions are equivalent: (i) the product f * g is hypermeremorphic;

(ii) f and g satisfy te system of PDE:

g 1 ( ∂f 1 ∂z 1 + ∂f 2 ∂z 2 ) + f 2 ∂g 1 ∂z 2 -f 2 ∂g 2 ∂z 1 = 0 g 1 ( f 1 ∂z 2 - ∂f 2 ∂z 1 ) -f 2 ∂g 1 ∂z 1 -f 2 ∂g 2 ∂z 2 = 0 4.3.
Definition. We will call hyperalgebraic the hypermeromorphic functions whose sum and product are hypermeromorphic: see section 4.2.

Proposition 4.3. The set M of hypermeromorphic functions on U is a subalgebra of the algebra of quaternionic functions.

Proposition 4.4. The set A of hyperalgebraic functions on U is a "field" with only associativity of the multiplication.

5. About residue current in quaternionic analysis: particular cases.

5.1. Residue current in an open set of C. [D10a], [D10b] Let ω = g(z)dz be a meromorphic 1-form on a small enough open set 0 ∈ U ⊂ C having 0 as unique pole, with multiplicity k:

g = k l=1 a -l z l + holomorphic function Note that ω is d-closed.
Let ψ = ψ 0 dz ∈ D 1 (U) be a 1-test form. In general gψ is not integrable, but the Cauchy principal value ∂ j ∂z j δ 0 where res 0 (ω) = a -1 is the Cauchy residue. We remark that δ 0 is the integration current on the subvariety {0} of U, that D = k-1 j=0 b j ∂ j ∂z j with b j = λ j a -j where the λ j are universal constants.

V p[ω](ψ) = lim
Conversely, given the subvariety {0} and the differential operator D, then the meromorphic differential form ω is equal to gdz, up to holomorphic form; hence the residue current Res[ω] = Dδ 0 , can be constructed. 

m i = 1, i = 1, 2. Let ω = df f = 1 f (df 1 + df 2 j).
We want to extend ω into a current of degree 1; first, consider the part of type (1,0). Let ψ = ψ 1 dz 1 ∧ dz 2 ∧ dz 2 + ψ 2 dz 1 ∧ dz 1 ∧ dz 2 be a test form. Define:

V p[ω](ψ) = lim ε→0 |f |≥ε (|f 1 | 2 +|f 2 | 2 ) -1 (f 1 -f 2 j)(df 1 +df 2 j)∧(ψ 1 dz 1 ∧dz 2 ∧dz 2 +ψ 2 dz 1 ∧dz 1 ∧dz 2 )
We have to prove the existence of V p[ω] at least if f is hyperholomorphic (Check the proof in the classical case where f is holomorphic in one complex variable or in two complex variables where the proof is less easy, but don't need the resolution of singularities).

(df 1 + df 2 j) ∧ (ψ 1 dz 1 ∧ dz 2 ∧ dz 2 + ψ 2 dz 1 ∧ dz 1 ∧ dz 2 ) = ∂f 1 ∂z 1 ψ 1 + ∂f 1 ∂z 2 ψ 2 -( ∂f 2 ∂z 1 ψ 1 - ∂f 2 ∂z 2 ψ 2 )j dz 1 ∧ dz 1 ∧ dz 2 ∧ dz 2
Take polar coordinates:

λ =|| q ||= (|z 1 | 2 + |z 2 | 2 )
1 2 and the spherical coordinates on λS 3 . Let dσ be the volume element on S 3 , and K a convenient universal constant, then:

dz 1 ∧ dz 1 ∧ dz 2 ∧ dz 2 = Kλdλ ∧ dσ V p[ω](ψ) = lim ε→0 |f |≥ε (|f 1 | 2 +|f 2 | 2 ) -1 (f 1 -f 2 j) ∂f 1 ∂z 1 ψ 1 + ∂f 1 ∂z 2 ψ 2 -( ∂f 2 ∂z 1 ψ 1 - ∂f 2 ∂z 2 ψ 2 )j Kλdλ∧dσ
Same result for the part of type ((0,1) of V p[ω].

We will prove the existence of V p[ω] in a particular case: 5.2.2. Particular case:

f 1 = z 1 ; f 2 = z 2 . Then: Df = 0. V p[ω](ψ) = lim ε→0 |f |≥ε (|z 1 | 2 +|z 2 | 2 ) -1 (z 1 -z 2 j)(dz 1 +dz 2 j)∧(ψ 1 dz 1 ∧dz 2 ∧dz 2 +ψ 2 dz 1 ∧dz 1 ∧dz 2 ) V p[ω](ψ) = lim ε→0 |f |≥ε (|z 1 | 2 + |z 2 | 2 ) -1 (z 1 -z 2 j)(ψ 2 dz 1 ∧ dz 1 ∧ dz 2 ∧ dz 2 j) V p[ω](ψ) = lim ε→0 λ≥ε λ -2 (z 1 -z 2 j)(Kψ 2 λdλ ∧ dσj) Same result for the part of type ((0,1) of V p[ω].
This defines a current of order 0 on IHI.

5.2.3. If f 2 = 0 and f = f 1 is holomorphic, then V p[ω](ψ) = lim ε→0 |f |≥ε df f ∧ (ψ 1 dz 1 ∧ dz 2 ∧ dz 2 + ψ 2 dz 1 ∧ dz 1 ∧ dz 2 ) = V p[ω](ψ) = lim ε→0 |f |≥ε 1 f ( ∂f ∂z 1 ψ 1 + ∂f ∂z 2 ψ 2 )dz 1 ∧ dz 1 ∧ dz 2 ∧ dz 2 5.3. Residue. 5.3.1. Assume: Z(f ) = {0}.
We want to define a current, Res[ω], and first its part of type (1, 1), on a test form ϕ = ϕ 11 dz 1 ∧ dz 1 + ϕ 12 dz 1 ∧ dz 2 + ϕ 21 dz 2 ∧ dz 1 + ϕ 22 dz 2 ∧ dz 2 , as follows:

( Take polar coordinates: λ =|| q ||= (|z 1 | 2 + |z 2 | 2 ) 1 2 and the spherical coordinates on S 3 . Let dσ the volume element on S 3 , and K j , (j = 1, 2) a convenient universal constant: 

5) Res[ω](ϕ) = lim ε→0 |f |=ε (|f 1 | 2 + |f 2 | 2 ) -1 (f 1 -f 2 j)(df 1 + df 2 j)(ϕ) (df 1 + df 2 j)(ϕ) = = ∂f 1 ∂z 1 dz 1 + ∂f 1 ∂z 2 dz 2 -( ∂f 2 ∂z 1 dz 1 - ∂f 2 ∂z 2 dz 2 )j (ϕ
dz 1 ∧ dz 1 ∧ dz 2 | S 3 = K 1 dλ ∧ dσ dz 1 ∧ dz 2 ∧ dz 2 | S 3 = K 2 dλ ∧ dσ

  current, and dV p[ω] = d"V p[ω] = Res[ω] is the residue current of ω. For any test function ϕ on U, Res[ω](ϕ) = lim ǫ→0 |z|=ǫ ω ∧ ϕ Then Res[ω] = 2πi res 0 (ω)δ 0 + dB =

5. 2 .

 2 Cauchy principal value of a quaternionic 1-form. Let f be a quaternionic function on an open neighborhood U of 0 in IHI satisfying the conditions of Definition 4.1, with

  Same result for the part of any type of Res[ω].5.3.2. Particular case. f 1 = z 1 ; f 2 = z 2 . Then: Df = 0. (dz 1 + dz 2 j)(ϕ) = ϕ 22 dz 1 ∧ dz 2 ∧ dz 2 + dz 2 j ∧ ϕ 12 dz 1 ∧ dz 2 = ϕ 22 dz 1 ∧ dz 2 ∧ dz 2 + ϕ 12 dz 1 ∧ dz 2 ∧ dz 2 j Res[ω](ϕ) = lim ε→0 |f |=ε (|z 1 | 2 +|z 2 | 2 ) -1 (z 1 -z 2 j)(ϕ 22 dz 1 ∧dz 2 ∧dz 2 +ϕ 12 dz 1 ∧dz 2 ∧dz 2 j) = lim ε→0 ||f ||=ε (|z 1 | 2 + |z 2 | 2 ) -1 (z 1z 2 j)(ϕ 22ϕ 12 j)dz 1 ∧ dz 2 ∧ dz 2 ) = lim ε→0 S 3 (|z 1 | 2 + |z 2 | 2 ) -1 (z 1z 2 j)(ϕ 22ϕ 12 j)εdσ = res[ω](ϕ 22ϕ 12 j)(0) = δ 0 (ϕ 22ϕ 12 j) ||f ||=εmeans the integration on εS 3 , where S 3 is the unit 3-sphere and dσ the volume element on S 3 , res[ω], a constant playing the part of the Cauchy residue, and δ 0 the Dirac measure at 0. Same result for the part of any type of Res[ω].5.3.3. f holomorphic. If f 2 = 0 and f = f 1 is holomorphic, f 1 = z 1 , then: z 1 = ε iθ , and Res[ω](ϕ) = lim ε→0 2π 0 idθϕ 2,2 (εe iθ , z 2 )dz 2 ∧ dz 2 = 2πi[Z(z 1 )](ϕ)Same result for any holomorphic f 1 since f 1 = εe iθ .

  11 dz 1 ∧dz 1 +ϕ 12 dz 1 ∧dz 2 +ϕ 21 dz 2 ∧dz 1 +ϕ 22 dz 2 ∧dz 2 ) ∧(ϕ 21 dz 2 ∧dz 1 +ϕ 22 dz 2 ∧dz 2 )+ ∂f 1 ∂z 2 dz 2 ∧(ϕ 11 dz 1 ∧dz 1 +ϕ 12 dz 1 ∧dz 2 ) j∧(ϕ 21 dz 2 ∧dz 1 +ϕ 22 dz 2 ∧dz 2 )+ ∂f 2 ∂z 2 dz 2 j∧(ϕ 11 dz 1 ∧dz 1 +ϕ 12 dz 1 ∧dz 2) 11 )dz 1 ∧ dz 1 ∧ dz 2 + ( ∂f 1 ∂z 1 ϕ 22 -∂f 1 ∂z 2 ϕ 12 )dz 1 ∧ dz 2 ∧ dz 2 12 jdz 1 ∧ dz 2 ∧ dz 2 = (A + Bj)dz 1 ∧ dz 1 ∧ dz 2 + (C + Dj)dz 1 ∧ dz 2 ∧ dz 2

	= dz 1 -∂f 1 ∂z 1 ∂f 2 ∂z 1 dz 1 = (-∂f 1 ∂z 1 ϕ 21 + ϕ + ∂f 1 ∂z 2 ∂f 2 ∂z 1 ϕ 21 -∂f 2 ∂z 2 ϕ 11 jdz 1 ∧ dz 1 ∧ dz 2 + -	∂f 2 ∂z 1	ϕ 22 -	∂f 2 ∂z 2	ϕ