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Abstract 

Functional iron oxide nanoparticles (NP) have been synthesized in a one and two-steps 

method using a natural functional glycolipid belonging to the family of sophorolipids (SL). 

These compounds, whose open acidic form is highly suitable for nanoparticle stabilization, 

are readily obtained by a fermentation process of the yeast Candida bombicola (polymorph 

Starmerella bombicola) in large amounts. The final carbohydrate coated iron oxide 

nanoparticles represent interesting potentially biocompatible materials for biomedical 

applications. According to the synthesis strategy, magnetic properties can eventually be tuned, 

thus putting in evidence the direct effect of the glycolipid on the final material’s structure 

(maghemite and ferrihydrite have been obtained here). A combination of  FT-IR, Dynamic 

Light Scattering (DLS) and UV-Vis experiments show that SL complex the nanoparticle 

surface via their accessible COOH group thus forming stable colloids, whose hydrodynamic 
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diameter mostly varies between 10 nm and 30 nm, both in water and in KCl-containing (0.01 

M and 2M) solutions. The materials can stand multiple filtration steps (up to 10) at different 

extents, where the largest recorded average aggregate size is 100 nm. In general, materials 

synthesized at T= 80°C display better stability and smaller size distribution than those 

obtained at room temperature. 

 

Introduction 

Multifunctional “smart” nanoparticles for biomedical applications constitute a domain of 

intense research where multiple materials and properties meet at the same time.1 In this field, 

magnetic nanoparticles, and in particular iron oxide-based materials, occupy a special role 

because of their use in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia 

applications.2 Tailoring the surface chemistry of iron oxide nanoparticles allows to enhance 

and combine different properties, such as colloidal stability in aqueous environment, 

biocompatibility, low or non-existant toxicity, stealth effects towards physiological barriers 

(blood, liver, spleen, etc…) and cellular targeting, etc.2a,c,3 To achieve part, or all, of these 

properties simultaneously, size control between 10 and 100 nm (to assure for long blood 

circulation times) and a surface multi-functional approach is generally employed, in addition 

to a more classical control of crystal structure and homogeneity, shape, etc. Surfactants are 

generally used to improve colloidal stability in water because many nanoparticle syntheses are 

performed in organic media. Furthermore, neutral polymers such as polyethylene oxide or 

dextran are employed as stealth coating agents to pass physiological barriers, while proteins, 

enzymes, antibodies, or nucleotides are the most common cell targeting agents.3,4 The success 

of such a multimolecular approach is demonstrated by the fact that some iron oxide 

nanoparticle systems have already been approved for clinical trials2b,3,5 but their intrinsic 

complexity actually stimulates a research towards simpler nanosystems where the number of 

multifunctional surface agents is reduced to a minimum, if possible.  

Some recent works have shown the possibility to combine some of these properties using 

carbohydrate to functionalize nanoscale objects,6 where the functions of selected 

nanomaterials (carriers, contrast agent, luminescent probe) are combined with sugars. 

Carbohydrates bring several advantages like water solubility, biocompatibility and, in some 

cases, specific protein-targeting properties.7 This new pathway is based on the use of 

glycoconjugates which have a desired sugar-based moiety covalently connected to an organic 

spacer. Penades et al. have used several techniques to coat gold nanoparticles and surfaces 

with functionalized glycolipids and to explore the carbohydrate-carbohydrate interactions 
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tuning the nature of the sugar moiety.6b Specific interactions between magnetic nanoparticles 

and cancer cell lines were investigated by El-Boubbou et al.6a More complex sugar-

functionalized silica-coated nanoparticles have been developed as well, where the silica 

serves as covalent binding layer through silane-based coupling agents (amide bonding, click-

chemistry, etc…) between the nanoparticle and the carbohydrate-containing compound.8 

These works share some features: 1) glycoconjugates are specifically designed ad-hoc; 2) the 

nature of the carbohydrate is tuned according to the desired function (e.g., protein targeting); 

3) the synthesis of the glyco-nanoparticles is composed of multiple steps where the 

glycoconjugate is synthesized first, then the nanoobject is made and finally functionalization 

is performed to build the glyco-nanomaterial. To this regard, different ways of grafting 

glycoconjugates have been tested: thiol-chemistry, amide coupling, click-chemistry, etc…  

The “glyco” approach shows a number of advantages with respect to the multimolecular 

pathways discussed in the first paragraph. On one hand, tuning the end-chain functional group 

(thiol, carboxylic acid, amine, etc…) allows a larger variety of functionalizable surfaces; on 

the other hand, tuning the nature of the carbohydrate may influence solubility and 

biocompatibility. Nevertheless, despite these advantages, the synthesis of glycoconjugates is 

somewhat tedious, time-consuming, expensive and unsustainable. For instance, several 

functional glycoconjugates of lactose, maltose and glucose reported by Barientos et al.6b can 

be obtained in no less than 5 steps, which involve, among others, highly toxic chemical 

compounds like azobisisobutyronitrile. 

In this work we would like to promote the glycoconjugate strategy in combination with iron 

oxide nanoparticle functionalization by bringing it one step further: instead of using tailored, 

chemo-derived, glycolipids, we test the open acidic form of sophorolipids (SL), which are 

biologically-derived glycoconjugates with a well-defined molecular structure given in Scheme 

1.  
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Scheme 1 - Acidic form of sophorolipids (SL) obtained from Candida bombicola 

 

These compounds are synthesized by the yeast Candida bombicola and have been used so far 

for detergents9 and skin care10 applications. More recent anticancer,11 antibacterial, self-

assembly,12,13,14 templating and metal-complexing properties15 have been also put in evidence. 

SL, in their open acidic form, are composed of a sophorose unit (i.e. 2-O-β-D-

glucopyranosyl-D-glucopyranose; β−Glc-(1-2)-Glc), attached to oleic acid through an ether 

bond on the C17 carbon atom of the fatty acid chain, thus leaving the COOH group 

accessible. Hence, acidic SL are water-soluble, non-toxic, biocompatible and the COOH 

becomes an interesting functional, surface-binding, group. Sophorolipids are produced in 

large quantities from crops-based resources using a white biotechnology route, constituting a 

large advantage from an environmental point of view with respect to a chemical engineering 

approach.  

In the field of microbially-derived glycoconjugates, few examples actually exist where 

specific glycolipids have been used as functional groups for nanoparticles. The main works 

were carried out by the group of Prasad where cobalt,15b silver15a and gold16 nanoparticles 

were synthesized using the acidic form of sophorolipids. In particular, they have shown that 

sophorolipids are able to reduce metal salts (Ag, Au) in-situ15a and to stabilize the 

corresponding metal nanoparticles in water. Antibacterial and cytotoxic properties of 

sophorolipids-capped nanoparticles were also studied. 

These works have the advantage of showing that sophorolipids can be successfully used as 

metal nanoparticle stabilizers but many questions are still open: can sophorolipids be 

employed in metal oxide nanoparticle synthesis? Can they be used in a one-step process? If 

so, is there any influence on the resulting metal oxide structure? Previous works were always 

carried out at very dilute sophorolipid and metal concentrations (10-3 - 10-4 M). Is it possible 

to work with more concentrated SL and metal salt solutions keeping a good colloidal 
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dispersion in aqueous solutions? Is the sophorose group readily accessible and can it be 

exploited further? The full answer to all these questions will undoubtedly open new 

perspectives for the use of microbial glycoconjugates as nanoparticle functional agents for 

biomedical applications. 

In this work, we show that acidic sophorolipids are suitable compounds to be used as surface 

complexing agents in the synthesis of iron oxide nanoparticles (NP) in one and two-steps 

syntheses. In particular, we use more concentrated solutions of metal salts and SL (5.10-2 M) 

showing that stable colloidal solutions of iron oxide nanoparticles can easily be synthesized. 

We show that the choice of the synthesis method has a clear influence on the final metal oxide 

crystalline structure, on the magnetic properties and particle size distribution. Dynamic Light 

Scattering (DLS) experiments indicate that sophorolipids-derived nanoparticles exhibit an 

excellent colloidal stability both in water and in salt-containing aqueous solutions. 

 

 

Experimental  

Synthesis of SL. Sophorolipids were produced by Candida bombicola ATCC 22214 

using a known procedure.17 Details on their synthesis can be found in the Supplementary 

Information material.  

Sample preparation. Iron oxide nanoparticles were synthesized using the co-

precipitation method following a classical18 procedure employed to obtain the inverse spinel 

structure typically observed in magnetite, where [Fe2+]/[Fe3+]= 0.5. According to the order of 

adding the reactants, we have tested two procedures in which the base is added either before 

or after mixing iron salts with SL. One-step (1S): 0.177 g of FeCl3
. 6H2O were mixed with 

0.108 g of FeCl2
. 4H2O in round-bottom flask containing 20 mL of MilliQ water and 0.409 g 

of the acidic form of sophorolipid. To this solution, about 2.7 mL of a 37 % ammonia solution 

was added under mechanical stirring. The system was kept under argon to limit oxidation and 

two temperatures were employed, room temperature (T= RT) and T= 80°C. These samples 

are referred to as, respectively, 1S-RT and 1S-80C. Two-steps (2S): same as above but 

sophorolipids were added to the mixture only after addition of the ammonia solution and 

precipitation of the iron oxide nanoparticles. The samples are here referred to as 2S-RT and 

2S-80C. In both cases, after one hour, the black precipitate was extracted by centrifugation 

and washed with water of MilliQ quality. This operation was repeated three times in order to 

completely eliminate any residual salts. 
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DLS experiments. Typically, 30 µL of all as-synthesized stock solutions obtained 

after synthesis were diluted in 1.5 mL of the corresponding medium (pure MilliQ water, 

water:ethanol=80:20 v:v, KCl in water: 0.01 M, 2 M). The analysis was done on solutions that 

went through filtering through 0.20 µm nylon membrane. For the experiments shown in 

Figure 4c-d, 50, 100, 300, 500 mg of a washed and dried maghemite powder, obtained from 

the two-steps synthesis procedure described above without addition of SL, were mixed with 

10 mL of MilliQ water to which 500 mg of acidic sophorolipids were dissolved providing a 

resulting NP/SL mass ratio of 0.1, 0.3, 0.6, 1.0. In this last set of experiments, all solutions 

were analyzed at constant shutter opening diameter in the DLS apparatus. For all experiments, 

number-weighted size distributions are presented in this work and were obtained using the 

Zetasizer software package in which water was selected as dispersant and where the 

diffractive index was set to 2.4, which is the typical value for bulk maghemite and magnetite. 

Each sample was recorded between 3 and 6 times, according to the quality of the data. For 

multiple filtration experiments, the same filter was employed for each solution in order to 

minimize the interactions between the nanoparticles and the nylon support. 

Other experimental techniques. Transmission Electron Microscopy was performed 

on a FEI Tecnai 120 Twin microscope operating at 120 kV and equipped with a high 

resolution Gatan Orius CCD 4k x 4k numeric camera. DigitalMicrograph™ software was 

used for image acquisition. Dynamic light scattering measurements were run on a Malvern 

Zetasizer Nano ZS instrument (λ= 633 nm). 

UV-Vis adsorption experiments were run on a UVIKON-XL (Secomam) spectrometer 

using a wavelength scan mode between 300 nm and 800 nm.  For the sample preparation of 

each measurement, refer to the DLS experiment section above. Two steps and one-step 

samples were systematically analyzed using, respectively, a 1-cm and 0.5-cm path length 

cuvette. Water absorbance was used as a baseline. 

Chemical analysis was obtained by energy dispersive X-ray spectroscopy (EDAX) 

using an Oxford X-Max (area: 20 mm2) detector installed on a Hitachi S3400N scanning 

electron microscope. Calibration of the instrument was performed on the Ti Kα at 4.509 keV. 

Data were obtained and averaged out after acquisition on at least four different sections of the 

sample distributed throughout the SEM support. Fourier-Transform Infra-Red (FT-IR) 

spectroscopy has been operated on a Perkin Elmer 400 spectrometer using the universal ATR 

sampling holder. The powder X-ray diffraction (XRD) study was performed on a Bruker D8 

Advance diffractometer using Cu-Kα radiation (λ = 1.5418 Å) at 45 kV and 40 mA, 0.05° 
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step size and 60 s per step over a 2θ range from 20° to 70°. Thermo Gravimetric Analysis 

(TGA) was performed on a NETZSCH STA409PC LUXX instrument under air using a 

10°C/min heating ramp up to 600°C. The amount of residual matter after treatment at 600°C 

of the stock solutions has been used to calculate the approximate iron oxide concentration. 

From TGA one can estimate the area per molecule according to Eq.2 in Supplementary 

Information.  
57Fe Mössbauer spectra were measured with a 57Co:Rh source. During the 

measurements, both the source and the absorber were kept at ambient temperature (294 K). 

The spectrometer was operated with a triangular velocity waveform, and a NaI scintillation 

detector was used for the detection of the gamma rays. The spectra of the measured materials 

were fitted to appropriate combination of Lorentzian profiles by least-squares methods using 

the program PC-Mos II.19In this way, spectral parameters such as the hyperfine magnetic field 

(B), quadrupole splitting and shift (∆ and ε, respectively), and isomer shift (δ) were 

determined. Isomer shifts are given relative to α-Fe metal.  

 

Results and discussion  

Materials structure. The co-precipitation method used to synthesize magnetic iron oxide 

nanoparticles (magnetite structure) is a well-established protocol that we could easily 

reproduce in the two-steps procedure, where sophorolipids were added only after the 

ammonia solution and nanoparticle precipitation.18 The XRD diffraction pattern of the 2S-

80C sample (Figure 1) shows the following d-values: 2.967, 2.527, 2.092, 1.714, 1.614, 1.478 

Å, corresponding, respectively, to the (220), (311), (400), (422), (511), (440) Bragg 

diffraction planes of the iron oxide spinel cubic structure (JCPDS file, N° 19-0629) and 

attributed to maghemite according to Mossbauer arguments (Figure S1 in Supplementary 

Information). A comparison with the corresponding control, sophorolipid-free, experiment 

reported in Figure 1 shows that the use of sophorolipid has no influence on the material 

structure in the 2-step synthesis. The magnetic nature of samples 2S-RT and 2S-80C can be 

easily evidenced by a simple external magnet, by which the powder grains are promptly 

attracted both in solution and in their dried form. On the contrary, the product 1S-80C, 

obtained from the one-step synthesis procedure, has a different XRD pattern, where only two 

peaks with very broad full-width at half maximum (FWHM) and corresponding to d-values= 

2.527 and 1.478 Å are clearly visible. Even if such peaks could be attributed to a classical line 

broadening effect due to particle size effects and most likely related to the presence of 

sophorolipids in the reacting medium, the XRD pattern presented here is actually typical of 2-
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line ferrihydrite, [Fe5HO8
.(4H2O)],20 as confirmed by 57Fe Mössbauer spectroscopy (Figure 

S1 and related discussion in Supplementary Information). The corresponding materials 

synthesized at room temperature exhibit very similar XRD diffraction pattern for both 

procedures, indicating that temperature has no particular influence on the resulting crystal 

structure, contrary to the presence of sophorolipids in the reaction mixture. Differently from 

2S-RT and 2S-80C, samples 1S-RT and 1S-80C are not attracted by an external magnet, as 

expected for 2-line ferrihydrite. 
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Figure 1 – X-ray diffraction pattern of the sophorolipid-containing iron oxide nanoparticles obtained at 

80°C in the two-steps (2S-80C) and one-step (1S-80C) synthesis processes. For sake of comparison, a 
control, sophorolipid-free, diffraction pattern of iron oxide nanoparticles is also shown. Reported values 

relate to the Miller (hkl) indices of the Bragg diffraction planes.   
 

 

TEM images and the corresponding particle size distributions are presented in Figure 2. All 

samples are composed of spherical nanoparticles whose size and homogeneity depend on the 

synthesis conditions. The two-steps synthesis, 2S-80C and 2S-RT, provides particles whose 

average diameter is, respectively, 8.5 nm and 4.5 nm. As reported previously, the higher the 

synthesis temperature, the larger the average particle size.21 In both cases, the particle size 

distribution is comparable (± 2 nm) even if at room temperature bare particles as large as 12 

nm can be observed. When SL is used since the beginning of the reaction, the particle size 

distribution of the final material is consistently different according to the temperature 

employed: at room temperature (Figure 2, sample 1S-RT), it is broader, going from 3 to more 

than 20 nm while at T= 80°C the sample 1S-80C is composed of very small nanoparticles, 

with an average diameter of 2.8 ± 1 nm, if one disregards spurious aggregation on the TEM 

grid most likely due to the drying process. 
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Figure 2 – TEM and particle size distribution (PSD) of one-step (1S) and two-steps (2S), sophorolipid-
containing, iron oxide nanoparticles at room temperature (RT) and at T= 80°C (80C). PSD have been 

directly obtained from TEM images after manual counting on at least 100 particles.| 
 

As initially observed by XRD and Mössbauer spectroscopy, and finally confirmed by TEM 

experiments, one-step and two-steps procedures provide sensibly different materials. 

Additional confirmation on the nature of the metal oxide particles in the different samples 

could be obtained by SEM/EDAX experiments, which allowed the quantitative analysis of the 

elemental Fe/O ratio (Table 1). Interestingly, all one-step syntheses show a rather low Fe/O 

ratio (< 0.45) with respect to the two-steps material (0.69 for 2S-80C). A comparison with the 

theoretical values provided in the same table confirms that the chemical composition of the 

one-step samples is very close to the theoretical Fe/O value expected for ferrihydrite. On the 

other hand, the value found for the two step samples agrees well with the dominant presence 

of γ-Fe2O3. 

 
Table 1 – Experimental Fe/O ratio values obtained by SEM/EDAX for few selected materials obtained in 

the one-step and two-steps synthesis. Theoretical Fe/O values for ferrihydrite and γ-Fe2O3 are also 
provided. 

1S-RT 1S-80C 2S-80C 
Ferrihydrite 

Fe5HO8
.(4H2O)20  
 

γ-Fe2O3 

0.43 ± 0.02 0.36 ± 0.13 0.69 ± 0.07 0.41 0.67 

 

To better understand the structural differences between one-step and two-steps synthesis, one 

should look at the formation of poorly ordered iron oxides. This was shown for example on 

supersaturated Fe3+ solutions,22 but also when complexing ligands are used, as they modify 

the hydrolysis rate of the cation, as shown for acetate and EDTA on Fe(III).23 Sophorolipids 

contain a carboxylic acid group, which is notorious for its affinity towards ferric and ferrous 

ions. Given the lack of literature studies on the specific interaction between sophorolipids and 

iron in water, we have looked at the published results on the co-reaction between iron salts 

and common organic acids. For instance, citric acid has a strong influence on the oxidation 

kinetics of Fe(II) under oxygen, and which is reduced at specific amounts of COOH groups in 

solution (citrate/Fe(II) > 0.01).24 If goethite is generally obtained, lepidocrocite formation is 

promoted upon addition of citric acid. Interestingly, above citrate/Fe(II) > 0.01, non-

crystalline oxides are actually formed. Authors attributed these effects to the retarded 

formation and hydrolysis of iron(III) species, which were also complexed by citrate thus 

modifying the crystallization process. Retarded hydrolysis of Fe(III) in presence of citrate 
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ions was also reported by Kandori.25 In this work, addition of as low as 0.5 mol% of citrate to 

a ferric chloride solution reduced the size of the formed α- and β-FeOOH material. Above 1 

mol%, amorphous particles were formed. In addition, Bee et al.26 have shown that use of 

citrate ions have a large influence on the size of maghemite nanoparticles obtained from a 

Fe(II)/Fe(III)= 0.5 mixture: above 2.5 mol% of citrate, nanoparticles below 2.5 nanometers 

are obtained. In our synthesis procedure, the molar amounts of COOH and iron salts are 

comparable, indicating that the presence of small nanoparticles is compatible with the 

employed synthesis conditions, if compared to references 25 and 26. Since in these works 

authors use citrate ions (three carboxylate groups), the normalized COOH/(Fe(II) + Fe(III)) 

molar ratio used in those studies should be multiplied by a factor three. Even under these 

conditions, the amounts of available COOH used in this work is much higher, meaning that 

unexpected results in terms of iron oxide structure can be obtained. The first point concerns 

the fate of Fe(II), which is not found in none of the final oxides. Even if we tried to limit the 

presence of oxygen, oxidation of Fe(II) has probably occurred during the reaction. Then, as 

discussed in Ref. 25, complexation of Fe(III) by the COOH group of sophorolipids has 

undoubtedly modified its hydrolysis-condensation kinetics directing towards the formation of 

the poorly ordered two-line ferrihydrite, where complexation of Fe(II) prior to oxidation 

should probably not be neglected.24 Either control of the hydrolysis/condensation kinetics of 

iron salts in presence of sophorolipids (for example, by adjusting the SL/iron molar ratio) or 

setting a post-synthesis treatment, as reviewed by Blesa,27 are undoubtedly necessary to tune 

the final iron oxide structure. Nevertheless, these aspect are out of the scope of this work. 

 

Functionalization  

FT-IR response of SL allows a better description of the nanoparticle functionalization. The 

FT-IR spectrum of pure acidic SL is shown in Figure 3 and it displays, among others, the 

following important resonances:  =CH stretch (ν= 3004 cm-1), SL aliphatic backbone (ν= 

2920, 2850 cm-1), C=O group in COOH (ν= 1705 cm-1), C=O group in COO- (ν= 1535, 1418 

cm-1), COH and CO in sophorose (ν= 1069, 1024 cm-1). After synthesis, the sophorolipid 

shows the following features in the SL-functionalized iron oxide nanoparticles system: 

- The presence of the symmetric and antisymmetric stretching bands of the aliphatic backbone 

(ν= 2920, 2850 cm-1) shows that SL are still largely present on the nanoparticle surface, even 

after multiple washing steps. In addition, the absence of any X-ray diffraction pattern that can 
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be attributed to SL (Figure 1) indicates that they do not crystallize at the nanoparticle surface 

after drying. 

- The 3004 cm-1 resonance is detected. Even if of very low intensity, this peak is generally 

attributed to the =CH vibration of the oleic acid moiety. Its disappearance indicates that 

complexation on the nanoparticles can occur through the C=C double bond.28 It was shown 

before that the C=C double bond is engaged in the complexation of SL-functionalized 

silver15a and cobalt15b nanoparticles. In the case of iron oxide nanoparticles, this mechanism 

does not seem to be the case for the samples prepared at room temperature while that may 

occur for the high-temperature derived samples, where this resonance is difficult to see. 

- The COOH functional group (ν= 1705 cm-1) is largely reduced in intensity while two 

resonances, ν= 1535, 1418 cm-1, mark the presence of COO- (asymmetric stretching - νas -  

and symmetric stretching - νs - vibrations, respectively). This behaviour is attributed to the 

complexation of the iron oxide surface by the carboxylate group of the sophorolipid and is in 

agreement with the synthesis conditions. It was established before that the difference, ∆= (νas 

- νs), can be related to the way carboxylates bind to the metal oxide surface. For ∆> 200 cm-1, 

a monodentate binding occurs; for ∆< 110 cm-1, a bidentate binding takes place while for 140 

< ∆ < 200 cm-1, a bridging mechanism best describes the carboxylate-metal coordination. One 

should nonetheless observe that data obtained from such a simple calculation are qualitative 

because of the presence of the CH bending at about 1436 cm-1, which may overlap with COO- 

stretching resonance, hence inducing an erroneous attribution of this peak. In our materials, 

we find that ∆~ 130 cm-1 for both one-step derived samples, suggesting a possible bridging 

coordination mode, while it decreases to ∆~ 115 cm-1 for both two-steps derived samples, 

indicating a possible bidentate binding instead,29 even if coexistence of both mechanisms 

should not be excluded. 

- The COH groups of the sophorose head, whose resonances are detected in the region 

between 1160 and 750 cm-1, might also be involved in the complexation of the iron oxide 

surface, as already described for similar systems.30 The 1070 and 1020 cm-1 bands, attributed 

to a C-O stretching coupled with C-C stretching and O-H deformation, do not display any 

significant shift throughout all samples-set. This is also the case for the resonance at 1160 cm-

1 (C-O-C glucosidic linkage stretch coupled with C-OH stretch and OH deformation). Even if 

these data indicate that, for most samples, sophorose is probably not involved into hydrogen 

bonding with the iron oxide surface, a competing complexation mechanisms of iron by COH 

groups should not be excluded, as largely discussed by Weissenborn et al.30 The region below 
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1000 cm-1, where carbohydrate ring vibration (ν= 935, 710 cm-1), breathing modes (ν= 765 

cm-1) and C1H deformation (where C1 is the anomeric carbon of sophorose) appear 

(equatorial C1H deformation: ν= 850 cm-1; axial C1H deformation: ν= 890 cm-1) are typically 

looked at to put in evidence any eventual complexation mechanism. The band at ν= 890 cm-1, 

which appears in both pure and adsorbed SL, is related to the axial C1H deformation of the β-

D-glucose units.31 In case of conformational changes, which were described for carbohydrate-

complexed iron oxide systems,30 this band is expected to shift by at least 40 cm-1, which is not 

the case here for none of the samples, suggesting that complexation of surface iron by 

sophorose does not occur. Nonetheless, even if we must also point out the appearance of a 

new band at about ν= 820 cm-1, though of different intensity, in both two-steps samples, and a 

peak at 770 cm-1 in the 1S-80C sample, we are unable to draw any conclusion due to the lack 

of their clear attribution. In particular, the glucopyranose ring breathing vibration of adsorbed 

sophorose could be related to the peak at 770 cm-1, as suggested for the adsorption of different 

polysaccharides on hematite,30 but unfortunately its absence in the pure SL spectrum does not 

allow us proper comparisons. 
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Figure 3 – FT-IR spectra of pure sophorolipid (SL) and SL-functionalized iron oxide nanoparticles 

obtained at room temperature (RT) and at T= 80°C (80C) in the one-step (1S) and two-steps (2S) synthesis 

process. On the left, the 750 – 1250 cm-1 region is highlighted. The anomeric axial C1H on the β-D-glucose 

(left) and the bidentate/bridging coordination modes (top, indicated values are given in cm-1) are 

represented for sake of clarity. ∆(νs-νas) refers to the difference between the symmetric and anti-

symmetric stretching vibrations of the COO- group in the 1400-1550 cm-1 region. 

 

According to the FT-IR analysis, it seems clear that iron oxide nanoparticles are 

functionalized by SL mainly via the carboxylate group and, in the T= 80°C samples, possibly 

by the C=C double bond of the oleic acid moiety, which it may be expected to provide better 

stability. Nevertheless, several questions concerning their stability in water and salt-

containing medium and the accessibility of sophorose are still open. Previous works on this 

topic15 briefly discussed the stabilization of SL-coated Ag and Co nanoparticles in water using 

FT-IR arguments but no specific experiments showing the stability of SL-coated particles and 

accessibility of sophorose were given. In the next section, we try to better illustrate this point. 

 

Colloidal stability 
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The colloidal stability in water of the freshly synthesized SL-derived nanoparticles 

solutions strongly varies with the synthesis conditions. First of all, if no SL are employed at 

all, a black, water-demixed, precipitate is always obtained and no stable dispersion is 

achieved. Even if this is a well-known result, a rapid demonstration, which will be exploited 

further as a term of comparison, can be obtained through UV-Vis spectroscopy, which is 

qualitatively used here to evaluate the effect of filtering on non-functionalized nanoparticles 

in water and, consequently, their aggregation. Figure S2 in Supplementary Information shows 

the UV-Vis spectra of a blank solution of non-functionalized iron oxide nanoparticles, which 

have been dispersed in water through sonication (0-labelled spectrum) and after filtration (1-

labelled spectrum). Clearly, one single filtration step (φ= 0.20 µm) is enough to completely 

reduce the UV-Vis signal of the blank sample; the lack of any exploitable signal in the 

complementary DLS experiment recorded on the filtered sample confirms that all 

nanoparticles have been efficiently removed from the solution. 

The results are completely different when SL are employed instead. In the two-steps 

synthesis, 2S-80C and 2S-RT samples correspond to a stable colloidal solution of maghemite 

nanoparticles in coexistence with a black/brown precipitate, which is probably due to 

nanoparticle aggregation before SL-addition and/or insufficient complexation by SL. At 80°C, 

the solution is clearly darker than in the experiment performed at room temperature, 

suggesting that either SL functionalization is more efficient, even if FT-IR experiments do not 

provide a clear-cut proof, or aggregation phenomena among nanoparticles before SL surface 

coating are reduced. Similar results are obtained on one-step experiments at room temperature 

while at T= 80°C, a homogeneous, monophasic, brownish stable colloidal solution is obtained 

instead, as also in Ref. 26 for citrate-derived iron oxide nanoparticles. All SL-derived 

colloidal solutions are stable over more than a year and centrifugation is not enough to fully 

recover the nanoparticles for the synthesis at T= 80°C, for which an excess of ethanol is 

required to precipitate the material. This qualitative observation indicates the strong 

sophorolipid complexation effect and the steric hindrance of the sophorose group preventing 

particle aggregation in solution. 

Particle size distribution (PSD) obtained from DLS experiments in Figure 4a provides a 

good picture on the colloidal stability of SL-complexed nanoparticles in water. The number-

weighted PSD shows that all samples are mostly constituted of nanoparticles whose diameter 

falls below 30 nm, even if intensity-filtered PSD (proportional to the sixth power of the 

particle radius, not shown here) indicates the existence of larger objects in some samples. For 

instance, one can find that two-steps samples, and 2S-RT in particular, have average sizes 
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varying between 60 and 100 nm; on the contrary, that seems to be less the case for samples 

obtained in one-step synthesis. At the moment, we attribute this to either spurious very large 

particles, aggregation in solution or multilayer sophorolipid coating (see following 

discussion). 

 

 
Figure 4 - a) Number-weighted DLS particle size distribution of all SL-functionalized iron oxide samples 

in water (acronyms and dilution conditions are given in the experimental section); b)  Number-weighted 

DLS particle size distribution of all samples in a 80:20 = H2O:EtOH (v:v) mixture; c) images showing the 

concentration effect of a SL-free maghemite nanoparticles redispersed powder in a SL-containing solution 

at CSL= 50 mg/mL. NP/SL refers to the nanoparticle (NP) over sophorolipid (SL) mass ratio; (d) DLS 

diffused intensity of solutions presented in (c) in kcps (= kilocounts per second). Values are corrected for 

the adsorption of the same solution at λ= 633 nm and whose values are presented on the right side of the 

same figure. A constant shutter value of the DLS apparatus was used for these experiments.  

 

In Table 2, we propose a comparison between the smallest hydrodynamic diameters 

recorded, dh (H2O:EtOH=100:0 column), by DLS with diameters previously measured by 

TEM, dTEM, that can only be attributed to the size of the oxide particle core alone, because the 

electron density contrast between SL and the TEM grid support is too low to be measured 

correctly. According to the synthesis conditions, dh-values for SL-coated nanoparticles range 

between 10 and 30 nm, which are all higher than those measured by TEM, as expected. This 

size range is particularly interesting for biomedical applications, as nanoparticles whose dh is 

contained between 10 and 100 nm are optimal for intravenous injections with longer blood 

circulation times.3   

Interestingly, one can realize that the difference between dh and dTEM for all samples, if 

one excludes 1S-RT, whose broad size distribution in TEM did not allow a precise 
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measurement, is almost constant: 11.6 ± 3.1 nm. In a previous work we estimated the radius 

of a spherical SL micelle to be slightly below 3 nm,12 which, to a first approximation, could 

correspond to the head-to-tail length of a single SL molecule, LSL. Oi et al.32 have evaluated 

the thickness of the hydration layer, Lh, of dispersed functionalized metal oxide nanoparticles 

in water to be between 1.5 < Lh < 2 nm, by a combination of DLS, static light scattering and 

small angle neutron scattering (SANS). The average calculated Lh for our samples (1S-RT 

excluded) is 2.8 ± 1.6 nm,33 which is consistent with this range of values. Despite the absence 

of more precise techniques (SANS, for instance), data above suggest the possibility of a 

monomolecular sophorolipids coating layer for a large part of the nanoparticle population,   

where the increase of dh values in DLS experiments could be attributed to the difference in 

particle core-size. Meanwhile, multilayer sophorolipids coating can also occur and which 

could actually explain the presence of the larger aggregates detected in the intensity-weighted 

DLS data discussed above. Looking at Table 2, one realizes that measurements performed on 

the two-steps (2S) samples show comparable sizes within their error. The comparison of the 

typical correlograms for samples 2S-80C and 2S-RT (Figure S3 in Supplementary 

Information) shows a more rapid decay for the curve corresponding to the former sample, 

which confirms the average smaller size of the scattering particles. For comparison, the faster 

decaying correlogram of the 1S-80C sample, where particles are the smallest, is also reported 

in the same figure. 

 
Table 2 – Values of the hydrodynamic diameters, dh, obtained by the number-weighted DLS experiments 
for the SL-coated iron oxide nanoparticles in water and in a 80:20 water/ethanol (vol:vol) mixture. dTEM 
refers to the average diameters measured using TEM (Figure 2). *= size distributions are given in Figure 

2. 

Sample 
dh (nm) 

(H2O/EtOH=100/0) 

dh (nm) 

(H2O/EtOH=80:20) 

dTEM (nm)* 

1S-RT 22.9 ± 4.4 270.1 ± 20.0 3-20 

1S-80C 13.7 ± 0.6 24.2 ± 0.1 2.8 

2S-RT 19.5 ± 4.5 145.0 ± 6.0 4.5 

2S-80C 17.4 ± 2.7 52.8 ± 8.1 8.5 

 

TGA can be used to show the existence of an organic/inorganic material and estimate the area 

per functional group, as it was shown for, among others, oleic acid-capped maghemite 

nanoparticles,34,35,36,37 a system which is closely related to ours. In the Supplementary 

Information section we describe a simple core-shell model to calculate the available surface 
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for a given molecule, where the core and the shell are constituted, respectively, of the 

nanoparticle and its organic coating, whose mass density is supposed to be the same as in its 

bulk form and constant. It is then possible to calculate (Eq.1 in Supplementary Information) 

the available surface area per molecule as a function of the core particle radius (Rin). This 

model is rather crude and its accuracy quite weak, first of all because it makes strong 

assumptions on the density of the organic coating layer and secondly because the exact area 

per molecule, even in the case of monolayer adsorption on flat surfaces, is dependent on a 

number of physico-chemical parameters (surface chemistry, pressure, solvent, pH, salt 

concentration, molecular configuration, etc…). For instance, adsorption of oleic acid, whose 

molecular structure is close to sophorolipids exception made for the bulkier sophorose 

headgroup, on flat surfaces is known to provide an area per molecule which varies between 

0.1 nm2 and 0.8 nm2,38,39,40 where the latter value is obtained for an horizontal oleic acid 

configuration.40 This last parameter is actually particularly important for sophorolipids, for 

which two forms are known, the lactonic one, where the oleic acid moiety is bent towards the 

sophorose group, and acidic one, where the oleic acid moiety is free. Few data exist at the 

moment on the exact description of sophorolipids’ molecular conformation in bulk and at 

liquid/gas interfaces14,41,42 but it seems highly possible that bending can also occur in the 

acidic form.14,42 To this respect, the model used here is reductive as it does not consider 

neither the effective molecular conformation nor the effective surface density; nevertheless, 

considering the lack of data on our system if compared to oleic acid, our approach has the 

merit of allowing quick comparison between similar systems (oleic acid vs. sophorolipids) in 

which the surface available area per molecule is estimated by TGA and put them in 

relationship according to the same assumptions, given hereafter. 

The idea is to make the hypothesis that for very small nanoparticles, when their radius 

becomes comparable with the adsorbant typical size, one can reasonably expect important 

curvature effects on the effective area per molecule. Calculations for a typical oleic 

acid/nanoparticle system as a function of the particle radius are shown in Figure 5 (straight 

line). As expected, the available area per molecule decreases for radii below approximately 10 

nm. The comparison with real systems is given on the same figure (squares), where the 

surface area per molecule, calculated according to Eq.2 in Supplementary Information on the 

basis of published TGA and TEM data, is also provided. Many literature works report 0.20 ± 

0.03 nm2 per oleic acid (about 5 molecules per nm2) as being a common value34,36 for 

nanoparticle radii (Rin) below 20 nm. According to the core-shell model employed, below this 

value one expects the molecular packing to increase, which is not the case. The comparison 
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between measured and calculated values of area per molecule for oleic acid shows the limits 

of this model for very small radii but it also reveals to be in fair agreement for very large ones 

(about 0.22 nm2 per molecule). The model failure at low radii has also the merit to better 

visualize the discrepancies existing between different studies. For instance, in Ref.36, authors 

obtain 0.4 nm2 per molecule for Rin of about 8.0 nm, whereas 0.20 nm2 should be obtained, 

which is a value actually found in Ref. 34. 

 For sophorolipids-capped iron oxide nanoparticles, the available area per molecule can 

be estimated using our own data (TGA experiments are given in Figure S4 in Supplementary 

Information). These values can be compared to the ones calculated with Eq.1 given in 

Supplementary Information (dotted line on Figure 5). The results show a low-density packing 

for the 1S-80C sample (Figure 5), for which typical values are between 0.2 and 1 nm2 per 

molecule, and high density one for the 2S-80C sample, with typical values below 0.1 nm2 per 

molecule. The coarse packing of SL molecules in the 1S-80C is comparable with the 

theoretical value calculated for very large radii and, in this sense, results for SL are similar to 

what it is observed in Ref. 36,37 for the oleic-acid based samples. Typical results measured 

by TGA for the 2S-80C sample show, on the contrary, a smaller area per molecule. If specific 

data on the packing of sophorolipids on nanoparticles are not known, the results obtained for 

the 1S-80C systems are consistent with what has been reported for sophorolipids (acidic, 

lactonic and their mixtures) at the air/liquid interface, and whose values range between 0.7 

and 1 nm2 per molecule.41 Interestingly, smaller values (about 0.5 nm2 per molecule) were 

estimated from surface tension experiments for the ester derivatives of acidic sophorolipids on 

solid flat surfaces.43 At the moment, the difference between the two samples is hard to explain 

and the value measured for the 2S-80C system seem too small. The hypothesis concerning the 

formation of a sophorolipid multiple layer at the nanoparticle surface, as it was proposed for 

sophorolipid esters on alumina,43 and as already discussed in the DLS data section is also 

possible. 
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Figure 5 –Lines: calculated exposed surface per molecule as a function of the core nanoparticle radius, 
Rin, according to the core-shell model detailed in the Supplementary Information (Eq.1) for oleic acid 
(solid line) and sophorolipids (dotted line). Full symbols: data calculated from Eq.2 in Supplementary 

Information, where Rin ≡ dTEM/2; m and m0 have been obtained from TGA analysis. Data for 
sophorolipids (stars) have been measured in this work while those for oleic acid (squares) have been 

extracted from references given in the figure.  
 

Colloidal stability in various media. 

FT-IR and preliminary DLS experiments strongly suggest that colloidal stability in 

water is promoted by chemical grafting of sophorolipids on iron oxide nanoparticles and 

consequent sophorose coating on their outer surface. Here after we confirm these 

assumptions. 

Like all saccharides, sophorose is expected to be less soluble in low-dielectric constant 

solvents. This is well-known for glucose, for instance, whose solubility in ethanol is very low. 

At 50 mol% (76 vol%) of ethanol in water, the dielectric constant decreases from 80 to 3844 

and solubility drops from 0.4 g/mL to about 0.1 g/mL if compared to pure water.45 According 

to these considerations, we expect nanoparticle aggregation phenomena to occur at a given 

ethanol/water mixture. The qualitative colloidal stability of the SL-coated iron oxide 

nanoparticles was first estimated over one week for several H2O/EtOH mixtures and it was 

found that the 80/20 (vol:vol) ratio (~ 7 mol% EtOH)46 was a good compromise in terms of 

dielectric constant (~ 70)44 and long term nanoparticle colloidal stability.47 DLS experiments 

for the H2O/EtOH=80/20 (Figure 4b) show an increase of the average hydrodynamic diameter 

upon addition of ethanol with respect to the pure water solutions (Figure 4a). As summarized 

in Table 2, upon addition of ethanol to the solution, an increase between 100% and 200% in 

dh is observed for samples prepared at 80°C while a ten-fold increase occurs for room 

temperature samples. We attribute such a large difference between RT and T= 80°C to a 
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possible SL solubilisation effect of ethanol on more loosely bonded SL molecules at the iron 

oxide surface, hence inducing nanoparticle aggregations into large aggregates. Since this 

effect is less pronounced when synthesis temperature is set to 80°C, one could argue a more 

efficient surface stabilization by sophorose groups. 

At the moment FT-IR experiments seem to be give similar results for all samples exception 

made for the C=C resonance at 3004 cm-1, whose absence in the samples obtained at 80°C 

may indicate an additional stabilisation of the nanoparticles by the C=C functional group in 

sophorolipid, hence conferring more stability to these systems. 

 

To confirm the data about the dispersive properties in water of SL-coated iron oxide 

nanoparticles, we have run a specific experiment where increasing amounts of a dried 

sophorolipid-free maghemite powder are dispersed in a given volume of SL-containing 

solution at constant concentration, CSL= 50 mg/mL. DLS experiments were run at constant 

shutter opening; in this case, the diffused intensity is dependent on the particle concentration. 

From a visual point of view, the picture shown in Figure 4c illustrates the increasing absorbed 

intensity of the iron oxide/SL solution as a function of the nanoparticle/SL ratio. As expected, 

at higher nanoparticle amount (NP/SL= 1), the solution becomes darker. In Figure 4d, the 

scattered intensity is reported as a function of the NP/SL ratio. These data are corrected by the 

solution absorption coefficient at λ= 633 nm, as presented on the right axes of Figure 4d. 

When the amount of nanoparticles increases, the diffused intensity increases as well, directly 

proving that a higher amount of nanoparticles is dispersed in the solution, thus showing the 

colloidal stabilizing effect of the SL coating. Similar results are obtained if the order of 

addition is inversed. By doing this, it is possible to evaluate that for a 1 mg/mL of re-

dispersed nanoparticles, one must employ between 0.1 and 0.2 mg of sophorolipids to observe 

an appreciable increase in the amount of stabilized nanoparticles, detected by DLS (diffused 

intensity at constant shutter opening, as on Figure 4d). At the same time, the particle size and 

its distribution become narrower. If no sophorolipids are added, the amount of stable 

nanoparticles is very low and the size distribution is very large. 

To provide further proof of the colloidal stability and show that these systems are interesting 

candidates for biomedical applications, we run several experiments showing stability towards 

salt and consecutive filtration steps. These parameters were tested on the SL-functionalized 

nanoparticles obtained at T= 80°C, when nanoparticles are more stable. Stability towards 

ionic strength is particularly important because it provides information on the type of ligand-

nanoparticle interaction, which, if purely electrostatic, addition of a salt would induce 
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aggregation; plus, good stability towards salt makes them interesting candidates for 

biomedical applications. Figure 7 shows the number-weighted DLS and UV-Vis adsorption 

experiments for the 80°C-synthesized SL-functionalized samples. All samples have 

undergone 1 filtration step, as indicated on each figure. DLS data show that PSD is essentially 

unchanged in 0.01 M and 2 M KCl solutions for both 1S-80C and 2S-80C samples (Figure 6a 

and Figure 6b, respectively) indicating a good colloidal stability upon salt addition at these 

specific concentrations in water; the main effect is the small increase (5/10 nm) in the 

measured dh values. UV-Vis experiments are provided as a complementary tool to indirectly 

estimate the formation of large (diameter > 0.2 µm) aggregates, which are retained by the  

filter pores. Upon analysis of the filtered solution, the higher retension in the filter, the 

stronger attenuation of the UV-Vis signal, as it was shown for the non-functionalized system 

(Figure S2 in the Supplementary Infomation). Here, UV-Vis spectra recorded on the same 

samples (Figure 6c,d) indicate that addition of KCl in the 2S-80C system does not affect 

aggregation much between nanoparticles, at least after one filtration step (comparison with the 

non-filtered solutions is given later); in fact, the adsorbed intensities for the KCl-free (H2O), 

0.01 M and 2 M solutions are comparable for this sample. On the contrary, the lower signal 

recorded after KCl addition in the 1S-80C containing solutions indicates that part of this 

sample has been removed after filtration (rough estimation are reported below). This result 

suggests that electrostatic interactions between a small fraction of the nanoparticle population 

induced by salt addition, probably due to either an incomplete or non homogenous surface 

coverage, are possible. 
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Figure 6 – (a,b) Number-weighted DLS and corresponding (c,d) UV-Vis experiments performed on the 

single step (1S) and two-steps (2S) synthesis (T= 80°C) systems diluted in H2O and KCl solutions (0.01 M, 
2 M). All samples have been filtered (φ= 0.20 µm) once. Dilution conditions are provided in the 

experimental section. UV-Vis experiments are directly comparable within each system (2S-80C and 1S-
80C) because the same batch was used as nanoparticle source. 

 

Filtration is known to have an impact on the ligand stability on the particle surface; for this 

reason, multidentate binding is generally requested to improve overall stabilization, as nicely 

shown by Amstad et al.48 We have tested the stability towards this parameter for the 2S-80C 

and 1S-80C samples in pure water and KCl containing solutions. First of all, one can see that, 

in large contrast with respect to the blank, non functionalized, Fe2O3 solution, one filtration 

step (1-labelled curves in Figure 8 a,b) for functionalized nanoparticles only contributes to 

reduce the signals by a factor of 1.4 for 1S-80C and 2 for 2S-80C, whereas all nanoparticles 

are retained in the filter when functionalization is not performed (Figure S2 in Supplementary 

Information). 

Secondly, DLS (Figure 7 a,b), confirmed by the UV-Vis data (Figure 8 a,b), shows a clear 

effect of the number of filtration steps on the dh, which increases from 16 nm to 100 nm on 

both 1S-80C and 2S-80C samples in pure water. The filtration effect in KCl-containing 

solutions shows a similar trend. For instance, with increasing KCl amount in the 1S-80C 

system, one qualitatively observes larger values of dh, as shown in Figure 7 c,e, where UV-

Vis experiments (Figure 8 c,e) indicate that the amount of filtered nanoparticles increases 
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(decreasing UV-Vis signal). On the contrary, addition of the salt induces a relative 

stabilization in size of the 2S-80C nanoparticles, as one can observe after DLS experiments 

(Figure 7 d) even if the amount of nanoparticle keeps decreasing (Figure 8 d). At higher KCl 

content (2M - Figure 7 f), the stability of the nanoparticles is less pronounced, as shown by 

the double distribution peaks in the two-times filtered sample, indicating that several 

populations may exist at the same time. 

 
Figure 7 – Number-weighted DLS experiments on 1S-80C and 2S-80C systems in (a,b) H2O, (c,d) KCl at 
0.01 M, (e,f) KCl at 2 M. Each number reported on top of the size distribution curves refer to the number 

of consecutive filtration steps (φ= 0.20 µm).  
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Figure 8 – UV-Vis spectra recorded on 1S-80C and 2S-80C systems in (a,b) H2O, (c,d) KCl at 0.01 M, (e,f) 

KCl at 2 M. Each number reported next to each spectrum refer to the number of consecutive filtration 
steps (φ= 0.20 µm). 

 

The behaviour of the room temperature-synthesized materials reflects the same trends 

described above (results not shown). In general, the number of filtration steps (up to 10, at 

least) induces an aggregation effect of the nanoparticles, whose average measured dh of the 

remaining objects never exceeds 100 nm. With respect to Amstad et al.,48 our results seem to 

be comparable to their intermediate stability range. In particular, the sophorolipids seem to 

stabilize nanoparticles better than PEG(5)-COOH, PEG(5)-hydroxypyridine and PEG(5)-

hydroxydopamine do on a basis of 10 consecutive filtration steps,48 which, here, induce 

aggregation up to 100 nm. So far, we could not obtain nanoparticles as stable as those 

reported in Ref. 48 with PEG(5)-nitroDOPA and PEG(5)-nitrodopamine. 
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Aggregation upon consecutive filtering is generally attributed to consecutive removal of the 

stabilizer by the filter itself due to reversible binding on the nanoparticle surface.49 To 

improve colloidal stability, reversibility of surface binding is the first point to address. This 

phenomenon depends on the chemical nature of the functional group but also on the 

nanoparticle surface charge, solution pH, ionic force, nanoparticle/dispersant ratio, 

temperature etc… Some of these parameters were tested in Ref. 48. For the sophorolipids/iron 

oxide nanoparticles studied here, we actually observed that pH and ionic force combined are 

of paramount importance in terms of colloidal stability. For instance, we qualitatively 

observed that stability is promoted by low pH, allowing several filtrations. Increase in pH (> 

8) promotes binding reversibility with the consequence that most material can be filtered out 

after one step. On the contrary, stable binding seems to be promoted by a combination of high 

pH and ionic strength. These phenomena are under current study. The second point to address 

is the nature of the filter/stabilizer interactions. In fact, one can formulate the hypothesis that 

different filter materials promote different aggregation behaviour of the nanoparticle 

according to the specific interactions occurring with the surface stabilizer. For this reason, 

another way to reduce the aggregation could be the use of well-chosen filter membranes that 

limit the membrane/stabilizer interactions. 

DLS experiments above show that, compared to bare nanoparticles, SL-functionalization 

stabilizes maghemite and ferrihydrite nanoparticles in both salt-free and salt-containing media 

(Figure 6), while addition of ethanol induces large variations in size (Figure 4b). According to 

these data combined with FT-IR, colloidal stability mainly depends on the repulsive steric 

interactions between the sophorose groups, even if the ligand density at the nanoparticle 

surface and its conformation are still unclear and may not be equal among all systems, thus 

playing an important role in the effective stability towards salt addition and filtration. These 

results are in good agreement with similar systems; for instance, oleic acid-functionalized 

nanoparticles are known to be highly stable in organic media, the stability being also due to 

steric repulsion between the fatty acid tails (more theoretical background on the stability of 

functionalized inorganic particles can be found in Ref.50).3 As far as the ligand stability is 

concerned, salt does not seem to contribute to sophorolipids removal, which is probably the 

case when repeated filtration steps are performed. 

Table 3 summarizes the main characteristics of the sophorolipid-functionalized nanoparticles 

studied in this work. The most stable colloids are obtained at 80°C both after one-step and 

two-steps, where the latter provides larger nanoparticles. Despite the small discrepancies 

described previously, both samples are characterized, at least after one filtration step, of 



 27 

remarkably stable nanoparticles both in water and concentrated KCl solution and whose 

average sizes for most of the nanoparticle population range between 10 and 30 nm. In 

comparison, synthesis at room temperature, especially for the two-step synthesis, provides 

less stable nanoparticles. Finally, use of sophorolipids in the initial batch has a non negligible 

influence on the iron oxide structure. Iron-complexing phenomena modify the Fe2+/Fe3+ 

stoichiometry and ferrihydrite is obtained instead of maghemite.  

 
Table 3 – Summary of the most relevant structural and colloidal properties of the one-step and two-steps 

SL-functionalized iron oxide nanoparticles at room temperature (RT) and T= 80°C.  

Sample Synthesis 
conditions Structure dTEM 

(nm) 
dh 

(nm)/H2O 

dh 
(nm)/KCl 

2M 

Stability 
in H2O 

Stability 
in KCl 

1S-RT - One-step 
- T= RT Ferrihydrite 3-20 22.9 27.7 Good Good 

1S-80C - One-step 
- T= 80°C Ferrihydrite 2.8 13.7 21.5 Very good Very good 

2S-RT - Two-steps 
- T= RT Maghemite 4.5 19.5 50.1 Average Average 

2S-80C - Two-steps 
- T= 80°C Maghemite 8.5 17.4 22.1 Very good Very good 

 

 

Conclusion 

The use of biosurfactants in non-deterging, material science related, applications is a recent 

research field that takes into account the astonishing and multivalent, yet unknown, properties 

of some of these compounds. In this work, we have used the acidic form of sophorolipids to 

functionalize magnetic iron oxide nanoparticles  Sophorolipids were added in either one- or 

two-steps procedure in the typical “Massart” synthesis of iron oxide nanoparticles. In 

particular, the one-step synthesis provides poorly crystalline ferrihydrite nanoparticles instead 

of the expected magnetite (or maghemite) structure, indicating a complexation effect of the 

COOH group on iron metal centers during synthesis. The two-steps approach provides 

classical γ-Fe2O3 nanoparticles. Whatever the protocol, FT-IR experiments show that 

sophorolipids always interact with the iron oxide surface via their carboxylic group, 

imprinting a large colloidal stability to the final material. No interactions between sophorose 

and iron were, on the contrary, observed. According to DLS data combined with UV-Vis 

experiments, the colloidal stability of sophorolipids-functionalized nanoparticles is good, 

especially for the materials obtained at 80°C. This has been shown both in pure water and in 

0.01 M and 2 M KCl solutions. Further proof of the good complexing ability of sophorolipids 

is given by specific DLS experiments in which the amount of dispersed nanoparticles in 
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solution increases with increasing the nanoparticle/sophorolipids mass ratio. The 

hydrodynamic diameter for a large portion of the nanoparticles varies between 10 and 30 nm 

in water and it does not become larger than 30 nm for KCl concentrations as high as 2M. 

Additional experiments in which the colloidal stability was tested towards the number of 

filtration steps show some aggregation effects between 1 and 10 consecutive steps, even if the 

size for most of the largest aggregates is always below 100 nm, making sophorolipids 

interesting candidates for further studies on surface capping agents of nanoparticles for 

biomedical applications. 

The accessibility of the sophorose group at the surface of the nanoparticle is also an important 

issue for biocompatibility issues. In order to show that a sophorose layer coats the 

nanoparticle, we have shown via DLS that the average hydrodynamic diameter increases for 

all samples when an ethanol/water mixture is used as dispersing medium, as carbohydrates are 

insoluble in alcoholic media.  
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