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Recursive Symbolic Calculation of the Dynamic Model of Flexible
Parallel Robots

Sébastien Briot1 and Wisama Khalil2

Abstract— This paper presents a symbolic and recursive
calculation of the dynamic model of flexible parallel robots.
In order to reduce the computational time, it is necessary to
minimize the number of operators in the symbolic expression
of the model. Some algorithms have been proposed for the
rigid case, for parallel robots with lumped springs or for
serial robots with distributed flexibilities, but to the best of
our knowledge, nothing has been developed for parallel robots
with distributed flexibilities. This paper aims at filling this gap.
In order to minimize the number of operations, the Newton-
Euler principle is used and combined with the principle of
virtual powers. The Jacobian matrices defining the kinematic
constraints are computed using recursive calculations that
decrease the number of operators. The proposed algorithm is
used to compute the elastodynamic model of a planar parallel
robot. The obtained results, compared with those obtained
with commercial softwares, show the validity of the proposed
algorithm.

I. INTRODUCTION

The way to obtain the full dynamic model of rigid parallel
robots has been deeply analyzed [1], [2], [3], however
several open questions still arise for the computation of their
elastodynamic model. One of them concerns the reduction of
the computational time that is generally huge. To decrease the
computational cost, one can either (i) decrease the number
of variables (using model reduction methods [4], [5], [6] and
truncated series of shape functions [7]) or (ii) optimize the
symbolic computation of the model to minimize the number
of operators (similarly to what has been done for rigid robots
[8], robots with lumped springs [9] or for serial robots with
distributed flexibilities [10]). It is obvious that both methods
can also be combined. However, this paper only focuses
on the way to optimize the symbolic computation of the
elastodynamic model of parallel robots.

Two main approaches are generally used for computing the
elastodynamic model (see [11] for a large literature review):
(i) lumped modeling [9], [12], [13] and (ii) modeling using
distributed flexibilities [10], [14], [15], [16], [17], [18]. The
lumped modeling is generally simpler to apply but tends to
decrease the accuracy of the model. In [9], the flexibilities
are modeled by one degree of freedom (DOF) springs and
a systematic procedure for the symbolic computation of the
model is proposed. This procedure allow the minimization
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of the number of operators in the model. In [13], springs of
higher dimension are used, but it is shown that for obtaining
good accuracy, the number of elements must be high, thus
leading to larger computational time.

On the contrary, using distributed flexibilities allows the
increasing of the model accuracy. But it requires higher
skills. In [14], [15], [17], [18], the authors proposed some
general methodologies based on the Lagrange principle that
can be applied to any system. For taking into account the
kinematic dependencies such as in the case of close-loop
mechanisms, some Jacobian matrices are used. In [16], the
authors combine the Lagrange principle and the principle
of virtual works for derivating the elastodynamic model of
parallel robots. However, the main drawback of such general
methodologies is that they are not specifically designed for
parallel robots and that they do not allow the minimization
of the number of operators for the symbolic computation of
the model. To the best of our knowledge, a systematic proce-
dure to compute the elastodynamic model (using distributed
flexibilities) of parallel robot with a minimum numbers of
operators has never been proposed.

The present work aims at filling this gap. In order to
minimize the number of operations, the Newton Euler (NE)
principle (which is known to reduce the number of operators
[8], [19]) is used and combined with the principle of virtual
powers (PVP). The Jacobian matrices defined in the PVP
are computed using recursive algorithms that decrease the
number of operators. For computing the full elastodynamic
model of parallel robots, the method proposed in [1], [2]
for rigid robots and in [16] for flexible robots is used. This
method proposes to:

1) convert the parallel robot into a virtual system defined
by (i) a tree-structure robot composed of the kinematic
chains of the actual robot for which all joints (passive
and active) are considered actuated plus (ii) a free body
(the platform which is considered as rigid) (Fig. 1),

2) compute the elastodynamic model of this new virtual
system,

3) finally, close the loops by using the PVP.
This method is effective, systematic and can be applied to

any parallel robots.
The paper is organized as follows. In Section 2, the

computation of the generalized NE model of a flexible free
body is recalled. Then, in Section 3, the elastodynamic model
of the virtual tree structure is developed. Section 4 shows
the computation of the elastodynamic model of the actual
parallel robot. Section 5 presents some illustrative example.
Finally, in Section 6, conclusions are drawn.
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Fig. 1. A general parallel robot.
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Fig. 2. Schematics of the flexible elements into consideration.

II. RECALL ON THE GENERALIZED
NEWTON-EULER MODEL OF A FLEXIBLE FREE

BODY

This section aims at making some brief recall on the way
to obtain the generalized NE model of a flexible free body.
For further development, the reader is referred to [10], [19].

A. Kinematics of a flexible free body

The twist of any free flexible body j at any point Mj (Fig.
2(a)) can always be expressed as:[

vj(Mj)
ωj(Mj)

]
= tj +

[
ωj(Aj) × rj(Mj)

0

]
+

[
vej (Mj)
ωej (Mj)

]
(1)

where tj =
[
vT
j (Aj), ω

T
j (Aj)

]T
is the twist of the local

frame fixed on the body j expressed at point Aj , vj(Aj)
and ωj(Aj) being the translational and rotational velocities,
respectively, rj(Mj) is position vector of point Mj (of the
deformed body) with respect to the local frame, vej (Mj) and
ωej (Mj) are the translational and rotational velocities due
to the body elasticity that can be parameterized as truncated
series of Rayleigh-Ritz shape functions:[

vej (Mj)
ωej (Mj)

]
=

[
Φdj

(M0j)
Φrj (M0j)

]
q̇ej = Φj(M0j)q̇ej (2)

with Φd,rj =
[
φd,r1j , · · · , φd,rNjj

]
, φdkj

(M0j) and
φrkj (M0j) being the k-th shape functions for the displace-
ment and the rotation of the flexible body expressed at point

M0j , respectively, and q̇ej =
[
q̇e1j , · · · , q̇eNjj

]T
, q̇ekj

being
the k-th elastic generalized velocity of the body and Nj the

number of considered shape functions. It should be noted
that the vector rj(Mj) of (1) can be expressed as:

rj(Mj) = rj(M0j) + Φdj
(M0j)qej (3)

where rj(M0j ) is the position of the point M0j with respect

to the local frame and qej =
[
qe1j , · · · , qeNjj

]T
are the

elastic generalized coordinates of the body.
Equations (1) to (3) define the kinematic model of the

flexible free body j. This model is thus parameterized by
the following set of variables:
• tj that are the Euler variables characterizing the rigid

displacement of the body j at the origin of the local
frame,

• qej that are the Lagrange variables characterizing the
elastic displacement of the body j.

Thus, the kinematics model of a flexible free body is
parameterized by 3Nj supplementary variables (qej , q̇ej and
q̈ej ) and 6Nj shape functions compared with the rigid free
body case.

It should be mentioned that this description can be applied
to both robot segments and joints, as along as all the shape
functions can be defined.

B. Generalized Newton-Euler model of a flexible free body

Skipping all mathematical derivations and referring the
reader to [10], the generalized NE model of a flexible free
body can be obtained via the application of the PVP. This
model is known to reduce the number of operators and takes
the form:∆fcj

∆ccj
∆scj

 =

mjId3 M̂S
T

j MSdej

M̂Sj Ij MSrej

MST
dej MST

rej Meej


γj(Aj)
αj(Aj)
q̈ej

+

finj

cinj

sinj

+

 0
0

Keejqej

+

fgjcgj
sgj

 = Mj

[
ṫj
q̈ej

]
+ cj

(4)

where
• mj the total mass of the body j
• Idk is the k × k Identity matrix,
• Ij is the 3 × 3 total inertia matrix of the body j,
• M̂Sj is the 3 × 3 matrix containing the first moments

of inertia of the body j,
• Meej is the Nj × Nj elastic mass matrix of the body
j,

• MSdej and MSrej are 3 ×Nj matrices,
• ṫj =

[
γj(Aj)

T , αj(Aj)
T
]T

is the acceleration screw of
frame j expressed at point Aj with γj(Aj) and αj(Aj)
the translational and rotational accelerations of the local
frame fixed on the body j at point Aj , respectively,

• finj
and cinj

are vectors of the inertial force and
torques, respectively,

• sinj is the vector of the generalized elastic forces,
• fgj and cgj are vectors of the gravity force and torques

plus the other external forces, respectively,



• sgj is the vector of the generalized elastic forces due to
gravity,

• Keej the stiffness matrix of the body j,
• Mj is the global mass matrix of the body j,
• cj is the global vector of the centrifugal, Coriolis,

gravity and elastic forces of the body j,
• ∆fcj = fcj−fcj+1

and ∆ccj = ccj−ccj+1
−rj(Aj+1)×

fcj+1 are the total sum of forces and torques transmitted
by the joints, fcj and ccj being the reaction forces and
torques in joint j, respectively,

• ∆scj = −ΦT
dj(B0j)fcj+1

− ΦT
rj(B0j)ccj+1

is the total
sum of the elastic generalized forces transmitted by the
joints.

For limiting the size of the paper, the expressions of these
terms are not given here. However, the reader can refer to
[10] for more details.

III. COMPUTATION OF THE ELASTODYNAMIC
MODEL FOR THE VIRTUAL SYSTEM

Let us consider a parallel robot composed of one rigid
fixed base (denoted as the element 0), one rigid moving
platform and n legs, each leg being a serial kinematic chain
composed of mi − 1 elements linked by mi joints (revolute,
prismatic or even fixed joints - i = 1, ..., n) (Fig. 1(a)). The
actuated variables are denoted by qa and the leg passive
variables by qp. The platform coordinates are denoted as xp.
The size na of qa must be equal or superior to the number
of degrees of freedom (DOF) of the parallel robot. The
number of shape functions by element is denoted as Nij (j =
1, ...,mi − 1). As a result, there are ne =

∑n
i=1

∑mi−1
j=1 Nij

elastic variables grouped in the vector qe. All the active,
passive and elastic variables are grouped into the vector
qt =

[
qT
a ,q

T
p ,q

T
e

]T
.

A. Application of the principle of virtual powers
Considering the link j of leg i (denoted in the following

as the element ij), the PVP states that:[
t∗Tij q̇∗Teij

] [
∆fTcij ∆cTcij ∆sTcij

]T
= q̇∗Tt

[
τtij
0ne

]
(5)

where the symbol ′∗′ stands for a virtual velocity, τtij is the
vector of the virtual input torques of the tree structure (Fig.
1(b)) due to the movement of the link ij and 0ne a null
vector of dimension ne.

The twist t∗ij and generalized elastic velocities q̇∗eij are
linked to the generalized velocities q̇∗t by the relation:[

tij
q̇eij

]
= Jijq̇t (6)

where Jij is the Jacobian matrix of the element ij whose
expression will be given in the following section.

Eq. (5) can thus be rewritten as:

q̇∗Tt JT
ij

[
∆fTcij ∆cTcij ∆sTcij

]T
= q̇∗Tt

[
τtij
0ne

]
(7)

which lead to, for any virtual velocity q̇∗t :[
τtij
0ne

]
= JT

ij

[
∆fTcij ∆cTcij ∆sTcij

]T
(8)

Thus, now considering all the links of the robot, it comes
that [

τt =
∑

i,j τtij
0ne

]
=
∑
i,j

JT
ij

∆fcij
∆ccij
∆scij


=
∑
i,j

JT
ij

(
Mij

[
ṫij
q̈eij

]
+ cij

) (9)

where τt is the vector of the tree-structure input efforts.
In the next section, recursive algorithms for the computa-

tion of the vectors tij , ṫij and of the Jacobian matrices Jij

are developed.

B. Recursive computation of the velocities and Jacobian
matrices

Let us consider the Fig. 2 describing the displacement of
the element j. From (1), it comes that[

vj(Bj)
ωj(Bj)

]
= tj +

[
ωj(Aj) × rj(Bj)

0

]
+

[
vej (Bj)
ωej (Bj)

]
(10)

If an element j + 1 is linked at Bj by an actuated joint
moving at a velocity q̇j+1 (Fig. 2(b) - if the joint is a fixed
joint, q̇j+1 = 0), it comes that:

tj+1 =

[
vj(Bj)
ωj(Bj)

]
+ q̇j+1aj+1 (11)

where aj+1 is the unit twist describing the motion of the
actuator [8].

As a result, for the element ij of the global robot, it
can be demonstrated that (in the following expressions, the
preceding superscript indicate the frame in which the vector
expression is given) [10]:

ijtij = ijTi(j−1)
i(j−1)ti(j−1)+

ijRi(j−1)Φi(j−1)(Aij)q̇ei(j−1)
+ q̇ij

ijaij
(12)

which can also be written as:
ijtij = Jtij q̇t (13)

with
Jtij = ijTi(j−1)Jti(j−1)

+ Φqeij
+ Aij (14)

where

Φqeij
=
[
0 · · · ijRi(j−1)Φi(j−1)(Aij) · · · 0

]
Aij =

[
0 · · · ijaij · · · 0

] (15)

In the matrix Φqeij
, the term ijRi(j−1)Φi(j−1)(Aij) is

located at the columns corresponding to the variables q̇ei(j−1)

and, for the matrix Aij , the term ijaij is located at the
column corresponding to the variable q̇ij .

In the previous expressions, matrix Φi(j−1) is the matrix
containing all shape functions for the element i(j − 1) and:

ijRi(j−1) =

[
ijRoti(j−1) 0

0 ijRoti(j−1)

]
ijTi(j−1) = ijRi(j−1)

(
Id6 −

[
0 i(j−1)r̂i(j−1)(Aij)
0 0

])
(16)



where ijRoti(j−1) is the rotation matrix between frames ij
and i(j − 1), i(j−1)r̂i(j−1)(Aij) is the cross product matrix
associated with the vector i(j−1)ri(j−1)(Aij), i.e the position
of point Aij in the frame i(j − 1).

Finally, the global Jacobian matrix Jij of (6) can be
computed as:

Jij =

[
Jtij

Oqeij

]
(17)

where Oqeij
is defined such that

q̇eij = Oqeij q̇e

C. Recursive computation of the accelerations

Differentiating (10), it can be shown that [10]:

ij ṫij =ijTi(j−1)
i(j−1)ṫi(j−1) + q̈ij

jaij + ijhij+
ijRi(j−1)Φi(j−1)(Aij)q̈ei(j−1)

(18)

where the expression of ijhij is given in [10].
Eq. (18) can be then put into the form:

ij ṫij = Jtij q̈t + ijgij (19)

with
ijgij = ijhij + ijTi(j−1)

i(j−1)pi(j−1) (20)

initialized with i0pi0 = 0 if the base is fixed. Thus,[
ij ṫij
q̈eij

]
=

[
Jtij

Oqeij

]
q̈t +

[
ijgij

0

]
= Jijq̈t + ijgs

ij (21)

D. Elastodynamic model of the virtual system

Introducing (21) into (9) leads to:[
τt
0ne

]
=
∑
i,j

JT
ijMijJijq̈t + csij (22)

where
csij = JT

ij

(
cij + Mij

ijgs
ij

)
(23)

The NE equations for the rigid moving platform are given
by [2]:

fp = Mpṫp + cp (24)

where fp are the platform reaction forces expressed at the
platform local frame origin, Mp is the platform mass matrix,
ṫp is the platform acceleration screw and cp the centrifugal,
Coriolis, gravity effects and external efforts applied on the
platform.

Finally, the global elastodynamic model of the virtual
structure can be put into the form:[ τt0ne

]
fp

 =
[∑

i,j J
T
ijMijJij Mp

] [q̈t

ṫp

]
+

[
csij
cp

]

= Ms
t

[
q̈t

ṫp

]
+ cst

(25)

Adding the contributions of the motor inertia and friction
effects [8]:[ τt0ne

]
fp

 = Ms
t

[
q̈t

ṫp

]
+ cst +

[
It 0
0 0

] [
q̈t

ṫp

]
+

[
Fvq̇t

0

]
+

[
Fssign (q̇t)

0

]
= Mt

[
q̈t

ṫp

]
+ ct

(26)

where It (Fv , Fs, resp.) is a diagonal matrix whose j-
th element corresponds to the value of the inertia (viscous
and Coulomb friction coefficients, resp.) of joint j (the j-
th element is equal to zero if it corresponds to an elastic
coordinate).

IV. COMPUTATION OF THE ELASTODYNAMIC
MODEL OF PARALLEL ROBOTS

To compute the elastodynamic model of the actual parallel
robot, the loops must be closed by using the PVP. This is
developed in the next section.

A. Application of the principle of virtual powers

Considering the actual robot, the PVP states that:

[
q̇T∗
t tT∗p

] [ τt0ne

]
fp

 =
[
q̇T∗
a q̇T∗

e

] [ τ
0ne

]
(27)

where tp is the platform twist and τ the actual actuator input
efforts.

The velocities tp and q̇t are linked to the actual general-
ized velocities q̇ =

[
q̇T
a , q̇

T
e

]T
by the relation:[

q̇T
t tTp

]T
= Jq̇ (28)

where J is the global Jacobian matrix of the robot whose
expression will be given in the following section.

Introducing (28) into (27) leads to

[
q̇T∗
a q̇T∗

e

]
JT

[ τt0ne

]
fp

 =
[
q̇T∗
a q̇T∗

e

] [ τ
0ne

]
(29)

or also, for any q̇∗a and q̇∗e ,[
τ
0ne

]
= JT

[
τTt 0T

ne
fTp
]T

(30)

B. Computation of the passive joints and platform velocities
and of the global Jacobian matrix

The global Jacobian matrix can be computed using the
following method:

1) Express, in the based frame, the twist 0timi of the
virtual end-effector of each serial kinematic chain
(points Cmi,i in Fig. 1(a)) as a function of q̇t using
(12-14); 0timi

= Jti q̇t

2) Express, in the based frame, the twist 0timi
of the

virtual end-effector of each serial kinematic chain as a
function of tp; 0timi = Jpitp

3) Then assemble the two expressions and rearrange it in
order to obtain the global Jacobian matrix J such as:




0t1m1

...
0tnmn

 = Jptp = Jtq̇t =
[
Jta Jtp Jte

] q̇a

q̇p

q̇e

 (31)

If the robot is isostatic, (31) can be rewritten as:[
−Jtp Jp

] [q̇p

tp

]
=
[
Jta Jte

] [q̇a

q̇e

]
(32)

or also:[
q̇p

tp

]
=
[
−Jtp Jp

]−1 [
Jta Jte

] [q̇a

q̇e

]
=

[
Js
11 Js

12

Js
21 Js

22

] [
q̇a

q̇e

]
(33)

The case where the robot is overconstrained is not detailed
here for reasons of text compactness, but a method similar
to the one proposed in [20] can be used.

Finally,

[
q̇t

tp

]
=


q̇a

q̇p

q̇e

tp

 =


I 0

Js
11 Js

12

0 I
Js
21 Js

22

[q̇a

q̇e

]
= Jq̇ (34)

C. Computation of the passive joints and platform acceler-
ations

Differentiating (31) with respect to time and using (19)
leads to:

Jpṫp + J̇ptp = Jtq̈t +
[
0gT

1m1
, · · · , 0gT

nmn

]T
= Jtq̈t +gtot

(35)
Rearranging leads to:[
q̈p

ṫp

]
= Jsq̈+

[
−Jtp Jp

]−1 (
gtot − J̇ptp

)
= Jsq̈+

[
b1

b2

]
(36)

Finally:[
q̈t

ṫp

]
= Jq̈ +

[
0 bT

1 0 bT
2

]T
= Jq̈ + b (37)

D. Elastodynamic model of the actual parallel robot

Introducing (37) into (30) leads to[
τ
0ne

]
= JTMtJq̈ + JT (ct + Mtb) = Mq̈ + c (38)

which is the full elastodynamic model of the parallel robot.

E. Discussion

In order to finally obtain the symbolic equations for
the model with the minimum number of operations, the
following method is used. First, the rigid kinematics of each
element are modeled using the modified Denavit-Hartenberg
notations [8]. If the link ij into consideration is flexible,
3Nij supplementary elastic variables are introduced (qeij

,
q̇eij and q̈eij ) in combination with 6Nij shape functions.
Then, the previously developed equations are used. For each
computation, the elements of a vector or a matrix containing
at least one mathematical operation are replaced by an
intermediate variable. This variable is written in an output
file which contained the model. The elements that do not
contain any operations are not modified. The obtained vectors

x0

y0

z0

A1 A2

P(x,y)

q1 q4

q2

q3

q5

Fig. 3. The PRRRP mechanism.

and matrices are propagated in the subsequent equations.
Consequently, at the end, the dynamic model is obtained
as a set of intermediate variables. Those that have no effect
on the desired output (τ and q̈e in the case of the inverse
model, q̈a and q̈e for the direct model) can be eliminated
by scanning the intermediate variables from the end to the
beginning. With this procedure, it is also possible to know
the exact number of operators necessary for the computation
of the model. This algorithm has been successfully imple-
mented with Mathematica and is used in the next section
for computing the elastodynamic model of a flexible planar
parallel robot.

V. ILLUSTRATIVE EXAMPLE

To illustrate the previous equations, a flexible planar
PRRRP mechanism is modelled (Fig. 3 - R stands for a
passive revolute joint and P for an active prismatic joint).
Its two actuated prismatic pairs are parallel. Its modified
Denavit-Hartenberg parameters are given in Table I, where
l = A1P = A2P and d is the distance between the two
prismatic axes. A mass of 1 kg is added on the end-effector
(body 3, whose origin is point P ) and each actuator mass is
equal to 1 kg. The gravity is directed along z0. The friction
effects are not introduced into the model. The beams are
modelled as planar three dimension finite elements [14] (one
element, i.e. three elastic coordinates by beam). Their cross
sections are full squares of edge length equal to 2 mm and
the used material is aluminum. Of course, with only two
beams, the model accuracy with respect to the reality will
be low. However, the aim of this example if to cross validate
our model with commercial softwares.

TABLE I
MODIFIED DENAVIT-HARTENBERG PARAMETERS OF THE PRRRP

MECHANISM.

j a(j) µji σji γji bji αji dji θji rji
1 0 1 1 0 0 0 0 0 q1
2 1 0 0 0 0 π/2 0 q2 0
3 2 0 0 0 0 0 l = 0.4m q3 0
4 0 1 1 0 0 0 a = 0.6m 0 q4
5 4 0 0 0 0 π/2 0 q5 0

The model is thus calculated with Mathematica apply-
ing the proposed methods and then solved using Mat-
lab/Simulink. First, the six natural frequencies of the robot



TABLE II
COMPARISON OF NATURAL FREQUENCIES OF THE PRRRP MECHANISM

COMPUTED WITH THE PROPOSED MODEL AND RDM6.

q4 (m)
(Hz) −0.5 −0.25 0 0.25 0.5

f1

RDM6 31.416 31.454 31.452 31.454 31.416

model 31.414 31.454 31.454 31.454 31.414

% error 0.006 0.000 0.006 0.000 0.006

f2

RDM6 31.457 31.462 31.452 31.462 31.457

model 31.455 31.455 31.455 31.455 31.455

% error 0.006 0.022 0.010 0.022 0.006

f3

RDM6 40.777 109.650 124.390 109.650 40.777

model 40.799 109.664 124.389 109.664 40.799

% error 0.054 0.013 0.001 0.013 0.054

f4

RDM6 144.150 144.050 140.750 144.050 144.150

model 144.139 144.041 140.757 144.041 144.139

% error 0.008 0.006 0.005 0.006 0.008

f5

RDM6 144.190 144.220 144.210 144.220 144.190

model 144.181 144.201 144.225 144.201 144.181

% error 0.006 0.013 0.010 0.013 0.006

f6

RDM6 183.600 152.960 144.480 152.960 183.600

model 183.588 152.949 144.496 152.949 183.588

% error 0.007 0.007 0.011 0.007 0.007

−0.02
0

0.02
0.04
0.06
0.08
0.1
0.12

0 0.2 0.4 0.6 0.8 1
Time (s)

x (m/s).

(a) ẋ(t)
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Fig. 4. Velocity of the robot end-effector (black curve: computed model;
grey curve: ADAMS model).

are computed and compared for five different robot configu-
rations with the commercial software RDM6 (software able
to compute the structure natural frequencies [21]). As the
two prismatic axes are parallel, the robot configuration can
be defined by only one parameter, here q4 (q1 is set to 0).
The results are shown in Table II. The error is inferior to 0.1
%: the accuracy of natural frequency computation is very
good compared with RDM6.

Then, the full model is compared with a model designed
with ADAMS/Flex in which the beams are modelled via
a series of discrete flexible links (15 elements by beam).
A movement during 0.75s between the intial and final
configurations q10 = q40 = 0 and q1f = 0.1m, q4f = 0.2m is
achieved using a bang-bang acceleration profile [8]. The full
model is composed of 521 ’+’ or ’-’ operators, and of 611
’*’ or ’/’ and runs in about 100 seconds (about 20 min for
ADAMS) on a processor Pentium 2.7GHz (8Go of RAM).
The resulting velocity of the end-effector is drawn in Fig. 4.
It can be observed that the two models give similar results.
The observed differences are due to the different approaches
used in the beam modelling and to the differences between
the ADAMS and Matlab solvers.

VI. CONCLUSIONS

This paper has presented a symbolic and recursive cal-
culation of the dynamic model of flexible parallel robots.
In order to reduce the computational time, the number of
operators during the symbolic calculation of the model has
been minimized. In order to achieve this goal, the Newton-
Euler principle was used and combined with the principle of
virtual powers. The Jacobian matrices defining the kinematic
constraints have been computed using some recursions that
decrease the number of operators. Using such method, both
link and joint flexibilities can be taken into account.

The proposed algorithm was used to compute the elastody-
namic model of a planar parallel robot. The obtained model
has been compared with models obtained with commercial
softwares and the obtained results have shown its validity.
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