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We study the propagation of solitons along the hydrogen bonds of ana helix. Modeling the hydrogen and
peptide bonds with Lennard-Jones potentials, we show that the solitons can appear spontaneously and have
long lifetimes. Remarkably, even if no explicit solution is known for the Lennard-Jones potential, the solitons
can be characterized analytically with a good quantitative agreement using formulas for a Toda potential with
parameters fitted to the Lennard-Jones potential. We also discuss and show the robustness of the family of
periodic solutions called cnoidal waves, corresponding to phonons. The soliton phenomena described in the
simulations ofa helices may help to explain recent x-ray experiments on longa helices in Rhodopsin where
a long lifetime of the vibrational modes has been observed.
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I. INTRODUCTION

The structure in most proteins consists ofa helices and
the b sheets connected by loops. The correctly folded struc-
ture is vital for the protein functionf1g. One interesting, but
not yet well understood, function is that of a nanomachine
which is capable of transforming chemical and radiation en-
ergy into mechanical motion and can transport it direction-
ally and without loss over large distancesf2g. Considerable
effort has been spent on studying the high-frequency amide I
modesCvO stretch at 1600 cm−1d, which was proposed by
Davydov f3g as a candidate for soliton transport. In general,
simplified one-dimensionals1Dd models have been studied
from a mathematical point of viewf4g. However, it is impor-
tant to understand the overall dynamical behavior, especially
at low frequencies and for more realistic models. We shall
focus on that aspect in this paper.

In this regard, recent Raman measurements of long-lived
excitations at 118 cm−1 slike pump/probe experiments on
Bacteriorhodopsinf5gd appear to be of particular relevance.
The fact that there are no local vibrational modes corre-
sponding to such an energy points to the interpretation of the
long-lived excitations as collective modes, that is, modes that
involve a large number of amino acids. Spectroscopic obser-
vations at such energies are thus of particular relevance,
since they provide information on large protein domainssi.e.,

on the dynamics of secondary and larger structuresd and thus
in principle on the functions and the conformational changes
of a protein. It was suggestedf5g that such modes probably
corresponded to large-scale vibrations of the protein—and
hence should be damped quickly by the interaction with the
surrounding—quite contrary to the observed, particularly
long, lifetime of this mode. An alternative interpretation may
be based on a comparison with simple models of regular
polypeptide systemsf6g. It was alternatively suggestedf7g
that the resonance in Bacteriorhodopsin, which consists
chiefly of seven longa helices, was dominated by an exci-
tation along the hydrogen bonded chains along the sides of
the a helix parallel to its axis. In this case no major large-
scale motion is required, and hence far weaker damping
might be expected. The possibilities inherent in pump-probe
experiments have opened up a renewed interest in the non-
linear modes ina helices. In an even more recent paperf8g,
direct evidence is reported for solitonlike behaviorsor self-
trappingd for poly-gamma-benzyl-L-glutamate. Although re-
lated to the NH stretch modesand thus to Davydov-type
solitonsd, this work demonstrates the renewed interest in the
problem of nonlinear excitations in biopolymers, and call for
further, more realistic theoretical treatments than the previ-
ously studied idealized models.

The phenomena of collective and nonlinear modes in pro-
teins are not fully understood from a theoretical point of
view, since both models and numerical simulations face the
difficulty of a large number of degrees of freedom with com-
plex interactions. In particular, one may expect nonlinear ef-
fects leading to coupled modes and solitonlike modes with
long lifetimes.
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In order to shed some light on this direction, we have, in
a previous workf9g, modeled ana helix in three dimensions
by three coupled Todaf10g lattices. We have shown that such
a system has stable soliton solutions that can spontaneously
appear if a perturbation parallel to the helix axis is applied.
The soliton solution is not destroyed by the 3D coupling. The
importance of the Toda theory is that a large number of ex-
act, analytical results have been derived for the Toda poten-
tial, which is of a very special exponential form.

It would be highly useful if these results could be used for
estimations of the behavior in a realistic situation. In this
paper, we show that soliton solutions exist in the more real-
istic Lennard-JonessLJd potential as well, and we demon-
strate that the Toda description is accurate in a surprisingly
large interval of energies. It has been proven theoretically
f11g that the Toda solutions are robust under small perturba-
tions away from exact integrability. However, the predicted
lower bounds indicate that it only applies for perturbations of
almost infinitesimally small energies. New results in this di-
rection were also obtained very recently by Kosevichet al.
f12g, who showed that propagating supersonic kink solitons
in Fermi-Pasta-Ulam and LJ lattices can be analytically de-
scribed within the same displacement patterns.

Although a lattice with Lennard-Jones bonds is not di-
rectly solvable, in the following we shall provide analytical
relations for describing soliton propagation, providing good
quantitative agreement with results from direct numerical
simulations. We shall actually show from the simulations that
in a quite wide range of physical parameters, we can main-
tain the soliton picture, hence indicating that the soliton phe-
nomenon is inherent to the nature ofa-helical dynamics.
One might expect that one effect of a coupling between three
1D Toda strands in a 3D structure would be to introduce
devastating noise on the single strand—an effect we have not
found at low temperatures. However, we have found that the
3D solitons decay in the presence of a static distortion simi-
lar to a noise level corresponding to room temperatures. The
effect of thermal noise on a 1D Toda lattice was previously
systematically studiedf13g and it was shown that, in a cer-
tain temperature interval, solitons do exist, but their interac-
tion gives rise to delocalization effects and a decay to broad-
band 1/f noise at low frequenciesscorresponding to the
transformation into low-frequency phononsd.

More realistic 3D models of ana helix have been inves-
tigatedf14–16g with respect to the Davydov soliton mecha-
nism. We shall not focus on that aspect here. The models
differ in detail from ours. Hennigf16g used a confining cage
and initiated soliton solutions by nonlinear map methods.
Christensenet al. f15g studied an unsuspended 3D helix with
Morse interactions. They found both the phonon and the soli-
ton solutions numerically, but did not attempt to compare
that with Toda solutions, nor did they attempt a comparison
with experiments. Previously, Tuszynskiet al. discussed in
the context of the Davydov model the emergence of Jacobi
elliptic waves, including the cnoidal waves, and calculated
numerically the corresponding free energyf17g.

II. COLLECTIVE MODES OF a HELICES AS SOLITONS
ON THE HYDROGEN BONDS

The involvement of the hydrogen bonds for the observed
excitation at 118 cm−1 can be supported also by direct cal-

culationsf7g as follows. Consider a linear chain with a real-
istic potential. The linear modes correspond to phonons, and
the frequencyn of a phononsat maximum density of statesd
is given by

2pn = 2Îk/m, s1d

where n is the frequency,k the force constant, andm the
average mass of the amino acids. In a chain of amino acids
connected by hydrogen bonds HuO of length r0
=1.9 Å, k<1.413104 dyn/cm andm=1.7310−22 g is the
average mass of the residues. An estimation can be obtained
using 1/l=n /c with l the wavelength andc the speed of
light and gives 97 cm−1. If an infinite polysL-alanined a helix
is considered, a complete normal mode calculationf19g gives
a peak at 118 cm−1. Thus an excitation on the H bonds is
certainly to be expected near the observed frequency. Both
phonons and solitons could exist on the chain in a nonhar-
monic potential. However, solitons need nonlinearities in the
potential in order to exist. Such nonlinearities become rel-
evant at high energies, which can be quantified using a
Lennard-Jones potential for the HuO bond. The nonlineari-
ties are hence expected to play a role at the high level of
pumping in the pump-probe experimentsf5g.

III. REALISTIC POTENTIALS AND ANALYTICAL TOOLS

For a molecular solid, the interaction between neighbor-
ing atoms with equilibrium distancer0 is to a good approxi-
mation given by the well-known standard 6-12 Lennard-
Jones potential,

VLJsrd = AFS r0

r
D12

− 2S r0

r
D6G s2d

with the potential strengthA, which is also the depth of the
energy minimum atr =r0. For excitation energies higher than
A, the bond is broken. It is nonlinear, and can be expanded
aroundr0 as

VLJsr − r0d = AF− 1 + 36S x

r0
D2

− 252S x

r0
D3

+ ofx4gG , s3d

wherex=sr −r0d. In one dimension and around a minimum
of the same depth atr0, the potential introduced by Todaf10g
has the following form:

VTodasr − r0d = − A −
a

b
+

a

b
e−bsr−r0d + asr − r0d, s4d

which likewise can be expanded as

VTodasr − r0d = − A +
1

2
abx2 −

1

6
ab2x3 + ofx4g. s5d

Hence the potentials are identical in form up toofx4g and
both include a third-order nonlinear term. The harmonic term
giving the result Eq.s1d is usually writtenVsr −r0d= 1

2kx2. By
equating the coefficients in the expansion, we immediately
get the relation between the parameters,
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k = ab= 72A/r0
2, a = kr0/21, b = 21/r0, s6d

where r0 is the equilibrium position anda, b, and A are
parameterssin the following, we often setr0 equal to 1 for
simplicityd.

As we can see from Fig. 1, the Toda potential is similar to
a Lennard-Jones potential in a substantial region around the
equilibrium. This is very important since there exist a large
number of exact results for the Toda model in one dimension.
However, an important difference between the Lennard-
Jones and the Toda potentials is that the latter is attractive for
all interatomic distances beyondr0, hence no bond breaking
is possible. The subject of this paper is to explore how far the
Toda analytic, exact results can be used for describing thea
helices having realisticsLennard-Jones-liked potentials and
three-dimensional architecture.

The measurement units have been chosen normalizing the
length and the mass to the equilibrium distance of the hydro-
gen bondsr0d and to the average masssmd of an amino acid,
respectively. Time is measured in picoseconds. Callingxj and
pj the space coordinates and momenta of thej th amino acid,
and numbering the amino acids as they appear along the
helix, the Hamiltonian is given by

H = Ekin + Vpeptide+ VH =
1

2m
o
j=1

N

pj
2 + o

j=1

N

Va,bsxj,xj+1,xj−1d

+ o
j=1

N

Vc,dsxj,xj+3,xj−3d, s7d

whereV are Toda or Lennard-Jones potentials of parameters
a, b andc, d sor alternativelyA andApd, and the sums have
obviously to include only the amino acids withj −1.0, j
−3.0, j +1,N, and j +3,N. The equations of motion are
obtained straightforwardly and can be solved numerically
with a standard Runge-Kutta integrator. In order to follow
the propagation of a wave, it is useful to introduce the energy
density per site,

Ej = Ekin,j +
1

2
Vcov,j +

1

2
Vhydr,j . s8d

We check the existence of solitary waves by performing a
simulation of the system at restsinitially d after a perturbation
at time t=0 on one of the amino acids at the terminal points
of the helix. This is done by setting allxj variables at the
equilibrium values and by choosingpj =0 for all the amino
acids except one, which has a momentum corresponding to
the energy of the perturbation.

We briefly remind the reader of the exact results for the
1D Toda latticef10g. The dynamics is described by solitons
with the energy

E =
2a

b
ssinhk coshk − kd. s9d

The profile of the soliton, in terms of the displacementsxn
from the equilibrium distance, is given by

FIG. 2. The cnoidal wave form for different wavelengths and
amplitudes.sa,b,cd for l=s2,4,10d. The curves on which the atom
positions are indicated by assmall,medium,larged size dot corre-
spond to the modulusk2=s0.3,0.9,0.99d. Obviously even fork2

=0.3 the waveform is close to a harmonic wave form for all wave-
lengths, whereas for largerk there are significant differences.

FIG. 1. Comparison of Lennard-Jones and Toda potential.
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xn = −
1

b
logF1 +

m

ab
b2sech2skn ± btdG . s10d

The speedv is

v =
b

k
=Îab

m

sinhk

k
. s11d

The parameterk completely determines the energyE and the
dynamics of the solitonss1/k is proportional to the width of
the solitond.

Another important family of solutions to the Toda lattice
are the cnoidal waves, which are periodic and equivalent to
phonons. An interesting properties of cnoidal waves is that
they are made of equally spaced solitons, with the distance
between them being the wavelength,l. Thus a train of soli-
tons can be connected to phonons, and much can be learned
about the cnoidal waves by studying a single soliton.

In general, the periodic solution to the Toda lattice is writ-
ten in terms of the Jacobi elliptic functions as

xn = −
1

b
logF1 +

dn2s2Kfn/l − ntgd − E/K

sn−2s2K/ld − 1 −E/K
G , s12d

where K=Kskd=e0
1fs1−k2x2ds1−x2dg−1/2dx and E=Eskd

=e0
1fs1−k2x2d / s1−x2dg1/2 are elliptic integrals of the first and

second kind.
The dispersion relation between the wavelengthl and the

frequencyn of the periodic wave is

2pn =Îab

m

p

K
Ssn−2s2K/ld − 1 +

E

K
D−1/2

= Uk→0Îab

m
2usinsp/ldu. s13d

Hence it is tending to the harmonic one when the ampli-
tude of the wave described by Eq.s12d is small, correspond-
ing to the limit where the modulusk of the elliptic integrals
is small andK,E,p /2 fnotice the dispersion curve Eq.
s13d is periodic with a period 2K / r0 which is different from
p / r0 for finite k valuesg. It is interesting that the functional
form of the wave profile and the dispersion only depends on
k and the wavelengthl, whereas it does not depend on the

constantsa, b describing the potential. Hence it is the same
for the set Eq.s6d corresponding to the 6-12 LJ potential as
for the more anharmonic one corresponding to the 10-12 LJ
potentialf18g.

It is instructive to discuss these results in physical terms.
In Fig. 2, we show the cnoidal wave form for different wave-
lengths and amplitudes. For small wavelengths, the largest
excursions are towards the weak side of the potential, hence
the energy is lower than for the harmonic potential, i.e., a
renormalized dispersion is expected, whereas, surprisingly,
for longer wavelength the largest excursions are in the direc-
tion of the steep side of the potential, hence a higher energy.
These are compression modes corresponding to a train of
well-separated pure solitons. In Fig. 3, we plot the corre-
sponding dispersion curves versus the wave vectorq=2/l.
The sequence is the same as in Fig. 2. We notice the disper-
sion is reduced for short-wavelength, large-amplitude modes.
However notice, for the Toda potential, that the solutions are
exact and hence there is no damping of the modes.

IV. RESULTS FOR 1D LATTICES

In the previous sections, we have seen that a Toda poten-
tial fits a Lennard-Jones potential in a neighborhood of a
minimum, up to the third order. By continuity, this means
that solutions valid for a Toda lattice can be used for repre-
senting solutions for Lennard-Jones lattices, for a time length
that grows whenE→0. In order to test this idea, we study
the behavior of a 1D Lennard-Jones lattice initialized with a
condition that gives rise to an integrable soliton solution in a
Toda lattice. Since we are especially interested in long-lived
solutions, we use a one-dimensional lattice with periodic
boundary conditions. This geometry ensures that a soliton
can travel over the lattice indefinitely, even if the number of
sites is finite, with the wave going out from one end and

FIG. 3. The reduced dispersion curvev=2pn /Îab/m as a func-
tion of q=2/l for the Toda lattice for the modulusk2

=s0.3,0.9,0.99d. For k2=0.3, the dispersion curvevsqd is very
close to the harmonic one, which peaks atvs1d=2.

FIG. 4. Space-time plot of a one-dimensional lattice of elements
connected by the Lennard-Jones potential. The system is initialized
with a wave corresponding to a perfect Toda solitonfEq. s10dg of
low energy. The parameters of the soliton arek=0.5, E
=9.39 cm−1. In this energy range, the Toda and Lennard-Jones po-
tentials are quite similar and thus the Toda soliton survives for a
long time even if the potential is not Toda.

D’OVIDIO, BOHR, AND LINDGÅRD PHYSICAL REVIEW E 71, 026606s2005d

026606-4



coming back at the opposite side. As a first simulation, we
initialize the lattice withN=40 points connected by Lennard-
Jones potentials with a soliton of low energy, taken from Eq.
s10d and settingk=0.5.

This choice corresponds to a total energy for the lattice of
9.39 cm−1, and to a maximum energy per site of 3.14 cm−1.
The soliton can be qualitatively seen by making a space-time
plot of the lattice. In Fig. 4, the first 20 ps are plotted and
show that the soliton persists without any apparent deforma-
tion. A similar behavior is observed for all the time of the
simulations8000 psd. The persistence of the soliton at such
low energy is indeed to be expected, due to the similarity of
the Toda and Lennard-Jones potentials. However, the same
behavior appears to exist for much higher energies: Fig. 5
reports a soliton for the case ofk=2, corresponding to a total
energy of 1294 cm−1 and to a maximum energy per site of
1031 cm−1. This result is surprising since the Toda and
Lennard-Jones potential greatly differ at this energyssee
Fig. 1d.

In order to study the persistence of the soliton solutions
more quantitatively, we plot a projection of the trajectories

on the two-dimensional space given by positionsbond length
D1=x1−x0d and speed of the first lattice element. This
method is a good way for studying the persistence of a soli-
ton on a periodic lattice. In fact, a soliton that travels without
changing its shape comes back to the same position after a
loop over the lattice. The overall dynamics is thus a cycle.

Repeating the simulation fork=0.875, 1.25, 1.625, and 2
scorresponding to the energy range 30–1300 cm−1d and inte-
grating the system for 400 ps, we plot all the trajectories in
Fig. 6. The picture shows that the energies of the first two
cases evolve on closed orbits up to deviations of about 1%.
That confirms the observation obtained from the space-time
plots that Toda soliton solutions persist on a Lennard-Jones
lattice for a long times8000 ps, in the simulationd, up to
energies of more than 1000 cm−1. Figures 7 and 8 show that
a similar agreement is also obtained with cnoidal wavessk2

=0.1, 0.3, 0.6, 0.98d for both l=4r0 andl=2r0. Hence, our
”phonons,” the cnoidal waves, on a 1D lattice, have lifetimes
well above 8000 ps—even for large-amplitude modes. We
remark that long-lived protein modes near 100 cm−1 oscillate
of the order of 1500 cycles, which corresponds to having a
lifetime of the order of 500 ps.

For high energies, one expects that the differences be-
tween the two potentials become relevant and that a Toda
solution can represent a Lennard-Jones solution for a very
short time only. The fact that on the contrary the two solu-

FIG. 6. Projection of the trajectories of Toda-like solitons of
different energys30–1300 cm−1, increasing patternsd evolving on a
1D Lennard-Jones lattice. The trajectories stay near to close orbits
for 8000 ps.

FIG. 7. Projection of the trajectories of Toda-like cnoidal waves
of different energys30–1300 cm−1, increasing patternsd evolving on
a 1D Lennard-Jones latticesk2=0.1, 0.3, 0.6, 0.98,l=4r0d. The
trajectories stay even nearer to the close orbits for the 8000 ps than
the solitonlike solutions.

FIG. 5. Same as Fig. 4 but with a soliton of higher energysk
=2,E=1031d. In this region, the Toda and Lennard-Jones potentials
are different, but nevertheless the Toda soliton persists for a long
time on the Lennard-Jones lattice.

FIG. 8. Same as Fig. 7 forl=2r0.
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tions are close to each other for higher energies as well can
possibly be explained by noticing that the agreement be-
tween a Toda and Lennard-Jones potential is not symmetric
around the minimum. Small differences of energies corre-
sponding to distances larger than the equilibrium correspond
to large deviation between the two potentials, since the
Lennard-Jones potential has an asymptotically flat behavior
and the Toda potential has an asymptotically linear growth.
On the contrary, for distances smaller than the equilibrium
position, the two potentials keep a fairly good agreement
even for comparatively larger energy differencesssee Fig. 9d.
The persistence of Toda solitons of high energy on a
Lennard-Jones lattice can be explained from the fact that a
soliton is a compression wave and thus the potentials are
explored for distances below the equilibrium value, in the
region where the two potentials best match. In the last sec-
tion, we will come back to this issue and argue that the
persistence of the soliton may actually have a deeper and
general meaning, being related to the persistence of inte-
grable solutions in the Hamiltonian system.

On this background we can also discuss the cnoidal
waves. For long wavelengths, the above picture holds and
the excitations for the LJ potential are well described by the
Toda solutions. For small wavelength, the difference in the
weak side of the potentials will play a role for large ampli-
tudes, and tends to give larger renormalizations of the dis-
persion curvessactually depending ona, bd. To estimate the
importance of this, let us calculate the amplitudeX of the
zone boundary mode, which is at the highest density of
states—and hence corresponds to the largest optical re-
sponse. It has an energy ofhnmax=165 K kB. For a harmonic
oscillator, the energy depends on the amplitude asE
= 1

2ms2pnd2X2. We have to use quantum mechanics to
accurately calculate the population of the mode:n
=1/fexpshn /kBTd−1g,1.36 at room temperature,T
=300 K. This, on the other hand, yields the energyEsTd
=hnsn+ 1

2
d. HenceX=s1/2pdÎs2n+1dh/mn=0.05r0 at room

temperature. Comparing with Fig. 1, we notice the Toda and
LJ potentials are almost equal for such amplitudes, and ac-
cordingly the Toda results should be valid to a good approxi-
mation for the 115 cm−1 mode. By comparing with Fig. 2sad,
we find that this amplitude corresponds approximately to that
for thek2=0.9 curve. For this, according to Fig. 3 the renor-
malization is approximately 10%.

V. 3D LATTICES WITH a-HELIX GEOMETRY

Let us now move to a lattice geometry closer to an actual
a helix. The system we are considering is depicted in Fig.
10. Each amino acid is represented by a point, and Lennard-
Jones potentials of the form of Eq.s2d are used to model
hydrogen bonds as well as peptide bonds. The parameters
used areA=355.93 cm−1 for the hydrogen bonds andA
=1281.5 cm−1 for the peptide bond. In a previous workf9g,
we considered a similar geometry of points connected by
Toda potentials. We showed that such a system admits a
solitary wave propagating along the whole helix when an
instantaneous perturbation parallel to the hydrogen bonds is
given to the first amino acid of the chain. Due to the analogy
between Lennard-Jones and Toda potentials, as discussed in
the previous section, it is no surprise that the same phenom-
enon arises in the case of Lennard-Jones bonds. However,
the following two scenarios are both possible: either a single
soliton is propagating along the peptide bondssthe back

FIG. 9. Difference between Lennard-Jones and Toda potentials,
as a function of thesLennard-Jonesd potential depth. The upper
branch corresponds tox, r0, while the lower branch tox. r0. No-
tice that on the lower branch, the two potentials differ only a few
cm−1 over an energy range of several hundreds of cm−1.

FIG. 10. Three-dimensional model of ana helix. Amino acids
are mass pointssdotsd connected by Lennard-Jones potentials giv-
ing hydrogen bondsscontinuous lined and peptide bondssdashed
lined. The helix here has open boundary conditions.
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boned or three entrained solitons are propagating along the
three lattices of hydrogen bondssas we argued for the case of
a helix made of Toda potentialsd.

The two situations point to very different roles of the
bonds. In the first casesone soliton over the peptide bond
chaind, the hydrogen bonds confine the soliton while the pep-
tide bonds provide ashelicald lattice where the soliton trav-
els. In the second casesthree solitons over the hydrogen
bond chainsd, the weaker hydrogen bonds form three paral-
lel, one-dimensional lattices that support solitons and the
stiffer peptide bonds act as a strong coupling. Such a cou-
pling has different effects on the soliton dynamics: after the
initial perturbationsthat is applied on one chain onlyd, the
peptide bonds mirror and entrain identical waves on the other
two lattices, and after a short transient, the effect of the cou-
pling becomes negligible, since the solitons are already en-
trained and propagate on identical latticessin a more realistic
simulation, the peptide bond would correct small propaga-
tion differences arising from lattice and steric dishomogene-
itiesd. This possible scenario has important consequences
from a modeling viewpoint. In fact, after the formation of the
triple-soliton solution, one can expect that each entrained
solitary wave can be described to a good approximation as a
free soliton on a one-dimensional lattice completely charac-
terized by the hydrogen bond. This allows us to use the result
of the previous section and model quantitatively Lennard-
Jones solitons on a 3D helix with 1D Toda solitons.

However, we have still to show that such a scenario cor-
responds to three solitons on each H-bond chain and not one
soliton on the peptide bond chain. In order to show that the
solitons arise on the H bonds and that the peptide bonds are
negligible, after the introduction of the triple solitons, we
present numerical simulations where the behavior of the
Lennard-Jones solitons is studied at different strength of the
peptide and hydrogen bonds. We shall see that the soliton
dynamics is greatly affected by changes in the hydrogen
bond, being only slightly influenced by changes in the pep-
tide bond.

We perform simulations over a three-dimensionala-helix
modeled as described in Fig. 10. We induce solitons of dif-
ferent energies using perturbation of variable energysin the
range 200–2000 cm−1, inducing solitons between 100 cm−1

and 500 cm−1d. The soliton speed is computed by finding the
slope of the line that connects the soliton tips in the space-
time plot. The soliton energy is computed by summing the
energy of the elements around the soliton tips in a window of
five elements and averaging in time. In this way, we con-
struct the curve that gives energy versus speed. We construct
curves first for a range of peptide strengthssin a range of
10% around the parameters given in the previous sectiond,
then repeating the simulations but varying the hydrogen
bonds instead.

The outcome of the simulationssFigs. 11 and 12d is quan-
titatively consistent with our hypothesis: the characteristics
of the solitons of the 3D LJ helix are strongly determined by
the hydrogen bonds only and the energy-speed curve is in
quantitative agreement with the analytical prediction of a
soliton traveling over a one-dimensional Toda latticesFig.
13d on the H bonds.

VI. DISCUSSION

We have studied a string of masses interacting with a
Lennard-Jones potential and shown that the excitation spec-
trum up to surprisingly high energies can be accounted for by
the theory for the Toda latticeswith parameters fitted to the
Lennard-Jones potentiald. An explanation of the high-energy
range lies in the fact that the solitons are compression waves,
thus the region of the potential that is involved is the one
where Toda and Lennard-Jones potentials are closer. Like-
wise we have found that the family of periodic solutions, the
cnoidal waves, are very stable—if not more—also in the
Lennard-Jones potential systems. This is because these are
the exact solutions of the Toda system with periodic bound-
ary conditions, whereas a single soliton is only approxi-
mately so—unless the tails from all periodic solitons are
properly included.

FIG. 11. Energy vs speed for different strength of the peptide
bond, for solitons on a 3Da helix with Lennard-Jones potential.
The curve does not change.

FIG. 12. As in Fig. 11, but changing the strength of the hydro-
gen bond. The curve changes.
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Next, we have studied an unsuspendeda helix in three
dimensions with different strength of LJ interactions along
the helix backbone and along the three hydrogen bonds along
the sides of the helix. It is again found that soliton solutions
exist in a surprisingly large energy interval. A perturbation
inflicted on one of the chains is rapidly transmitted to the two
neighboring chains and a triple soliton is propagated lossless
along the helix. No overall bending of the helix is observed
due to the soliton motion and the three solitons stay phase-
locked close to each other. This is contrary to the finding in
a somewhat similar study of a 3D helix in a cagef16g in
which a bending is found together with an asymmetric
propagation along the tree chains. In that model, the radius
of the helix decreased in the soliton region, whereas in our
case we find an expansion, which is also found by Chris-
tensenet al. f15g. The reason for the difference might be
either the differences in the models or perhaps rather the
quite different methods of solution. In this paper, we have
used a minimalistic model and used the most straightforward
theoretical and numerical methods. Our soliton corresponds
to a compression wave, which physically would be expected
to be accompanied by an expanding radius, as we have
found. If excited by a pull instead of by a push along the
helix axis direction, a compression soliton is also foundsdue

to the recoil of the returning mass pointd. We have demon-
strated the accuracy with which the speed of the simulated LJ
soliton can be described analytically by the corresponding
exact Toda soliton.

Summarizing, we have demonstrated that in a realistic 3D
a helix described by LJ interactions, a solitonsliked solution
is highly stable and can transport large energy quanta without
loss and without making overall movements of the helix,
even when not confined in a cage. The solitons run on hy-
drogen bonds whose natural linear excitations are phonons
with energies in the region of 100 cm−1 and can be described
analytically using Toda theory.

An interesting development of this work is to understand
the mechanism by which the soliton decays in the lattice
phonons that are then detected in spectroscopic experiments.
In fact, in the case of a periodic Toda potential, the soliton
persists forever and no transfer of energy to phonons is pos-
sible. Since the lattice is fully integrable, even perturbations
of the soliton lead to periodic or quasiperiodic solutions.
Such perturbed solutions can be expected as tori nested
around the periodic soliton solution. Due to integrability,
such tori do not interact with the soliton, but in the case of
the 3D a-helix lattice, we can expect the boundary condi-
tions of the helix as well as the deviation of the Lennard-
Jones potential from the Toda shape to break integrability
and heavily affect the phase portrait. The soliton can be re-
flected at the helix boundaries and still correspond to a peri-
odic solution. But in the 3D helix, according to KAM theory,
tori that are resonant with the soliton solution are broken into
nonintegrable motion, allowing energy flow between
phonons and solitons. However, as we have shown in Sec.
IV, the Lennard-Jones potential explored during the soliton
motion is very similar to the Toda potential, and thus the
energy transfer will take place at a slow rate. Such slow
decay of the solitons into the phonon bath will thus provide
an energy source for phonons of that energy. This might be
an explanation for the unexpectedly long lifetime of excita-
tions in the 100 cm−1 region observed by pump-probe free-
electron laser experimentsf5g.
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