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We study the propagation of solitons along the hydrogen bonds eof leelix. Modeling the hydrogen and
peptide bonds with Lennard-Jones potentials, we show that the solitons can appear spontaneously and have
long lifetimes. Remarkably, even if no explicit solution is known for the Lennard-Jones potential, the solitons
can be characterized analytically with a good quantitative agreement using formulas for a Toda potential with
parameters fitted to the Lennard-Jones potential. We also discuss and show the robustness of the family of
periodic solutions called cnoidal waves, corresponding to phonons. The soliton phenomena described in the
simulations ofa helices may help to explain recent x-ray experiments on letnglices in Rhodopsin where
a long lifetime of the vibrational modes has been observed.
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[. INTRODUCTION on the dynamics of secondary and larger strucjuaes thus

in principle on the functions and the conformational changes
of a protein. It was suggestgé] that such modes probably
U . ; ) . corresponded to large-scale vibrations of the protein—and
ture is vital for the protein functiohl]. One interesting, but hence should be damped quickly by the interaction with the

nc;‘t. yheF well uglder?tood, ffunc.tlon E thgt ?f a dnar:;.)m.acmnesurrounding—quite contrary to the observed, particularly
which Is capable of transforming chemical and radiation en1ong, lifetime of this mode. An alternative interpretation may

ergy into mechanical motion and can transport i_t direction-be based on a comparison with simple models of regular
ally and without loss over Iarg.e dlstan(_:[éﬁ. Con&derablg olypeptide systemgs]. It was alternatively suggestdd]
effort has been spent on studylng the_ high-frequency am|det at the resonance in Bacteriorhodopsin, which consists
mode(C=0 stretch at 1600 cm), Wh'Ch was proposed by chiefly of seven longx helices, was dominated by an exci-
Qavydpv[S] as a cand_ldate for soliton transport. In gen_eral'tation along the hydrogen bonded chains along the sides of
simplified one-dimensiona(1D) models have been studied yho  helix parallel to its axis. In this case no major large-
from a mathematical point of viepd]. However, itis impor- - s.o16 ‘motion is required, and hence far weaker damping
tant to understand the overall dynamlc_:all behavior, especiall ight be expected. The possibilities inherent in pump-probe
at low frequencies and for more realistic models. We shal xperiments have opened up a renewed interest in the non-

foclus ﬁ.n that adspect in t?\’is Paper. fl i linear modes inx helices. In an even more recent papg};

n this regard, recr_e%nt I_kaman m/eaSLE)rements_o ONg-liVeQirect evidence is reported for solitonlike behavior self-
excitations at 118 cm (like pump/probe experiments on y.n5ing for poly-gamma-benzyl-L-glutamate. Although re-
Bacteriorhodopsin5]) appear to be of particular relevance. lated to the NH stretch modénd thus to Davydov-type

The L"’.‘Ct that tr;]ere are no Iopal wbrguqnal mode; Cofrrﬁ'solitons), this work demonstrates the renewed interest in the
sponding to such an energy points to the interpretation of t ﬁroblem of nonlinear excitations in biopolymers, and call for

long-lived excitations as collective modes, that is, modes thag er more realistic theoretical treatments than the previ-

involve a large number of amino acids. Spectroscopic Obseréusly studied idealized models.

vfations at such epergies are thus of part[cular re_levance, The phenomena of collective and nonlinear modes in pro-

since they provide information on large protein domdirss,  yeins are not fully understood from a theoretical point of
view, since both models and numerical simulations face the
difficulty of a large number of degrees of freedom with com-

The structure in most proteins consists wthelices and
the B sheets connected by loops. The correctly folded struc

*Email address: dovidio@imedea.uib.es plex interactions. In particular, one may expect nonlinear ef-
"Email address: hbohr@fysik.dtu.dk fects leading to coupled modes and solitonlike modes with
*Email address: p.a.lindgard@risoe.dk long lifetimes.
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In order to shed some light on this direction, we have, inculations[7] as follows. Consider a linear chain with a real-
a previous worK9], modeled anx helix in three dimensions istic potential. The linear modes correspond to phonons, and
by three coupled Tod@l0] lattices. We have shown that such the frequencyr of a phonon(at maximum density of states
a system has stable soliton solutions that can spontaneously given by
appear if a perturbation parallel to the helix axis is applied.
The soliton solution is not destroyed by the 3D coupling. The 20y = 2\/‘|<Tm, (1)
importance of the Toda theory is that a large number of ex-
act, analytical results have been derived for the Toda poterwhere v is the frequencyk the force constant, anth the
tial, which is of a very special exponential form. average mass of the amino acids. In a chain of amino acids
It would be highly useful if these results could be used forconnected by hydrogen bonds —HO of length rg
estimations of the behavior in a realistic situation. In this=1.9 A, k=1.41x 10* dyn/cm andm=1.7x 10%?g is the
paper, we show that soliton solutions exist in the more realaverage mass of the residues. An estimation can be obtained
istic Lennard-JoneslLJ) potential as well, and we demon- using 1A=v/c with \ the wavelength and the speed of
strate that the Toda description is accurate in a surprisinglyght and gives 97 ciit. If an infinite poly(L-alaning « helix
large interval of energies. It has been proven theoreticallys considered, a complete normal mode calculafi®] gives
[11] that the Toda solutions are robust under small perturbag peak at 118 cft. Thus an excitation on the H bonds is

tions away from exact integrability. However, the predictedceainly to be expected near the observed frequency. Both
lower bounds indicate that it only applies for perturbations Ofphonons and solitons could exist on the chain in a nonhar-
?ég?j; I\,r\],gr:gejsngacljlgt:ng ?IZE)SergcstérI]\iE/Wb;esKL:)lése\I:ntfgls OII'monic potential. However, solitons need nonlinearities in the
[12], who showed that propagating supersonic kink soIitonsp0tent'al in order to exist. Such nonlinearities become rel-

in Fermi-Pasta-Ulam and LJ lattices can be analytically defvant at high energies, which can be quantified using a

scribed within the same displacement patterns. ITennard—Jones potential for the-HO bond. The no.nlineari-
Although a lattice with Lennard-Jones bonds is not di-{i€S @ré hence expected to play a role at the high level of

rectly solvable, in the following we shall provide analytical PUmping in the pump-probe experimers.

relations for describing soliton propagation, providing good

quantitative agreement with results from direct numerical||. REALISTIC POTENTIALS AND ANALYTICAL TOOLS

simulations. We shall actually show from the simulations that

in a quite wide range of physical parameters, we can main- For a molecular solid, the interaction between neighbor-

tain the soliton picture, hence indicating that the soliton pheing atoms with equilibrium distancg is to a good approxi-

nomenon is inherent to the nature afhelical dynamics. mation given by the well-known standard 6-12 Lennard-

One might expect that one effect of a coupling between thredones potential,

1D Toda strands in a 3D structure would be to introduce

devastating noise on the single strand—an effect we have not ro\*? ro\®

found at low temperatures. However, we have found that the Vun =AlT) —2 T

3D solitons decay in the presence of a static distortion simi-

lar to a noise level corresponding to room temperatures. Theith the potential strengtid, which is also the depth of the

effect of thermal noise on a 1D Toda lattice was previouslyenergy minimum at =r,. For excitation energies higher than

systematically studiefil3] and it was shown that, in a cer- A, the bond is broken. It is nonlinear, and can be expanded
tain temperature interval, solitons do exist, but their interacaroundr, as

tion gives rise to delocalization effects and a decay to broad-

band 1f noise at low frequenciegcorresponding to the X )2 x\3

transformation into low-frequency phondns Vi(r =rg) = A{— 1+ 3€<r—) - 252<r_> + O[X‘ﬂ , (3)
More realistic 3D models of ar helix have been inves- 0 0

tigated[14-16 with respect to the Davydov soliton mecha- wherex=(r-r,). In one dimension and around a minimum

nism. We shall not focus on that aspect here. The modelgf the same depth a, the potential introduced by Tod0]

differ in detail from ours. Henni16] used a confining cage has the following form:

and initiated soliton solutions by nonlinear map methods.

Christenseret al.[15] studied an unsuspended 3D helix with

Morse interactions. They found both the phonon and the soli-

ton solutions numerically, but did not attempt to compare

that with Toda solutions, nor did they attempt a comparisorwhich likewise can be expanded as

with experiments. Previously, Tuszynséi al. discussed in L L

the context of the Davydov model the emergence of Jacobi v ALt 4 3

elliptic waves, including the cnoidal waves, and calculated Vroad =To) == A+ 2abx2 6ab2x +olx]. (9

numerically the corresponding free enefdy].

(2)

a a
Vroadl =Fo) ==A= + Be_b(r_ro) +alr-ro), (4

Hence the potentials are identical in form updpx*] and
IIl. COLLECTIVE MODES OF & HELICES AS SOLITONS both include a third-order nonlinear term. The harmonic term
ON THE HYDROGEN BONDS giving the result Eq(1) is usually writtenV(r—ro):%kxz. By
The involvement of the hydrogen bonds for the observedquating the coefficients in the expansion, we immediately
excitation at 118 cit can be supported also by direct cal- get the relation between the parameters,
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FIG. 1. Comparison of Lennard-Jones and Toda potential. é
k=ab=72A/Ir3, a=kry21, b=21fk,, (6)
whererg is the equilibrium position an@, b, and A are 1 0 ” p 3 4 5
parametersin the following, we often set, equal to 1 for lattice point

simplicity).

As we can see from Fig. 1, the Toda potential is similar to
a Lennard-Jones potential in a substantial region around th¢  ¢.0os
equilibrium. This is very important since there exist a large
number of exact results for the Toda model in one dimension.§ 0
However, an important difference between the Lennard-& 00051
Jones and the Toda potentials is that the latter is attractive fos
all interatomic distances beyomg, hence no bond breaking —0.01}
is possible. The subject of this paper is to explore how far the

0.01

Toda analytic, exact results can be used for describingrthe ~ —0-015[ , , , , ,
helices having realisti¢Lennard-Jones-likepotentials and -2 0 2 4 6 8 10 12
three-dimensional architecture. ) lattice point

The measurement units have been chosen normalizing the FIG. 2. The cnoidal wave form for different wavelengths and
length and the mass to the equilibrium distance of the hydro- L g

. . amplitudes(a,b,9 for A\=(2,4,10. The curves on which the atom
gen bond(ro) and to the average mags) of an amino acid, positions are indicated by eémall,medium,largesize dot corre-

respectively. Time i_s measured in picosecqnds. C_aﬂjr@d spond to the modulu&?=(0.3,0.9,0.99. Obviously even fork?

p; the space coordinates and momenta ofjtheamino acid, - 3 the waveform is close to a harmonic wave form for all wave-
and numbering the amino acids as they appear along thengths, whereas for largérthere are significant differences.
helix, the Hamiltonian is given by

1 N N We check the existence of solitary waves by performing a
H = Eyin + Vpeptidet Vi = 2—2 pj2 +> Vap(X):Xj+1,Xj-1) sim_ulation of the system at rgé".nitial_ly) after a pertgrbation
Mij=y =1 at timet=0 on one of the amino acids at the terminal points
N of the helix. This is done by setting atf variables at the
+ 2 Vod(X, X43:X-3) (7)  equilibrium values and by choosing=0 for all the amino
=1 acids except one, which has a momentum corresponding to

. the energy of the perturbation.
whereV are Toda or Lennard-Jones potentials of parameters ye briefly remind the reader of the exact results for the

a, bandc, d (or alternativelyA andAy), and the sums have 11 Toda latticg10]. The dynamics is described by solitons
obviously to include only the amino acids wifr-1>0, j with the energy

-3>0, j+1<N, andj+3<N. The equations of motion are
obtained straightforwardly and can be solved numerically

with a standard Runge-Kutta integrator. In order to follow _2a, .
the propagation of a wave, it is useful to introduce the energy €= F(S'”h" coshx - ). (9)
density per site,

E; = Ein, + =Veouj + = Viyarj- (8) The profile of the soliton, in terms of the displacemexjis

2 2 from the equilibrium distance, is given by

026606-3
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FIG. 3. The reduced dispersion curwe 27v/ yab/m as a func- 20 . : S il
tion of gq=2/\ for the Toda lattice for the moduluk? 10 20 30 40
=(0.3,0.9,0.99 For k?=0.3, the dispersion curvex(q) is very Element number

close to the harmonic one, which peaksuéil)=2. . . . .
P ) FIG. 4. Space-time plot of a one-dimensional lattice of elements

connected by the Lennard-Jones potential. The system is initialized

1 m with a wave corresponding t fect Tod li
_ 1L m 5 p g to a perfect Toda solif&qg. (10)] of
*n = b|09{1 * abﬂ sechf(xn+ Bt)] ) (10) low energy. The parameters of the soliton are=0.5,E
) =9.39 cmL. In this energy range, the Toda and Lennard-Jones po-

The speed is tentials are quite similar and thus the Toda soliton survives for a

B absinhk long time even if the potential is not Toda.

13 =—= h— . (11)
K m «

constantsa, b describing the potential. Hence it is the same
The parametek completely determines the ener§jyand the  for the set Eq(6) corresponding to the 6-12 LJ potential as
dynamics of the solitonél/« is proportional to the width of ~for the more anharmonic one corresponding to the 10-12 LJ
the soliton). potential[18].

Another important family of solutions to the Toda lattice It is instructive to discuss these results in physical terms.
are the cnoidal waves, which are periodic and equivalent tdn Fig. 2, we show the cnoidal wave form for different wave-
phonons. An interesting properties of cnoidal waves is thatengths and amplitudes. For small wavelengths, the largest
they are made of equally spaced solitons, with the distancexcursions are towards the weak side of the potential, hence
between them being the wavelengkh,Thus a train of soli- the energy is lower than for the harmonic potential, i.e., a
tons can be connected to phonons, and much can be learneghormalized dispersion is expected, whereas, surprisingly,

about the cnoidal waves by studying a single soliton. for longer wavelength the largest excursions are in the direc-
In general, the periodic solution to the Toda lattice is writ-tion of the steep side of the potential, hence a higher energy.
ten in terms of the Jacobi elliptic functions as These are compression modes corresponding to a train of
B _ well-separated pure solitons. In Fig. 3, we plot the corre-
Xy = — }|0 [ + dn2(_22K[n/)\ ")) E/K] (12) sponding dispersion curves versus the wave vegto2/\.
So(2K/\) -1 -E/K The sequence is the same as in Fig. 2. We notice the disper-

where K=K(K)=/Y(1-k>)(1-x)] Y2dx and E=E(K) sion is reduced for short-wavelength, large-amplitude modes.
:fl[(l_kzxz)/(l_xg)]l/z are elliptic integrals of the first and However notice, for the Toda potential, that the solutions are
sec(:)ond kind exact and hence there is no damping of the modes.

The dispersion relation between the wavelengtmd the

frequencyv of the periodic wave is
IV. RESULTS FOR 1D LATTICES

-1/2
2mv= \/@z(sn‘z(ZK/A) -1 +E> In the previous sections, we have seen that a Toda poten-
mK K tial fits a Lennard-Jones potential in a neighborhood of a
ab minimum, up to the third order. By continuity, this means
= o\ 1y 2|sin(7/N)|. (13)  that solutions valid for a Toda lattice can be used for repre-

senting solutions for Lennard-Jones lattices, for a time length
Hence it is tending to the harmonic one when the amplithat grows wherE— 0. In order to test this idea, we study
tude of the wave described by Ed.2) is small, correspond- the behavior of a 1D Lennard-Jones lattice initialized with a
ing to the limit where the modulus of the elliptic integrals  condition that gives rise to an integrable soliton solution in a
is small andK~E~ /2 [notice the dispersion curve Eq. Toda lattice. Since we are especially interested in long-lived
(19) is periodic with a period B/ry which is different from  solutions, we use a one-dimensional lattice with periodic
7/ for finite k valued. It is interesting that the functional boundary conditions. This geometry ensures that a soliton
form of the wave profile and the dispersion only depends orcan travel over the lattice indefinitely, even if the number of
k and the wavelength, whereas it does not depend on thesites is finite, with the wave going out from one end and
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FIG. 7. Projection of the trajectories of Toda-like cnoidal waves
of different energy(30—1300 crii!, increasing patterngvolving on
- icé?= =
FIG. 5. Same as Fig. 4 but with a soliton of higher enetgy a ;D Le_nnard Jones lattick®=0.1, 0.3, 0'6'.0'98}‘ 4ro)- The
=2 E=1031. In this region, the Toda and Lennard-Jones potentialstrajectorles stay even nearer to the close orbits for the 8000 ps than
are different, but nevertheless the Toda soliton persists for a IonHIe solitonlike solutions.
time on the Lennard-Jones lattice.

Element number

on the two-dimensional space given by positibond length

coming back at the opposite side. As a first simulation, wel1=X1~%) and speed of the first lattice element. This
initialize the lattice withN=40 points connected by Lennard- Mmethod is a good way for studying the persistence of a soli-
Jones potentials with a soliton of low energy, taken from Eqfon on a periodic lattice. In fact, a soliton that travels without
(10) and settingk=0.5. changing its shape comes back to the same position after a

This choice corresponds to a total energy for the lattice of0OP over the lattice. The overall dynamics is thus a cycle.
9.39 cmi?, and to a maximum energy per site of 3.14&m Repeating the simulation for=0.875, 1.25, 1.625, 'and 2
The soliton can be qualitatively seen by making a space-timécorresponding to the energy range 30-1300%¢rand inte-
plot of the lattice. In Fig. 4, the first 20 ps are plotted andgrating the system for 400 ps, we plot all the trajectories in
show that the soliton persists without any apparent deformafEig. 6. The picture shows that the energies of the first two
tion. A similar behavior is observed for all the time of the Cases evolve on closed orbits up to deviations of about 1%.
simulation (8000 p3. The persistence of the soliton at such That confirms the observation obtained from the space-time
low energy is indeed to be expected, due to the similarity oflots that Toda soliton solutions persist on a Lennard-Jones
the Toda and Lennard-Jones potentials. However, the sant@ftice for a long time(8000 ps, in the simulation up to
behavior appears to exist for much higher energies: Fig. §nergies of more than 1000 chFigures 7 and 8 show that
reports a soliton for the case o 2, corresponding to a total @ Similar agreement is also obtained with cnoidal waikés
energy of 1294 ¢t and to a maximum energy per site of =0.1, 0.3, 0.6, 0.98for both A =4r, and A =2r,. Hence, our
1031 cmi’. This result is surprising since the Toda and ‘pPhonons,” the cnoidal waves, on a 1D lattice, have lifetimes
Lennard-Jones potential greatly differ at this enetgge Well above 8000 ps—even for large-amplitude modes. We
Fig. ). remark that long-lived protein modes near 100 twoscillate

In order to study the persistence of the soliton solution<f the order of 1500 cycles, which corresponds to having a

more quantitatively, we plot a projection of the trajectorieslifetime of the order of 500 ps. .
For high energies, one expects that the differences be-

2 tween the two potentials become relevant and that a Toda
solution can represent a Lennard-Jones solution for a very
1 short time only. The fact that on the contrary the two solu-
1
> 0
05
-
-2
0.8 0.9 1 1.1 -0.5
A1/r0
—1
FIG. 6. Projection of the trajectories of Toda-like solitons of 0.95 1 1.05
different energy(30—1300 criit, increasing patterpgvolving on a A
1D Lennard-Jones lattice. The trajectories stay near to close orbits
for 8000 ps. FIG. 8. Same as Fig. 7 for=2r,.
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FIG. 9. Difference between Lennard-Jones and Toda potentials, \
as a function of theglLennard-Jonespotential depth. The upper _ - Q .
branch corresponds to<rq, while the lower branch ta>r,. No- ‘ - - = \
tice that on the lower branch, the two potentials differ only a few \
cm ! over an energy range of several hundreds of'cm - Q_ '
. . . -7 N
tions are close to each other for higher energies as well can \
possibly be explained by noticing that the agreement be- _ - Q
tween a Toda and Lennard-Jones potential is not symmetric -7 7
around the minimum. Small differences of energies corre- \

sponding to distances larger than the equilibrium correspond
to large deviation between the two potentials, since the FIG. 10. Three-dimensional model of anhelix. Amino acids
Lennard-Jones potential has an asymptotically flat behavicare mass point&dots connected by Lennard-Jones potentials giv-
and the Toda potential has an asymptotically linear growthing hydrogen bondgcontinuous ling and peptide bondgdashed

On the contrary, for distances smaller than the equilibriumiine). The helix here has open boundary conditions.

position, the two potentials keep a fairly good agreement

even for comparatively larger energy differen¢ese Fig. 9. temperature. Comparing with Fig. 1, we notice the Toda and
The persistence of Toda solitons of high energy on & potentials are almost equal for such amplitudes, and ac-
Lennard-Jones lattice can be explained from the fact that gordingly the Toda results should be valid to a good approxi-
soliton is a compression wave and thus the potentials argation for the 115 ¢t mode. By comparing with Fig.(2),
explored for distances below the equilibrium value, in thewe find that this amplitude corresponds approximately to that
region where the two potentials best match. In the last sedor the k?=0.9 curve. For this, according to Fig. 3 the renor-
tion, we will come back to this issue and argue that themalization is approximately 10%.

persistence of the soliton may actually have a deeper and
general meaning, being related to the persistence of inte-
grable solutions in the Hamiltonian system.

On this background we can also discuss the cnoidal | gt ys now move to a lattice geometry closer to an actual
waves. For long wavelengths, the above picture holds ang nelix. The system we are considering is depicted in Fig.
the excitations for the LJ potential are well described by the;g Each amino acid is represented by a point, and Lennard-
Toda solutions. For small wavelength, the difference in thejgpeg potentials of the form of ER) are used to model
weak side of the potentials will play a role for large ampli- hydrogen bonds as well as peptide bonds. The parameters
tudes, and tends to give larger renormalizations of the disggeqd areA=355.93 cmit for the hydrogen bonds ané
persion curve$ac.tually depending oa, b). To gstimate the —1281.5 cml for the peptide bond. In a previous wof],
importance of this, let us calculate the amplitideof the e considered a similar geometry of points connected by
zone boundary mode, which is at the highest density offgga potentials. We showed that such a system admits a
states—and hence corresponds to the largest opt|c.al r@plitary wave propagating along the whole helix when an
sponse. It has an energy lo#y,=165 Kkg. For a harmonic  jnstantaneous perturbation parallel to the hydrogen bonds is
0510'”at°r! the energy depends on the amplitude &s given to the first amino acid of the chain. Due to the analogy
=3m(27v)°X%. We have to use quantum mechanics topetween Lennard-Jones and Toda potentials, as discussed in
accurately calculate the population of the mode: the previous section, it is no surprise that the same phenom-
=1/[exphv/kgT)-1]~1.36 at room temperature,T  enon arises in the case of Lennard-Jones bonds. However,
=300 K. This, on the other hand, yields the enedy)  the following two scenarios are both possible: either a single
=hv(n+%). HenceX=(1/2m)/(2n+1)h/mr=0.05, at room  soliton is propagating along the peptide bordse back

V. 3D LATTICES WITH a-HELIX GEOMETRY
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FIG. 11. Energy vs speed for different strength of the peptide FIG. 12. As in Fig. 11, but changing the strength of the hydro-
bond, for solitons on a 30 helix with Lennard-Jones potential. gen bond. The curve changes.
The curve does not change.

bone or three entrained solitons are propagating along the Ve perform simulations over a three-dimensioagtielix

three lattices of hydrogen bonéas we argued for the case of modeled as described in Fig. 10. We induce solitons of dif-
a helix made of Toda potentials ferent energies using _pertu_rbanon_ of variable ene(rgwle
The two situations point to very different roles of the "@nge 200-2000 crh, inducing solitons between 100 cin

bonds. In the first caséone soliton over the peptide bond @nd 500 cm). The soliton speed is computed by finding the
chain), the hydrogen bonds confine the soliton while the pep_slope of the line that connect§ the soliton tips in thel space-
tide bonds provide dhelica) lattice where the soliton trav- UMe plot. The soliton energy is computed by summing the
els. In the second casghree solitons over the hydrogen €M€'9Y of the elements aro_und_the_ soliton tipsin a window of
bond chaing the weaker hydrogen bonds form three paral-f'Ve elements and averaging in time. In this way, we con-
lel, one-dimensional lattices that support solitons and th&truct the curve that gives energy versus speed. We construct
stiffer peptide bonds act as a strong coupling. Such a colfurves first for a range of peptide strengtins a range of

pling has different effects on the soliton dynamics: after thet0% around the parameters given in the previous section
initial perturbation(that is applied on one chain onlythe then repeating the simulations but varying the hydrogen

peptide bonds mirror and entrain identical waves on the otheponds instead.

two lattices, and after a short transient, the effect of the cou- '€ outcome of the simulatiorigigs. 11 and 1pis quan-
pling becomes negligible, since the solitons are already erfitatively consistent with our hypothesis: the characteristics

trained and propagate on identical latti¢esa more realistic of the solitons of the 3D LJ helix are strongly determlned_by
simulation, the peptide bond would correct small propagaln€ hydrogen bonds only and the energy-speed curve is in
tion differences arising from lattice and steric dishomogeneduantitative agreement with the analytical prediction of a
ities). This possible scenario has important consequencex2liton traveling over a one-dimensional Toda lattiéég.
from a modeling viewpoint. In fact, after the formation of the 13 ©n the H bonds.
triplle—soliton solution, one can expect that each en_trained V1. DISCUSSION
solitary wave can be described to a good approximation as a
free soliton on a one-dimensional lattice completely charac- We have studied a string of masses interacting with a
terized by the hydrogen bond. This allows us to use the resultennard-Jones potential and shown that the excitation spec-
of the previous section and model quantitatively Lennardtrum up to surprisingly high energies can be accounted for by
Jones solitons on a 3D helix with 1D Toda solitons. the theory for the Toda latticewith parameters fitted to the
However, we have still to show that such a scenario corLennard-Jones potentjalAn explanation of the high-energy
responds to three solitons on each H-bond chain and not orrange lies in the fact that the solitons are compression waves,
soliton on the peptide bond chain. In order to show that thehus the region of the potential that is involved is the one
solitons arise on the H bonds and that the peptide bonds amhere Toda and Lennard-Jones potentials are closer. Like-
negligible, after the introduction of the triple solitons, we wise we have found that the family of periodic solutions, the
present numerical simulations where the behavior of thenoidal waves, are very stable—if not more—also in the
Lennard-Jones solitons is studied at different strength of theennard-Jones potential systems. This is because these are
peptide and hydrogen bonds. We shall see that the solitotihe exact solutions of the Toda system with periodic bound-
dynamics is greatly affected by changes in the hydrogemry conditions, whereas a single soliton is only approxi-
bond, being only slightly influenced by changes in the pepimately so—unless the tails from all periodic solitons are
tide bond. properly included.
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1.5 ; ; ; ; to the recoil of the returning mass pointe have demon-
strated the accuracy with which the speed of the simulated LJ
soliton can be described analytically by the corresponding
exact Toda soliton.
Summarizing, we have demonstrated that in a realistic 3D
a helix described by LJ interactions, a soli{bke) solution
is highly stable and can transport large energy quanta without
loss and without making overall movements of the helix,
even when not confined in a cage. The solitons run on hy-
drogen bonds whose natural linear excitations are phonons
with energies in the region of 100 cfand can be described
analytically using Toda theory.
0-50 100 200 300 200 500 An interesting develqpment of t_h|s work is to understapd
-1 the mechanism by which the soliton decays in the lattice
Efem™] . . ;
phonons that are then detected in spectroscopic experiments.

FIG. 13. Energy vs speed normalized by the sound speed of thid fa_ct, in the case of a periodic Toda potential, the s_oliton
hydrogen bond for solitons on a 3B helix with Lennard-Jones ~PErsists forever and no transfer of energy to phonons is pos-

potential. The continuous line is the prediction using Toda theory orfible. Since the lattice is fully integrable, even perturbations
the one-dimensional lattice. of the soliton lead to periodic or quasiperiodic solutions.

Such perturbed solutions can be expected as tori nested

Next, we have studied an unsuspendedhelix in three around the periodic soliton solution. Due to integrability,
dimensions with different strength of LJ interactions alongsuch tori do not interact with the soliton, but in the case of
the helix backbone and along the three hydrogen bonds alortfge 3D a-helix lattice, we can expect the boundary condi-
the sides of the helix. It is again found that soliton solutionstions of the helix as well as the deviation of the Lennard-
exist in a surprisingly large energy interval. A perturbationJones potential from the Toda shape to break integrability
inflicted on one of the chains is rapidly transmitted to the twoand heavily affect the phase portrait. The soliton can be re-
neighboring chains and a triple soliton is propagated losslesfected at the helix boundaries and still correspond to a peri-
along the helix. No overall bending of the helix is observedodic solution. But in the 3D helix, according to KAM theory,
due to the soliton motion and the three solitons stay phasderi that are resonant with the soliton solution are broken into
locked close to each other. This is contrary to the finding innonintegrable motion, allowing energy flow between
a somewhat similar study of a 3D helix in a caldes] in phonons and solitons. However, as we have shown in Sec.
which a bending is found together with an asymmetriclV, the Lennard-Jones potential explored during the soliton
propagation along the tree chains. In that model, the radiusotion is very similar to the Toda potential, and thus the
of the helix decreased in the soliton region, whereas in ouenergy transfer will take place at a slow rate. Such slow
case we find an expansion, which is also found by Chrisdecay of the solitons into the phonon bath will thus provide
tensenet al. [15]. The reason for the difference might be an energy source for phonons of that energy. This might be
either the differences in the models or perhaps rather than explanation for the unexpectedly long lifetime of excita-
quite different methods of solution. In this paper, we havetions in the 100 cmt region observed by pump-probe free-
used a minimalistic model and used the most straightforwarelectron laser experimengs].
theoretical and numerical methods. Our soliton corresponds
toa compression.wave, which physipally wo_uld be expected ACKNOWLEDGMENT
to be accompanied by an expanding radius, as we have
found. If excited by a pull instead of by a push along the The authors are thankful to Emilio Hernandez-Garcia for
helix axis direction, a compression soliton is also foddde  useful discussion.
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yio-12__ —A[— 1/5 + 1<£>2_ 104£>3+ 0[X4]]
L ’
ro r0

the parameter relation to the Toda parameters corresponding to
Eq. (6) is

k=ab=24AIr3, a=kry25, b= 25k,
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