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Convection and total variation flow

François Bouchut∗, David Doyen†and Robert Eymard‡

Université Paris-Est

Abstract

The flow of a Bingham fluid with inertial terms is simplified into a nonlinear hyperbolic scalar conservation law, regularised
by the total variation flow operator (or 1-Laplacian). We give an entropy weak formulation, for which we prove the
existence and the uniqueness of the solution. The existence result is established using the convergence of a numerical
approximation (a splitting scheme where the hyperbolic flow is treated with finite volumes and the total variation flow
with finite elements). Some numerical simulations are also presented.

Keywords: Bingham fluid, hyperbolic scalar conservation law, total variation flow, 1-Laplacian, entropy for-
mulation, finite volumes, finite elements

1 Introduction

A Bingham fluid, also called rigid viscoplastic fluid, is a material that behaves as a rigid solid below a certain
yield stress and as a viscous fluid above this yield; a familiar example of such a material is the tooth paste. For
a d-dimensional Bingham fluid, the relation between the stress tensor σ, seen as a d× d matrix, the pressure p
and the velocity u is

σ = −pId + g
D(u)

|D(u)|F
+ 2νD(u), (1)

where g and ν are positive constants, Id is the d × d identity matrix, D(u) is the d × d matrix such that

D(u)ij := 1
2 (∂iuj + ∂jui), and | · |F denotes the Frobenius matrix norm. The term g D(u)

|D(u)|F enforces the plastic

behaviour, g being the plasticity yield stress, while the term νD(u) enforces the viscous behaviour, ν being the
viscosity parameter. The mathematical analysis of Bingham fluid flows dates back to the work of [13], where
the problems are formulated as variational inequalities in Sobolev spaces. The numerical approximation of a
Bingham fluid flow is usually treated with finite element techniques; we refer to [11] for a recent review.
When the viscosity becomes negligible (ν = 0), the analytical and numerical framework described above is
no longer suitable – let us mention however an existence result in 2D obtained by [25]. Although the study
of inviscid Bingham fluids has been initiated in [5] with the case of an unsteady flow without convection
term, the presence of a nonlinear convection term is naturally issued from the inertial term in the momentum
conservation equation. Unfortunately, the study of this problem seems to be out of reach in the actual state
of the art. Therefore, we consider here a simplified model of unsteady Bingham flow with convection. This
simplified model is scalar and consists in seeking u : Rd × (0, T )→ R and λ : Rd × (0, T )→ Rd such that

∂tu+ divF (x, t, u)− div λ = 0 and λ ∈ Sgn(∇u), on Rd × (0, T ), (2)

u(x, 0) = uini(x), on Rd, (3)

where d ∈ N?, F : Rd × (0, T ) × R → Rd is divergence-free with respect to the space variables and uini is a
given function from Rd to R. We denote by Sgn the vector sign function, which is the set-valued map from Rd
to P(Rd) defined by

λ ∈ Sgn(µ)⇔

{
|λ| ≤ 1 if µ = 0

λ = µ
|µ| if µ 6= 0,
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where | · | denotes the euclidean norm in Rd.
In equation (2), the term divF describes the convection in the fluid regime, while the term div (Sgn(∇u))
enforces the plastic behaviour (the plasticity yield is taken equal to 1 for simplicity). Problem (2)-(3) is
considered in this work under the following hypotheses, denoted by Hypotheses (HC) in this paper.

(HC1) For a given T > 0, we define QT := Rd × (0, T ).

(HC2) The initial datum uini is assumed to belong to L1(Rd)∩L∞(Rd). The essential infimum and supremum
of uini are denoted by a0 and b0, respectively.

(HC3) The flux function F ∈ C1(QT × R,Rd) is assumed to be divergence-free with respect to the space
variables, that is

d∑
i=1

∂Fi
∂xi

(x, t, u) = 0, ∀x = (xi)i=1,...,d ∈ Rd, ∀t ∈ [0, T ], ∀u ∈ R. (4)

Furthermore, ∂F∂u is assumed to be locally Lipschitz continuous and such that, for all compact set K ⊂ R,∣∣∂F
∂u

∣∣ ≤ CK a.e. on QT ×K, where CK is a constant depending on K.

Problem (2)-(3) can be viewed as a nonlinear hyperbolic scalar conservation law regularised by the total variation
flow operator (or the 1-Laplacian). For nonlinear hyperbolic conservation laws, it is well known that the standard
weak formulation fails to ensure the uniqueness of the solution and must be replaced by an entropy formulation;
see, e.g., [21] or [26]. With some types of regularisation, as for instance the viscous regularisation, the uniqueness
is recovered. That is not the case with the total variation flow regularisation, which has no spatial smoothing
effect and does not prevent the formation of shocks.
Nonlinear hyperbolic problems are usually approximated with finite volumes [15, 22, 24]. Unfortunately, finite
volumes are not suitable for the approximation of the total variation flow: indeed, if a sequence (uk)k∈N of
piece-wise constant functions converges to u in L1, the total variation of uk does not converge in general to the
total variation of u (see [3] for an example). The total variation flow must be approximated in W 1,1-conforming
discrete spaces, such as P1 finite element spaces [2, 19, 20]. Numerical schemes combining finite volumes and
finite element schemes have already been considered for scalar conservation laws with a diffusion term [18] and
for degenerate parabolic equations [17].
In the present article, we first give an entropy formulation for Problem (2)-(3) and prove the uniqueness of the
entropy solution using the doubling variable technique. Note that our entropy formulation of the total variation
term is similar to the one developed in [4] to study the total variation flow with L1

loc initial data (without
hyperbolic term).
The existence of the entropy solution follows from the convergence of a numerical approximation, based on a
splitting scheme. The hyperbolic flow is treated with finite volumes and the total variation flow is treated with
P1 finite elements. The finite volume mesh is built as a dual mesh of the finite element mesh, which makes
simple the interpolation step between the two meshes. For the hyperbolic step (or finite volume step), we choose
an explicit time discretisation for sake of simplicity. For the total variation flow step (or finite element step),
we are led to define an implicit scheme accounting for the nonregularity of the total variation flow operator. To
guarantee the maximum principle, which is essential for the stability of the scheme, we use a nonobtuse finite
element mesh. A small parabolic regularisation term had to be included in this step; the magnitude of this
term is controlled by some function θ(h), where h is the size of the mesh, for proving, using entropies, the lower
semi-continuity of the bounded variation norm of the discrete solution (see the use of this term in (81)).
The convergence proof of the numerical approximation relies on the Kolmogorov-Riesz compactness theorem,
which provides us with the strong convergence in L1

loc(Rd× (0, T )) of the discrete solutions. It requires uniform
estimates on the space and time translates of the discrete solutions. To establish these estimates, the total
variation term is crucial. For scalar conservation laws without total variation flow regularisation, these estimates
are not true and the convergence study of the numerical approximations must be carried out with other tools
[10, 8, 15].
The article is organised as follows. In section 2, the concept of entropy solution for Problem (2)-(3) is defined
and its uniqueness is proved. Section 3 describes the numerical approximation and its first properties (well-
posedness, maximum principle). A priori estimates on the discrete solutions are provided in Section 4 and a
discrete entropy formulation is established in Section 5. The convergence of the numerical approximation (and
thus the existence of an entropy solution) is finally proved in Section 6 using the results of the two previous
sections. In the last section, some numerical simulations in 1D and 2D are presented.
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2 Entropy formulation for nonlinear hyperbolic equation with total variation flow

2.1 Functions with bounded variation

Let us first recall basic properties concerning the functions with bounded variation. For a comprehensive
presentation, we refer to [1], [14] or [30].

• Let Ω be an open subset of Rd. The total variation of a function u ∈ L1(Ω) is defined by

TVΩ(u) := sup

{∫
Ω

u divφ dx;φ ∈ C1
c (Ω;Rd) with ‖φ‖L∞(Ω) ≤ 1

}
.

In particular, the total variation of a function u ∈W 1,1(Ω) is equal to

TVΩ(u) =

∫
Ω

|∇u|dx.

The space of functions over Ω with bounded variation, denoted by BV (Ω), is the set of functions u ∈ L1(Ω)
such that TVΩ(u) < +∞. Equipped with the norm ‖ · ‖BV (Ω) := ‖ · ‖L1(Ω) + TVΩ(·), the space BV (Ω) is
a (nonreflexive) Banach space.

• The distributional derivative of u ∈ BV (Ω), denoted by Du, is the vector Radon measure such that∫
Ω

u divφdx = −
∫

Ω

φDu, ∀φ ∈ C1
c (Ω,Rd).

• The norm of the vector measure Du is denoted by |Du|. It is a positive Radon measure and there is a
measurable function h : R→ Rd, with |h(x)| = 1 for all x ∈ R, such that Du = h|Du|.

• The norm of Du is linked to the total variation by the identity |Du|(Ω) = TVΩ(u).

• The total variation is lower semi-continuous relatively to the convergence in L1
loc. In other words, if

(uk)k∈N is a sequence in BV (Ω) converging to u in L1
loc(Ω), then

lim
k→∞

inf |Duk|(Ω) ≥ |Du|(Ω).

• If u ∈ BV (Ω) and f ∈ C1(R), then f(u) ∈ BV (Ω).

• The space L1(0, T ;BV (Ω)) is the set of measurable functions u : (0, T )→ BV (Ω) such that
∫ T

0
‖u(t)‖BV (Ω) dt <

+∞. Equipped with the norm ‖ · ‖L1(0,T ;BV (Ω)) :=
∫ T

0
‖ · ‖BV (Ω) dt, it is a (nonreflexive) Banach space.

For more information on functions valued in Banach spaces, we refer for instance to [27, Chapter III].

2.2 Definition of entropy solutions

In the usual entropy formulations of scalar conservation laws, the admissible entropies are the C1 convex
functions or the so-called Kruzhkov entropies. Let us recall that the Kruzhkov entropies are the functions | ·−κ|
with κ ∈ R, the corresponding entropy fluxes being the functions F (·>κ) − F (·⊥κ), where a>b denotes the
maximum of a and b and a⊥b denotes the minimum of a and b.
The entropy formulation of the problem (2)-(3), owing to the term div Sgn(∇u), requires more regular entropies.

Definition 2.1: Under Hypotheses (HC), an admissible entropy is a convex Lipschitz continuous function η ∈
C∞(R). The corresponding entropy flux is the locally Lipschitz continuous function Φ ∈ C0(QT × R,Rd) such
that

Φ(x, t, u) =
1

2

∫ u

a0

η′(s)
∂F

∂u
(x, t, s) ds +

1

2

∫ u

b0

η′(s)
∂F

∂u
(x, t, s) ds +

1

2
(η′(a0)F (x, t, a0) + η′(b0)F (x, t, b0)) .

We then have ∂Φ
∂u (x, t, u) = η′(u)∂F∂u (x, t, u), and we remark that, since the flux function F is divergence-free

with respect to the space variables, the entropy flux is divergence-free in the same sense as well.
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Remark 2.2 (Consistency with Kruzhkov entropy pairs): Definition 2.1 is such that, for η = |·−κ| with a0 ≤ κ ≤ b0,
then Φ(x, t, ·) = F (x, t, ·>κ) − F (x, t, ·⊥κ). Moreover, for any convex function η ∈ C∞(R), letting Φ be given
by Definition 2.1, the following relations hold for a.e. (x, t) ∈ QT :

η(u) =
1

2

∫ b0

a0

η′′(s)|u− s| ds+
1

2
((η′(a0) + η′(b0))u+ η(a0)− η′(a0)a0 + η(b0)− η′(b0)b0),

Φ(x, t, u) =
1

2

∫ b0

a0

η′′(s) (F (x, t, u>s)− F (x, t, u⊥s)) ds+
η′(a0) + η′(b0)

2
F (x, t, u), ∀u ∈ [a0, b0]. (5)

Definition 2.3: Under Hypotheses (HC), a function u ∈ L∞(QT ) ∩ L1(0, T ;BV (Rd)) is said to be an entropy
solution of (2)-(3) if there exists λ ∈ L∞(QT )d, with |λ| ≤ 1 almost everywhere on QT , such that, for all
admissible entropy-entropy flux pairs (η,Φ) in the sense of Definition 2.1 and all nonnegative test functions
ϕ ∈ C∞c (Rd × [0, T [),∫

QT

(
η(u)∂tϕ+

(
Φ(x, t, u)− λη′(u)

)
· ∇ϕ

)
dxdt−

∫
QT

ϕ
∣∣D[η′(u)]

∣∣dt+

∫
Rd

η(uini(x))ϕ(x, 0) dx ≥ 0. (6)

Since η′ is in C1(R), the function η′(u) is in L1(0, T ;BV (Rd)). Therefore, the term
∫
QT

ϕ
∣∣D[η′(u)]

∣∣dt is
meaningful. The function λ, which is not necessarily unique, is called a multiplier by analogy with a Lagrange
multiplier.

2.3 Formal derivation of the entropy formulation

In order to enlighten the link between the strong formulation and the entropy formulation, we present below
a formal derivation of the entropy formulation by the vanishing viscosity method. Let us consider a viscous
regularisation of the equation (2). We assume that, for all ε > 0, there exists (uε, λε) with

∂tuε + divF (x, t, uε)− div λε − ε∆uε = 0 and λε ∈ Sgn(∇uε). (7)

One can justify that this problem is well-posed and, owing to the term div λε, we can expect that uε tends to u
in L1

loc(QT ) when ε→ 0. For a given admissible entropy-entropy flux pairs (η,Φ) in the sense of Definition 2.1,
multiplying (7) by η′(uε), we find

∂tη(uε) + div
(

Φ(x, t, uε)− λεη′(uε)
)

+∇η′(uε) · λε − ε∆η(uε) + ε η′′(uε)|∇uε|2 = 0. (8)

The entropy η being convex, we have

∇η′(uε) · λε = η′′(uε)∇uε · λε = η′′(uε)|∇uε| = |∇η′(uε)|.

Still by convexity of η, we have
ε η′′(uε)|∇uε|2 ≥ 0.

Let us now multiply (8) by a nonnegative test function ϕ ∈ C∞c (Rd × [0, T [) and integrate over QT . We thus
obtain ∫

QT

(
η(uε)∂tϕ+

(
Φ(x, t, uε)− λεη′(uε)

)
· ∇ϕ− |∇η′(uε)|ϕ

)
dxdt+

∫
Rd

η(uini(x))ϕ(x, 0) dx ≥ 0. (9)

Since uε → u in L1
loc(QT ), it follows from the semi-continuity of the total variation that

lim
ε→0

inf

∫
QT

|∇η′(uε)|ϕ dxdt ≥
∫
QT

ϕ
∣∣D[η′(u)]

∣∣dt.
Since the family (λε)ε>0 is bounded, there exists λ ∈ L∞(QT )d such that, up to a subsequence,

λε ⇀ λ weakly-∗ in L∞(QT )d.

Finally, letting ε→ 0 in (9), we obtain (6).
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2.4 Existence and uniqueness

Theorem 2.4: Under Hypotheses (HC), there exists one and only one entropy solution of (2)-(3) in the sense of
Definition 2.3.

Proof The existence of an entropy solution is proved by the convergence of a numerical approximation; see
Theorem 6.1 below. To prove the uniqueness, we use the doubling variable technique.
Step 1. Let u be an entropy solution and λu a corresponding multiplier. We consider the entropy η(· − κ),
where η ∈ C∞(R) is an even convex function and κ ∈ R. Let Φκ be the corresponding entropy flux. Then, by
definition of an entropy solution, for all nonnegative test functions ϕ ∈ C∞c (Rd × [0, T [),∫

QT

(
η(u(x, t)− κ)∂tϕ+

(
Φκ(x, t, u(x, t))− λu(x, t)η′(u(x, t)− κ)

)
· ∇xϕ

)
dxdt

−
∫
QT

ϕ
∣∣Dx[η′(u(x, t)− κ)]

∣∣dt+

∫
Rd

η(uini(x)− κ)ϕ(x, 0) dx ≥ 0. (10)

Let v be another entropy solution and λv a corresponding multiplier. Since η is an even function, η(· − κ) =
η(κ− ·) and η′(· − κ) = −η′(κ− ·). Then, denoting by y and s the space and time variables, for all nonnegative
test functions ϕ ∈ C∞c (QT ),∫

QT

(
η(κ− v(y, s))∂sϕ+

(
Φκ(y, s, v(y, s)) + λv(y, s)η

′(κ− v(y, s))
)
· ∇yϕ

)
dyds

−
∫
QT

ϕ
∣∣Dy[η′(κ− v(y, s))]

∣∣dt+

∫
Rd

η(uini(y)− κ)ϕ(y, 0) dy ≥ 0. (11)

Step 2. We now introduce well-chosen test functions. Let {ρε}ε>0 be a family of mollifiers in Rd such that
supp ρε ⊂ B(0, ε) and {ρ̄ε}ε>0 be a family of mollifiers in R such that supp ρ̄ε ⊂ [−ε, 0]. Let r > 0, τ > 0, and
ψ ∈ C∞c (R,R+). We define φ : QT ×QT → R+ such that

φ(x, t, y, s) = ψ(t)ρr(x− y)ρ̄τ (t− s), ∀(x, t, y, s) ∈ QT ×QT . (12)

We take κ = v(y, s) and ϕ = φ(·, ·, y, s) in (10). Next, integrating with respect to y and s over QT , and noticing
that φ(x, 0, y, s) = 0 for all s > 0, we obtain∫

QT×QT

(
η(u(x, t)− v(y, s))∂tφ+

(
Φv(y,s)(x, t, u(x, t))− λu(x, t)η′(u(x, t)− v(y, s))

)
· ∇xφ

)
dxdtdyds

−
∫
QT×QT

φ
∣∣Dx[η′(u(x, t)− v(y, s))]

∣∣ dtdyds ≥ 0. (13)

Similarly, taking κ = u(x, t) and ϕ = φ(x, t, ·, ·) in (11), then integrating with respect to x and t over QT , we
obtain∫

QT×QT

(
η(u(x, t)− v(y, s))∂sφ+

(
Φu(x,t)(y, s, v(y, s)) + λv(y, s)η

′(u(x, t)− v(y, s))
)
· ∇yφ

)
dxdtdyds

−
∫
QT×QT

φ
∣∣Dy[η′(u(x, t)− v(y, s))]

∣∣dsdxdt+

∫
Rd×QT

η(uini(y)− u(x, t))φ(x, t, y, 0)dydxdt ≥ 0. (14)

Adding the above relations (13) and (14), we find

A1 +A2 +A3 +A4 +A5 +A6 +A7 ≥ 0,
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where

A1 :=

∫
QT×QT

η(u(x, t)− v(y, s))(∂tφ+ ∂sφ) dxdtdyds,

A2 :=

∫
QT×QT

Φv(y,s)(x, t, u(x, t)) · ∇xφdxdtdyds,

A3 :=

∫
QT×QT

Φu(x,t)(y, s, v(y, s)) · ∇yφ dxdtdyds,

A4 :=

∫
QT×QT

(λu(x, t)− λv(y, s))η′(u(x, t)− v(y, s)) · (∇xφ+∇yφ) dxdtdyds,

A5 :=

∫
QT×QT

λv(y, s)η
′(u(x, t)− v(y, s)) · ∇xφ dxdtdyds−

∫
QT×QT

φ
∣∣Dx[η′(u(x, t)− v(y, s))]

∣∣ dtdyds,

A6 :=

∫
QT×QT

−λu(x, t)η′(u(x, t)− v(y, s)) · ∇yφdxdtdyds−
∫
QT×QT

φ
∣∣Dy[η′(u(x, t)− v(y, s))]

∣∣dsdxdt,

A7 :=

∫
Rd×QT

η(uini(y)− u(x, t))φ(x, t, y, 0) dydxdt.

Step 3. We now remark that we can get rid of A4, A5 and A6, the terms arising from the total variation. The
term A4 vanishes owing to identity ∇xφ+∇yφ = 0. The term A5 is nonpositive. Indeed, integrating by parts
with respect to x the first term of A5, we obtain

A5 =

∫
QT×QT

−λv(y, s)φDx[η′(u(x, t)− v(y, s))]dtdyds−
∫
QT×QT

φ
∣∣Dx[η′(u(x, t)− v(y, s))]

∣∣dtdyds. (15)

Since |λv(y, s)| ≤ 1 for all (y, s) ∈ QT , we deduce that A5 ≤ 0. With the same argument, we prove that A6 ≤ 0.
Step 4. The resulting equation is now

A1 +A2 +A3 +A7 ≥ 0. (16)

Let κ ∈ R. Consider the sequence of entropies (ηk)k∈N∗ such that ηk(x−κ) :=
√

1/k + (x− κ)2. This sequence
of entropies converges uniformly to the Kruzhkov entropy | · −κ|, and the entropy flux converges as well to the
Kruzhkov entropy flux (see Remark 2.2). Passing to the limit in (16) with this sequence of entropies, we obtain,

A10 +A20 +A30 +A70 ≥ 0, (17)

where

A10 :=

∫
QT×QT

|u(x, t)− v(y, s)|(∂tφ+ ∂sφ) dxdtdyds,

A20 :=

∫
QT×QT

[F (x, t, u(x, t)>v(y, s))− F (x, t, u(x, t)⊥v(y, s))] · ∇xφ dxdtdyds,

A30 :=

∫
QT×QT

[F (y, s, v(y, s)>u(x, t))− F (y, s, v(y, s)⊥u(x, t))] · ∇yφdxdtdyds,

A70 :=

∫
Rd×QT

|uini(y)− u(x, t)|φ(x, t, y, 0) dydxdt.

Step 5. The remaining of the proof is identical to the one of Lemma 5 in [8], since its starting point is precisely
(17). �

3 Numerical approximation

3.1 Notation and hypotheses

The finite element mesh, denoted by Th, is a conforming simplicial mesh of Rd of size h. In order to ensure
the maximum principle, each element of Th is assumed to be nonobtuse; we recall that a simplex is said to be
nonobtuse if the angles between any two facets are less than or equal to π/2. The family of the vertices of the
mesh is denoted by (xp)p∈N, and for any K ∈ Th, we denote by VK ⊂ N the set of the d + 1 indices of the
vertices of K, and by EK the set of the d+ 1 faces of K.
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The finite volume mesh, denoted by Dh, is a polyhedral mesh of Rd such that the interface between two cells
is a finite union of faces. The mesh Dh is a dual mesh of Th in the sense that each cell of Dh contains one and
only one node of Th. The nodes of Th and the corresponding cells of Dh are denoted by (xp)p∈N and (Qp)p∈N,
respectively. We assume that

∀p ∈ N, Qp ⊂
⋃

K∈Th s.t. p∈VK

K.

Let us introduce some additional notation about Dh: Np is the set containing the indices of the neighbouring
cells of Qp, Eh is the set of couples (p, q) such that Qp and Qq are neighbours and p < q, σp,q is the interface
between two neighbour cells Qp and Qq, νp,q is the unit normal vector to σp,q pointing toward Qq, mp is the
measure of Qp, mp,q is the measure of σp,q.

Remark 3.1: Since a square can be divided into two right triangles and a cube can be divided into six nonobtuse
tetrahedra, it is easy to build nonobtuse simplicial meshes of R2 and R3. In fact, it is possible to generate
nonobtuse simplicial meshes on any polygonal or polyhedral domain; see [6] and references therein.

Remark 3.2: The dual mesh can be defined, for any d ≥ 1, by the following procedure. For any p ∈ N and any
K ∈ Th with p ∈ VK , the set QKp is defined as the set of all points x ∈ K under the form x =

∑
q∈VK λqxq, with∑

q∈VK λq = 1 and λp ≥ λq for all q ∈ VK , and then define Qp as the union of all QKp , such that p ∈ VK . In R2,

for every triangle K ∈ Th containing the node xp, a part of the boundary of QKp is the union of the segments
joining the centre of gravity of K with the midpoint of the two edges of K incident to xp. This yields a closed
polygonal line which delimits a cell Qp associated to xp.

In our scheme, the unknown function is simultaneously reconstructed from the values vh = (vp)p∈N at the vertices
using a continuous piecewise affine reconstruction denoted by v̂h, and using a piecewise constant reconstruction
denoted by vh:

∀vh ∈ RN, v̂h ∈ C0(Rd) ; v̂h|K is affine for each K ∈ Th, v̂h(xp) = vp, ∀p ∈ N,
vh ∈ L1

loc(Rd) ; vh|Qp
= vp, ∀p ∈ N.

Letting K ∈ Th, if we denote by {xp}p∈VK the vertices of K and by {φp}p∈VK the corresponding Lagrange basis
function, we can write, for any uh, vh ∈ RN,

∇v̂h|K · ∇ûh|K =
∑
p∈VK

∑
q∈VK

vpuq∇φp|K · ∇φq|K .

Using the fact that
∑
p∈VK φp|K = 1, and thus

∑
p∈VK ∇φp|K = 0, the preceding equation can be rewritten as

∇v̂h|K · ∇ûh|K =
∑
p∈VK

∑
q∈VK

uq(vp − vq)∇φp|K · ∇φq|K .

Exchanging the roles of p and q, we get

∇v̂h|K · ∇ûh|K =
∑
p∈VK

∑
q∈VK

up(vq − vp)∇φp|K · ∇φq|K .

Adding the two preceding relations provides

2∇v̂h|K · ∇ûh|K = −
∑
p∈VK

∑
q∈VK

(up − uq)(vp − vq)∇φp|K · ∇φq|K ,

and therefore∫
K

∇v̂h(x) · ∇ûh(x)dx =
∑
p∈VK

∑
q∈VK

TKpq (up − uq)(vp − vq) with TKpq = −1

2

∫
K

∇φp(x) · ∇φq(x)dx. (18)

Since the simplex K is nonobtuse, we have the standard inequality (see for example [6])

∇φp|K · ∇φq|K ≤ 0 and TKpq ≥ 0, ∀p, q ∈ VK , p 6= q. (19)
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Let us observe that, for any uh ∈ RN, we have, denoting for a.e. x ∈ Rd by p(x) ∈ N such that x ∈ Qp,

for a.e. x ∈ Rd, |ûh(x)− uh(x)| = |(x− xp(x)) · ∇ûh(x)| ≤ h|∇ûh(x)|, (20)

which implies, if ∇ûh ∈ L1(Rd)d,
‖uh − ûh‖L1(Rd) ≤ h‖∇ûh‖L1(Rd)d . (21)

For the finite volume step, we need numerical fluxes Fnp,q(u
n
p , u

n
q ) between two neighbouring cells p and q at time

tn, function of unp and unq , the respective approximations of the unknown function in Qp and Qq at time tn. We
require that the family of numerical fluxes (Fnp,q)p,q,n∈N is admissible and consistent with the flux F in the sense
of the two definitions below. The Godunov scheme [24, see, e.g.,] provides, for instance, such numerical fluxes.

Definition 3.3: A family of numerical fluxes (Fnp,q)p,q,n∈N is said to be admissible if

• Fnp,q ∈ C0(R2) and there exists L > 0 such that, for all p ∈ N and q ∈ Np and for all n ∈ {0, ..., N − 1},
the function Fnp,q is Lipschitz continuous with the constant mp,qL with respect to each of its variables.

• Fnp,q is monotone, in the sense that it is non-decreasing with respect to its first argument and non-increasing
with respect to its second argument,

• Fnp,q is conservative, i.e. Fnp,q(u, v) = −Fnq,p(v, u) for all (u, v) ∈ R2.

Definition 3.4: Let F be a flux function. A family of numerical fluxes (Fnp,q)p,q,n∈N is said to be consistent with
F if

Fnp,q(u, u) =
1

δt

∫ tn+1

tn

∫
σp,q

F (x, t, u) · νp,q dγ(x)dt, ∀u ∈ R2. (22)

The following lemma, which is a discrete version of the divergence theorem, will be used below.

Lemma 3.5: Let (Fnp,q)p,q,n∈N be a family of numerical fluxes consistent with a flux function F . If F is divergence-
free, then

∀u ∈ R,
∑
q∈Np

Fp,q(u, u) = 0. (23)

Remark 3.6: The consistency hypothesis for the numerical fluxes could be slightly weakened (see, for instance
[8, Section 2.1]).

3.2 Description of the numerical scheme and well-posedness

We consider a family of discretisations (Fh,δt)h,δt>0 – by discretisation, we mean a finite element mesh Th, a
finite volume mesh Dh, a time step δt, a family of numerical fluxes (Fnp,q)p,q,n∈N. We assume that the following
hypotheses, denoted in the following by Hypotheses (HD), are satisfied uniformly by any element Fh,δt of the
family.

(HD1) There exists α > 0 such that, for all p ∈ N, mp ≥ α hd, α |∂Qp| ≤ hd−1, and |K| ≥ α hd, for all K ∈ Th.

(HD2) There exists an admissible family of numerical fluxes (Fnp,q)p,q,n∈N in the sense of Definition 3.3, which
is consistent with F in the sense of Definition 3.4. The constant L in Definition 3.3 is assumed to be
independent of the discretisation.

(HD3) The time interval [0, T ] is divided into N equal intervals of length δt, such that the following CFL
condition holds

δt ≤ α2h

L
. (24)

Note that, thanks to Hypothesis (HD1), the condition (24) implies that

δt ≤ 1

L

mp∑
q∈Np

mp,q
, ∀p ∈ N. (25)

The scheme for approximating (2)-(3) is given by:
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• Initialisation of (u0
p)n∈N such that u0

h ∈ L∞(Rd) ∩ L1(Rd):

u0
p =

1

mp

∫
Qp

uini(x)dx, ∀p ∈ N. (26)

• Finite volume step. Letting (unp )p∈N such that unh ∈ L∞(Rd) ∩ L1(Rd), seek (u
n+ 1

2
p )p∈N such that u

n+ 1
2

h ∈
L∞(Rd) ∩ L1(Rd) and

mp

u
n+ 1

2
p − unp

δt
+
∑
q∈Np

Fnp,q(u
n
p , u

n
q ) = 0, ∀p ∈ N. (27)

• Finite element step. Seek (un+1
h , λn+1

h ) ∈ Xh × Λh such that∫
Rd

un+1
h − un+ 1

2

h

δt
vhdx+

∫
Rd

(λn+1
h + θ(h)∇ûn+1

h ) · ∇v̂h dx = 0, ∀vh ∈ Xh, (28)

λn+1
h ∈ Sgn(∇ûn+1

h ), (29)

where θ ∈ C0((0,+∞)) is a positive function such that

lim
h→0

θ(h) = lim
h→0

h

θ(h)
= 0, (30)

and where we define

Xh = {vh ∈ RN; ∇v̂h ∈ L1(Rd) ∩ L2(Rd), vh ∈ L2(Rd)}
Λh := {µh ∈ L∞(Rd)d;µh|K is constant for each K ∈ Th}.

An example of such a function θ is θ(h) = hγ with 0 < γ < 1. Note that, if d = 1, it is possible to let θ(h) = 0.

Remark 3.7: The explicit time discretisation of the hyperbolic step could be replaced by an implicit time dis-
cretisation. In this case, the CFL condition (24) on the time step would not be necessary.

For each discretisation Fh,δt, we define the approximate solutions ûh,δt : QT → R, ūh,δt : QT → R, and
λh,δt : QT → R such that

ûh,δt(·, t) := ûn+1
h if t ∈ (tn, tn+1],

ūh,δt(·, t) := ūn+1
h if t ∈ (tn, tn+1],

λh,δt(·, t) := λn+1
h if t ∈ (tn, tn+1].

The proposition below proves that the scheme has at least one solution, which is unique with respect to the
unknown uh.

Proposition 3.8: Let us assume Hypotheses (HC) and Hypotheses (HD). Then there exists at least one solution

to Scheme (26)-(29) such that u0
h ∈ L∞(Rd) ∩ L1(Rd) and, for all n ∈ N, u

n+ 1
2

h , un+1
h ∈ L∞(Rd) ∩ L1(Rd) and

(un+1
h , λn+1

h ) ∈ Xh × Λh. Moreover, u0
h and, for all n ∈ N, u

n+ 1
2

h and un+1
h are unique and, for all p ∈ N,

a0 ≤ u
n+ 1

2
p ≤ b0 and a0 ≤ unp ≤ b0.

Proof Thanks to (26), we get from Hypothesis (HC2) that

‖uh‖L1(Rd) ≤ ‖uini‖L1(Rd),

and a0 ≤ u0
p ≤ b0 for all p ∈ N, which completes the proof that u0

h ∈ L∞(Rd) ∩ L1(Rd).
For any n ∈ N, we get from Propositions 3.9 and 3.11, assuming unh ∈ L∞(Rd) ∩ L1(Rd) with a0 ≤ unp ≤ b0 for

all p ∈ N, that u
n+ 1

2

h ∈ L∞(Rd) ∩ L1(Rd) with a0 ≤ u
n+ 1

2
p ≤ b0 for all p ∈ N. Using Proposition 3.12, we get

the existence of (un+1
h , λn+1

h ) ∈ Xh × Λh such that (29) holds, and we get that un+1
h is unique. It now suffices

to apply Proposition 3.14, for obtaining that un+1
h ∈ L∞(Rd) ∩ L1(Rd) with a0 ≤ un+1

p ≤ b0 for all p ∈ N. �

Let us now state and prove the propositions used in the proof of the preceding result. We have first the following
result.
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Proposition 3.9: Let us assume Hypotheses (HC) and Hypotheses (HD). Let n ∈ N, κ ∈ R and a family (unp )p∈N

be given such that a0 ≤ unp ≤ b0 for all p ∈ N. Let (u
n+ 1

2
p )p∈N be given by (27). Then there holds

u
n+ 1

2
p >κ ≤ unp>κ−

δt

mp

∑
q∈Np

Fnp,q(u
n
p>κ, unq>κ), ∀p ∈ N, (31)

u
n+ 1

2
p ⊥κ ≥ unp⊥κ−

δt

mp

∑
q∈Np

Fnp,q(u
n
p⊥κ, unq⊥κ), ∀p ∈ N, (32)

mp

|un+ 1
2

p − κ| − |unp − κ|
δt

+
∑
q∈Np

(
Fnp,q(u

n
p>κ, unq>κ)− Fnp,q(unp⊥κ, unq⊥κ)

)
≤ 0, ∀p ∈ N. (33)

Consequently a0 ≤ u
n+ 1

2
p ≤ b0 for all p ∈ N.

Proof The proof of this proposition is done in [8, Lemma 3] or [15, Lemma 27.1]. We recall it since it is very
brief. We consider the function Hn

p : R1+#Np → R, defined by

Hn
p (a, (bq)q∈Np) = a− δt

mp

∑
q∈Np

Fnp,q(a, bq).

We observe that, for any a′ > a, there holds

Hn
p (a′, (bq)q∈Np

)−Hn
p (a, (bq)q∈Np

) ≥ (a′ − a)(1−
δtL
∑
q∈Np

mp,q

mp
) ≥ 0,

thanks to Definition 3.3 of admissible fluxes and to condition (25) implied by (24). Therefore the function

Hn
p is non-decreasing with respect to all its arguments. Noticing that κ = Hn

p (κ, (κ)q∈Np) and u
n+ 1

2
p =

Hn
p (unp , (u

n
q )q∈Np

), we get that κ ≤ Hn
p (unp>κ, (unq>κ)q∈Np

) and u
n+ 1

2
p ≤ Hn

p (unp>κ, (unq>κ)q∈Np
), which implies

(31). The proof of (32) is similar, and (33) is obtained by the difference between (31) and (32).
Letting κ = b0 in (31) and using (23) on one hand, letting κ = a0 in (32) on the other hand complete the proof

that a0 ≤ u
n+ 1

2
p ≤ b0 for all p ∈ N. �

We then deduce the following result.

Proposition 3.10: Let us assume Hypotheses (HC) and Hypotheses (HD). Let (η,Φ) be an entropy-entropy flux
pair in the sense of Definition 2.1, and let n ∈ N be given. Then, the family (Φnp,q)p,q,n∈N of admissible numerical
fluxes defined by

Φnp,q(x, y) :=
1

2

∫ b0

a0

η′′(κ)
(
Fnp,q(x>κ, y>κ)− Fnp,q(x⊥κ, y⊥κ)

)
dκ+

η′(a0) + η′(b0)

2
Fnp,q(x, y), (34)

is consistent with Φ in the sense of Definition 3.4, and is such that, if u
n+ 1

2

h ∈ RN is obtained from unh ∈ RN by
(27) with a0 ≤ unp ≤ b0, for all p ∈ N, then

mp

η(u
n+ 1

2
p )− η(unp )

δt
+
∑
q∈Np

Φnp,q(u
n
p , u

n
q ) ≤ 0, ∀n ∈ {0, ..., N − 1}, ∀p ∈ N. (35)

Furthermore, there is a constant L′, depending only on L, η, a0 and b0, such that, for all (p, q) ∈ Eh and for
all n ∈ {0, ..., N − 1}, the function Φnp,q is Lipschitz continuous with respect of each of its variables with the
constant mp,qL

′.

Proof Thanks to Proposition 3.9, we have that all values unp and u
n+ 1

2
p belong to [a0, b0], which enables to use

relations (5). The consistency of Φnp,q with Φ is a consequence of (5) and of the consistency of Fnp,q with F .
Multiplying (33) by η′′(κ) and integrating on κ ∈ [a0, b0] implies (35), owing to (5) and (34). �
From the above result, we get the following one.
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Proposition 3.11: Let us assume Hypotheses (HC) and Hypotheses (HD). Assume that, for a given n ∈ N,
a0 ≤ unp ≤ b0 for all p ∈ N and unh ∈ L1(Rd). Then for all entropy η in the sense of Definition 2.1 such that
η(0) = 0 and η′(0) = 0, ∫

Rd

η(u
n+ 1

2

h (x))dx ≤
∫
Rd

η(unh(x))dx, (36)

and consequently

‖un+ 1
2

h ‖L1(Rd) ≤ ‖unh‖L1(Rd) and ‖un+ 1
2

h ‖L2(Rd) ≤ ‖unh‖L2(Rd). (37)

Proof We get, from (35) and applying Lemma 3.5,

mp

η(u
n+ 1

2
p )− η(unp )

δt
+
∑
q∈Np

(Φnp,q(u
n
p , u

n
q )− Φnp,q(0, 0)) ≤ 0, ∀n ∈ {0, ..., N − 1}, ∀p ∈ N,

For ε > 0, we multiply the preceding inequality by δt exp(−ε|xp|) and we sum the result on p ∈ N. We get∑
p∈N

mp(η(u
n+ 1

2
p )− η(unp )) exp(−ε|xp|) +

∑
p∈N

∑
q∈Np

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(0, 0)

)
exp(−ε|xp|) ≤ 0.

Introducing, for any (p, q) ∈ Eh, the point xpq = 1
2 (xp + xq) and the property Φnp,q(u, v) = −Φnq,p(v, u) for all

(u, v) ∈ [a0, b0]2, we get ∑
p∈N

mp(η(u
n+ 1

2
p )− η(unp )) exp(−ε|xp|) +

∑
p∈N

∑
q∈Np

Anpq ≤ 0,

with
Anpq =

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(0, 0)

)
(exp(−ε|xp|)− exp(−ε|xpq|)).

Observing that Proposition 3.10 implies

|Φnp,q(unp , unq )− Φnp,q(0, 0)| ≤ L′mpq(|unp |+ |unq |),

we get that

Anpq ≥ −
1

2
L′mpq(|unp |+ |unq |)εh ≥ −

1

2
CL′(mp|unp |+mq|unq |)ε.

This leads to

∑
p∈N

mp(η(u
n+ 1

2
p )− η(0)) exp(−ε|xp|) ≤

∑
p∈N

mp(η(unp )− η(0)) exp(−ε|xp|) +
1

2
εL′

∑
p∈N

∑
q∈Np

C(mp|unp |+mq|unq |).

Since a simplex has d+ 1 faces, we get∑
p∈N

mp(η(u
n+ 1

2
p )− η(0)) exp(−ε|xp|) ≤

∑
p∈N

mp(η(unp )− η(0)) + (d+ 1)εLC
∑
p∈N

mp|unp |.

Letting ε → 0, we get by monotonous convergence (recall that thanks to the hypothesis unh ∈ L1(Rd), we also
have η(unh) ∈ L1(Rd) and η(s) ≥ η(0) = 0),∑

p∈N
mpη(u

n+ 1
2

p ) ≤
∑
p∈N

mpη(unp ),

which concludes the proof of (36).
Letting η tend to η(s) = |s| and letting η(s) = s2 allow for concluding (37).
�
The proposition below proves that the finite element step is well-posed, provided that u

n+ 1
2

h ∈ L2(Rd), which

holds if u
n+ 1

2

h ∈ L∞(Rd) ∩ L1(Rd), and gives a variational characterisation of un+1
h .
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Proposition 3.12: Let us assume Hypotheses (HC) and Hypotheses (HD). Let n ∈ N be given and let us assume

that u
n+ 1

2

h ∈ L2(Rd). Then, equations (28)-(29) admit a solution (un+1
h , λn+1

h ) ∈ Xh × Λh. Furthermore, un+1
h

is unique and is the minimiser of the functional Jn+1
h : Xh → R defined by

Jn+1
h (vh) :=

1

2δt

∫
Rd

(
vh − u

n+ 1
2

h

)2

dx+

∫
Rd

(|∇v̂h|+
1

2
θ(h)|∇v̂h|2) dx. (38)

Proof We remark that, defining the following norm on the Banach space Xh,

‖vh‖Xh
= ‖vh‖L2(Rd) + ‖∇v̂h‖L1(Rd) + ‖∇v̂h‖L2(Rd),

we obtain that the stricly convex function Jn+1
h is such that

lim
‖vh‖Xh

→∞
Jn+1
h (vh) = +∞.

Hence Jn+1
h reaches its unique minimum value at some point un+1

h ∈ Xh. Let us prove that this point is
characterised by (28)-(29).

Let us first assume that there exists (un+1
h , λn+1

h ) ∈ Xh × Λh, solution to (28)-(29). Writing, for any wh ∈ Xh,
Jn+1
h (wh) = Jn+1

h (un+1
h + vh) with vh = wh − un+1

h , we have using (28)

Jn+1
h (wh)− Jn+1

h (un+1
h ) =

1

2δt

∫
Rd

vh(x)2dx+A+

∫
Rd

1

2
θ(h)|∇v̂h(x)|2dx,

with

A =

∫
Rd

(|∇(ûn+1
h + v̂h)(x)| − |∇ûh(x)| − λn+1

h (x) · ∇v̂h(x))dx

=
∑
K∈Th

(|∇(ûn+1
h + v̂h)|K | − |(∇ûn+1

h )|K | − λn+1
K · (∇v̂h)|K).

Recall that, if (∇ûn+1
h )|K 6= 0, then λn+1

K =
(∇ûn+1

h )|K

|(∇ûn+1
h )|K |

and otherwise that |λn+1
K | ≤ 1.

Using that for any a, b ∈ Rd with a 6= 0, we have |a+ b| − |a| − a·b
|a| = |a||a+b|−a·(a+b)

|a| ≥ 0, and |b| − λn+1
K · b ≥ 0,

we get A ≥ 0, which proves that Jn+1
h (wh) − Jn+1

h (un+1
h ) ≥ 0, and therefore that Jn+1

h reaches its minimum
value at un+1

h .

Reciprocally, let us assume that Jn+1
h reaches its minimum value at some point un+1

h ∈ Xh. Let us prove that
there exists λn+1

h ∈ Λh such that (28)-(29) holds. We denote by T n+1
h,0 = {K ∈ Th, (∇ûn+1

h )|K = 0}, and we

define the linear form Ln+1
h : Xh → R by

Ln+1
h (vh) :=

1

δt

∫
Rd

(
un+1
h − un+ 1

2

h

)
vhdx+

∫
∇ûn+1

h 6=0

∇ûn+1
h

|∇ûn+1
h |

· ∇v̂hdx+ θ(h)

∫
Rd

∇ûn+1
h · ∇v̂h dx.

For a given ε ∈ R with ε 6= 0 and for any vh ∈ Xh, we write that

Jn+1
h (un+1

h + εvh)− Jn+1
h (un+1

h ) ≥ 0.

Assuming ε > 0, dividing the above equation by ε and letting ε→ 0, we get

Ln+1
h (vh) +

∫
∇ûn+1

h =0

|∇v̂h|dx ≥ 0.

Assuming ε < 0, dividing the above equation by ε and letting ε→ 0, we get

Ln+1
h (vh)−

∫
∇ûn+1

h =0

|∇v̂h|dx ≤ 0.

Hence we get that

∀vh ∈ Xh, |Ln+1
h (vh)| ≤

∫
∇ûn+1

h =0

|∇v̂h|dx =
∑

K∈T n+1
h,0

|K| |∇v̂h|K |. (39)
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We consider the set E of all functions f from T n+1
h,0 → Rd which are bounded for the norm

‖f‖E =
∑

K∈T n+1
h,0

|K| |fK |.

We observe that, defining F = {f ∈ E, ∃vh ∈ Xh, f = ∇v̂h}, the linear form B : F → R, such that
B(f) = Ln+1

h (vh) is well defined (since if ∇v̂h = ∇ŵh on all K ∈ T n+1
h,0 , then we get from (39) that Ln+1

h (vh) =

Ln+1
h (wh)) and continuous (again from (39)). Applying the Hahn-Banach theorem, this linear form can be

prolonged on E by a linear form, again denoted by B, with the same norm. Hence there exists (λn+1
K )K∈T n+1

h,0

with |λn+1
K | ≤ 1 for all K ∈ T n+1

h,0 and

∀f ∈ E, B(f) = −
∑

K∈T n+1
h,0

|K| λn+1
K · fK .

Therefore we have
∀vh ∈ Xh, Ln+1

h (vh) +
∑

K∈T n+1
h,0

|K| λn+1
K · (∇v̂h)|K = 0,

which concludes, denoting λn+1
K =

(∇ûn+1
h )|K

|(∇ûn+1
h )|K |

if (∇ûn+1
h )|K 6= 0, the proof that λn+1

h ∈ Λh is such that (28)-(29)

holds. �

Remark 3.13: Solving the saddle-point problem (28)-(29) or, which is equivalent, minimising the functional Jn+1
h

is not an easy task. For instance, if one tries to minimise Jn+1
h (or more precisely a regularisation of Jn+1

h , since
Jn+1
h is nondifferentiable) with conventional algorithms, such as the gradient or Newton algorithms, one obtains

very slow convergences. Motivated by the applications in image denoising where this kind of problem arises,
specific algorithms have been developed since the 1990s. Let us mention in particular the lagged diffusivity
algorithm [29], saddle-point algorithms [9, 2] or semi-smooth Newton methods [23].

Proposition 3.14: Let us assume Hypotheses (HC) and Hypotheses (HD). Let n ∈ N. Let η ∈ C2(R) such that

η(0) = 0, η′(0) = 0 and there exists M ∈ R+ with η′′(s) ∈ [0,M ] for all s ∈ R. Assume that u
n+ 1

2

h ∈ RN is such
that ∑

p∈N
mpη(u

n+ 1
2

p ) <∞.

Then ∑
p∈N

mpη(un+1
p ) ≤

∑
p∈N

mpη(u
n+ 1

2
p ). (40)

As a consequence, if a0 ≤ u
n+ 1

2
p ≤ b0 for all p ∈ N, then a0 ≤ un+1

p ≤ b0 for all p ∈ N, and if u
n+ 1

2

h ∈ L1(Rd)
then un+1

h ∈ L1(Rd).

Proof We remark that vh, defined by vp = η′(un+1
p ), is such that vh ∈ Xh. Indeed, there holds |vp| ≤M |un+1

p |,
and, using (18)-(19), we have

‖∇v̂h‖2L2(R)d =
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq (η′(un+1
p )−η′(un+1

q ))2 ≤M2
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq (un+1
p −un+1

q )2 = ‖∇ûn+1
h ‖2L2(R)d ,

which implies vh ∈ Xh. We now remark that, for any K ∈ Th, if ∇ûn+1
h|K = 0, then un+1

p = un+1
q for any

p, q ∈ VK , and therefore ∇v̂h|K = 0. So one can write

λn+1
h|K · ∇v̂h|K = 0 = ∇ûn+1

h|K · ∇v̂h|K .

If ∇ûn+1
h|K 6= 0, we then have

λn+1
h|K · ∇v̂h|K =

1

|∇ûn+1
h|K |
∇ûn+1

h|K · ∇v̂h|K .



4 A priori estimates on the approximate solutions 14

Hence, defining αn+1
K by αn+1

K = 1 if ∇ûn+1
h|K = 0, and αn+1

K = 1
|∇ûn+1

h|K |
otherwise, we get

∫
Rd

(λn+1
h + θ(h)∇ûn+1

h ) · ∇v̂h dx =
∑
K∈Th

(αn+1
K + θ(h))

∑
p∈VK

∑
q∈VK

TKpq (un+1
p − un+1

q )(η′(un+1
p )− η′(un+1

q )) ≥ 0.

Hence we can write from (29) ∑
p∈N

mp(u
n+1
p − un+ 1

2
p )η′(un+1

p ) ≤ 0.

Applying η(b)− η(a) = η′(a)(b− a) + η′′(c) (b−a)2

2 for c between a and b, we get∑
p∈N

mp(η(un+1
p )− η(u

n+ 1
2

p )) ≤
∑
p∈N

mp(u
n+1
p − un+ 1

2
p )η′(un+1

p ) ≤ 0,

which concludes the proof of (40).

Then assuming u
n+ 1

2
p ≤ b0 for all p ∈ N and letting η tend to η(s) = s>b0 − b0, we get that η(un+1

p ) = 0, which
shows that un+1

p ≤ b0. The same reasoning holds with η(s) = a0 − s⊥a0, which shows that un+1
p ≥ a0. Finally,

letting η tend to η(s) = |s|, we conclude that un+1
h ∈ L1(Rd). �

4 A priori estimates on the approximate solutions

A L∞(QT ) estimate on the family of approximate velocities (uh,δt)h,δt>0 has already been proved in Proposition
3.8. The aim of this section is to establish additional estimates on (ûh,δt)h,δt>0, namely a L1(0, T ;BV (Rd))
estimate, and L1

loc(QT ) estimates on the space and time translates. The estimates on the space and time
translates are deduced from the L1(0, T ;BV (Rd)) estimate.

Remark 4.1: Hypothesis (HD1) implies that each cell of Dh has a finite number of neighbours (and this number
is bounded independently of Fh,δt).

Remark 4.2: Throughout this section and the next one, C denotes a generic constant independent of the dis-
cretisation Fh,δt.

4.1 L1(0, T ;BV (Rd)) estimate

Proposition 4.3: Let us assume Hypotheses (HC) and Hypotheses (HD). Let u0
h ∈ L∞(Rd)∩L1(Rd) and, for all

n ∈ N, u
n+ 1

2

h , un+1
h ∈ L∞(Rd) ∩ L1(Rd) and (un+1

h , λn+1
h ) ∈ Xh × Λh be a solution to Scheme (26)-(29). Then

there holds

1

2
‖uh,δt‖2L∞(0,T ;L2(Rd)) +

N∑
n=1

δt

∫
Rd

|∇ûnh|dx ≤
1

2
‖uini‖2L2(Rd), (41)

and

N−1∑
n=0

δt

∫
Rd

θ(h)|∇ûn+1
h |2 dx = θ(h)

N−1∑
n=0

δt
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq (un+1
p − un+1

q )2 ≤ 1

2
‖uini‖2L2(Rd). (42)

Proof Owing to (37) in Proposition 3.11, we have∫
Rd

u
n+ 1

2

h (x)2dx ≤
∫
Rd

unh(x)2dx. (43)

We test (28) with vh = δt un+1
h and, since λn+1

h ∈ Sgn(∇ûn+1
h ), we obtain∑

p∈N
mpu

n+1
p

(
un+1
p − un+ 1

2
p

)
+ δt

∫
Rd

(|∇ûn+1
h |+ θ(h)|∇ûn+1

h |2) dx = 0.
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This leads to∑
p∈N

mp

(
1

2
(un+1
p )2 +

1

2
(un+1
p − un+ 1

2
p )2 − 1

2
(u
n+ 1

2
p )2

)
+ δt

∫
Rd

(|∇ûn+1
h |+ θ(h)|∇ûn+1

h |2) dx = 0,

hence giving, thanks to (43)∑
p∈N

mp

(
1

2
(un+1
p )2 − 1

2
(unp )2

)
+ δt

∫
Rd

(|∇ûn+1
h |+ θ(h)|∇ûn+1

h |2) dx ≤ 0. (44)

Summing (44) over n ∈ {0, ...,m} for any m = 1, . . . , N − 1 we obtain the inequality

1

2

∑
p∈N

mp(u
m+1
p )2 +

m∑
n=0

δt

∫
Rd

(|∇ûn+1
h |+ θ(h)|∇ûn+1

h |2) dx ≤
∑
p∈N

mp
1

2
(u0
p)

2. (45)

We conclude the proof of the lemma since the above inequality holds for any m. �

4.2 Time translate estimate

Proposition 4.4: Let us assume Hypotheses (HC) and Hypotheses (HD). Let u0
h ∈ L∞(Rd)∩L1(Rd) and, for all

n ∈ N, u
n+ 1

2

h , un+1
h ∈ L∞(Rd) ∩ L1(Rd) and (un+1

h , λn+1
h ) ∈ Xh × Λh be a solution to Scheme (26)-(29). For all

R > 0, there exists a constant C, independent of the family (Fh,δt)h,δt>0, such that,∫ T−s

0

∫
B(0,R)

|uh,δt(x, t+ s)− uh,δt(x, t)| dxdt ≤ C
√
s, ∀s ∈ [0, T ]. (46)

Proof 1. Let s ∈ [0, T ]. Using the Cauchy-Schwarz inequality, we have

∫ T−s

0

∫
B(0,R)

|uh,δt(x, t+ s)− uh,δt(x, t)| dxdt ≤

(
CRdT

∫ T−s

0

∫
Rd

(uh,δt(x, t+ s)− uh,δt(x, t))2
dxdt

) 1
2

.

(47)
We define the function ν : R→ Z such that ν(t) = n+1 if t ∈ (nδt, (n+1)δt] and the function χn(t, s) : R×R→
{0, 1} such that χn(t, s) = 1 if ν(t) ≤ n < ν(t+ s) and χn(t, s) = 0 otherwise; so that∫ T−s

0

∫
Rd

(uh,δt(x, t+ s)− uh,δt(x, t))2
dxdt =

∫ T−s

0

∫
Rd

(
u
ν(t+s)
h − uν(t)

h

)2

dxdt

=

∫ T−s

0

∫
Rd

(
u
ν(t+s)
h − uν(t)

h

)N−1∑
n=1

χn(t, s)
(
un+1
h − unh

)
dxdt. (48)

2. We denote τ = 0 or τ = s, and we multiply (27), for n ≥ 1, by δt u
ν(t+τ)
p and sum over all p ∈ N:∑

p∈N
mpu

ν(t+τ)
p

(
u
n+ 1

2
p − unp

)
+ δt

∑
p∈N

∑
q∈Np

uν(t+τ)
p

(
Fnp,q(u

n
p , u

n
q )− Fnp,q(unp , unp )

)
= 0. (49)

Testing (28) with vh = δtu
ν(t+τ)
h , we get:∑

p∈N
mpu

ν(t+τ)
p

(
un+1
p − un+ 1

2
p

)
+ δt

∫
Rd

(λn+1
h · ∇ûν(t+τ)

h + θ(h)∇ûn+1
h · ∇ûν(t+τ)

h ) dx = 0. (50)

Adding the above equalities (49) and (50), we find∑
p∈N

mpu
ν(t+τ)
p

(
un+1
p − unp

)
+ δt

∑
p∈N

uν(t+τ)
p

∑
q∈Np

(
Fnp,q(u

n
p , u

n
q )− Fnp,q(unp , unp )

)
+ δt

∫
Rd

(λn+1
h · ∇ûν(t+τ)

h + θ(h)∇ûn+1
h · ∇ûν(t+τ)

h ) dx = 0. (51)
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3. Let p ∈ N, q ∈ Np and K an element of Th for which xp and xq are vertices. In view of (HD1) and (HD2),
for n ≥ 1, ∣∣Fnp,q(unp , unq )− Fnp,q(unp , unp )

∣∣ ≤ 2mp,qL|unp − unq | ≤ 2mp,qLh|∇ûnh|K | ≤ Ch
d|∇ûnh|K |. (52)

Therefore, owing to (HD1) and the finite number of neighbours in Dh,∣∣∣∣∣∣
∑
p∈N

uν(t+τ)
p

∑
q∈Np

(
Fnp,q(u

n
p , u

n
q )− Fnp,q(unp , unp )

)∣∣∣∣∣∣ ≤ C
∫
Rd

|∇ûnh|dx. (53)

The property |λn+1
h | ≤ 1 gives immediately∣∣∣∣∫

Rd

λn+1
h · ∇ûν(t+τ)

h dx

∣∣∣∣ ≤ ∫
Rd

|∇ûν(t+τ)
h |dx. (54)

From (51), (53) and (54), it follows∣∣∣∣∫
Rd

u
ν(t+τ)
h

(
un+1
h − unh

)
dx

∣∣∣∣ ≤ Cδt

(∫
Rd

(|∇ûnh|+ |∇û
ν(t+τ)
h |+ θ(h)

2
(|∇ûn+1

h |2 + |∇ûν(t+τ)
h |2)) dx

)
. (55)

4. Using the above estimate (55), we have∣∣∣∣∣
∫ T−s

0

∫
Rd

u
ν(t+τ)
h

N−1∑
n=1

χn(t, s)
(
un+1
h − unh

)
dxdt

∣∣∣∣∣ ≤ C
N∑
n=1

∫ T−s

0

χn(t, s)δt(An +Bν(t+τ)) dt,

with, for all n = 1, . . . , N ,

An =

∫
Rd

(|∇ûnh|+
θ(h)

2
|∇ûn+1

h |2) dx

and

Bn =

∫
Rd

(|∇ûnh|+
θ(h)

2
|∇ûnh|2) dx.

We then apply [16, Lemma 4.6], which leads to∣∣∣∣∣
∫ T−s

0

∫
Rd

u
ν(t+τ)
h

N−1∑
n=1

χn(t, s)
(
un+1
h − unh

)
dxdt

∣∣∣∣∣ ≤ Cs
N∑
n=1

δt(An +Bn). (56)

5. Recalling (41) and (42) which provide bounds on
∑N
n=1 δt(A

n +Bn), and collecting (48) and (56), we obtain
the desired estimate (46). �

4.3 Space translate estimate

Proposition 4.5: Let us assume Hypotheses (HC) and Hypotheses (HD). Let u0
h ∈ L∞(Rd)∩L1(Rd) and, for all

n ∈ N, u
n+ 1

2

h , un+1
h ∈ L∞(Rd) ∩ L1(Rd) and (un+1

h , λn+1
h ) ∈ Xh × Λh be a solution to Scheme (26)-(29). There

exists a constant C, independent of the family (Fh,δt)h,δt>0, such that∫ T

0

∫
Rd

|ûh,δt(x+ y, t)− ûh,δt(x, t)| dxdt ≤ C|y|, ∀y ∈ Rd. (57)

and, for any R > 0, there exists C ′, independent of the family (Fh,δt)h,δt>0,∫ T

0

∫
B(0,R)

|uh,δt(x+ y, t)− uh,δt(x, t)| dxdt ≤ C(|y|+ 2CTRdh), ∀y ∈ Rd. (58)

Proof For a given element K ∈ Th and a given couple of points (a, b) ∈ Rd × Rd, we denote by χK(a, b) the
length of the segment [a, b]∩K. In particular, if [a, b] does not intersect K, then χK(a, b) = 0. Let n ∈ {1, ..., N}
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and (x, y) ∈ Rd×Rd. By applying the mean value theorem on each element intersected by the segment [x, x+y],
we find the inequality

|ûnh(x+ y)− ûnh(x)| ≤
∑
K∈Th

χK(x, x+ y)|∇ûnh|K |. (59)

Next, an integration with respect to x yields∫
Rd

|ûnh(x+ y)− ûnh(x)| dx ≤
∑
K∈Th

|∇ûnh|K |
∫
Rd

χK(x, x+ y) dx. (60)

For any K ∈ Th, the function x 7→ χK(x, x + y) is bounded by min(h, |y|) and is zero outside a domain of
measure lower than hd−1(h+ |y|). Therefore,∫

Rd

χK(x, x+ y) dx ≤ hd−1(h+ |y|) min(h, |y|) ≤ 2hd|y|, (61)

and ∫
Rd

|ûnh(x+ y)− ûnh(x)| dx ≤ C|y|
∑
K∈Th

hd|∇ûnh|K |. (62)

Using the hypothesis (HD1), we obtain∫
Rd

∑
K∈Th

hd|∇ûnh|K | ≤ C
∫
Rd

|∇ûnh|dx. (63)

Summing the above inequality (63) over {1, ..., N}, and using (41), we find the desired estimate (57). We then
deduce (58) using (20). �

5 Entropy formulation for the approximate solutions

The aim of this section is to establish an entropy formulation, similar to (6), for the approximate solutions.
We first prove a discrete entropy inequality for the finite volume step (Proposition 3.10). Then, we take into
account the finite element step to obtain the complete discrete entropy formulation (Proposition 5.1). Error
terms occur in this formulation. Proposition 5.1 ensures that they tend to zero when the meshsize and the time
step tend to zero.

Proposition 5.1: Let us assume Hypotheses (HC) and Hypotheses (HD). Let u0
h ∈ L∞(Rd)∩L1(Rd) and, for all

n ∈ N, u
n+ 1

2

h , un+1
h ∈ L∞(Rd) ∩ L1(Rd) and (un+1

h , λn+1
h ) ∈ Xh × Λh be a solution to Scheme (26)-(29). Let

(η,Φ) be an entropy-entropy flux pair. Then, for all nonnegative test functions ϕ ∈ C∞c (Rd× [0, T [), there holds∫
QT

η(ūh,δt)∂tϕdxdt+

∫
QT

Φ(x, t, ūh,δt) · ∇ϕdxdt−
∫
QT

η′(ûh,δt)λh,δt · ∇ϕdxdt

−
∫
QT

ϕ|∇η′(ûh,δt)|dxdt+

∫
Rd

η(ū0
h)ϕ(x, 0) dx+ eh,δt ≥ 0, (64)

where eh,δt satisfies
lim

h→0,δt→0
eh,δt = 0. (65)

Proof First step: proof of (64)

1. Let ψ ∈ C∞c (Rd,R+). We test (28) with the function vn+1
h ∈ Xh such that vn+1

p = η′(un+1
p )ψ(xp), for all

p ∈ N. We get:

∑
p∈N

mp

un+1
p − un+ 1

2
p

δt
η′(un+1

p )ψ(xp) +

∫
Rd

(λn+1
h · ∇v̂n+1

h + θ(h)∇ûn+1
h · ∇v̂n+1

h ) dx = 0. (66)

Since η is convex, (
un+1
p − un+ 1

2
p

)
η′(un+1

p ) ≥ η(un+1
p )− η(u

n+ 1
2

p ) ∀p ∈ N,
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and thus (66) leads to

∑
p∈N

mp

η(un+1
p )− η(u

n+ 1
2

p )

δt
ψ(xp) +

∫
Rd

(λn+1
h · ∇v̂n+1

h + θ(h)∇ûn+1
h · ∇v̂n+1

h ) dx ≤ 0. (67)

Defining ṽn+1
h := η′(ûn+1

h )ψ, the second term of (67) can be rewritten as∫
Rd

λn+1
h · ∇v̂n+1

h dx =

∫
Rd

λn+1
h · ∇ṽn+1

h dx+

∫
Rd

λn+1
h · ∇

(
v̂n+1
h − ṽn+1

h

)
dx

=

∫
Rd

λn+1
h · ∇

(
η′(ûn+1

h )
)
ψ dx+

∫
Rd

λn+1
h · ∇ψ η′(ûn+1

h ) dx+

∫
Rd

λn+1
h · ∇

(
v̂n+1
h − ṽn+1

h

)
dx. (68)

We have ∫
Rd

λn+1
h · ∇

(
η′(ûn+1

h )
)
ψ dx =

∫
Rd

η′′(ûn+1
h )λn+1

h · ∇(ûn+1
h )ψ dx =

∫
Rd

|∇η′(ûn+1
h )|ψ dx. (69)

The third term of (67) can be rewritten as∫
Rd

θ(h)∇ûn+1
h ·∇v̂n+1

h dx = θ(h)
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq (un+1
p −un+1

q )(η′(un+1
p )ψ(xp)−η′(un+1

q )ψ(xq)) = T1+T2,

with

T1 = θ(h)
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq (un+1
p − un+1

q )(η′(un+1
p )− η′(un+1

q ))
ψ(xp) + ψ(xq)

2
≥ 0

T2 = θ(h)
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq (un+1
p − un+1

q )(ψ(xp)− ψ(xq))
η′(un+1

p ) + η′(un+1
q )

2
. (70)

Collecting (67), (68), (70) and (69), we obtain

∑
p∈N

mp

η(un+1
p )− η(u

n+ 1
2

p )

δt
ψ(xp) +

∫
Rd

λn+1
h · ∇ψη′(ûn+1

h ) dx+

∫
Rd

|∇η′(ûn+1
h )|ψ dx

≤
∫
Rd

λn+1
h · ∇

(
ṽn+1
h − v̂n+1

h

)
dx+ θ(h)

∑
p∈N

∑
q∈N

Tpq|un+1
p − un+1

q | |ψ(xp)− ψ(xq)|
η′(un+1

p ) + η′(un+1
q )

2
. (71)

Taking, for a given ϕ ∈ C∞c (Rd × [0, T [), ψ = ϕ(·, t) in the above inequality, then integrating on (tn, tn+1) and
summing over n ∈ {0, ..., N − 1}, we eventually find

N−1∑
n=0

∑
p∈N

η(un+1
p )− η(u

n+ 1
2

p )

δt

∫ tn+1

tn
mpϕ(xp, t) dt+

∫
QT

η′(ûh,δt)λh,δt · ∇ϕdxdt

+

∫
QT

ϕ|∇η′(ûh,δt)|dxdt ≤ e(1)
h,δt + e

(2)
h,δt, (72)

where

e
(1)
h,δt :=

N−1∑
n=0

∫ tn+1

tn

∫
Rd

λn+1
h (x) · ∇(ṽn+1

h (x, t)− v̂n+1
h (x, t)) dxdt, (73)

and

e
(2)
h,δt :=

N−1∑
n=0

∫ tn+1

tn
θ(h)

∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq |un+1
p − un+1

q ||ϕ(xp, t)− ϕ(xq, t)|
η′(un+1

p ) + η′(un+1
q )

2
dt. (74)
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2. Multiplying (35) by ϕnp :=
∫ tn+1

tn
ϕ(xp, s) ds, then adding to (72), we obtain

N−1∑
n=0

∑
p∈N

η(un+1
p )− η(unp )

δt
mpϕ

n
p +

N−1∑
n=0

∑
p∈N

∑
q∈Np

Φnp,q(u
n
p , u

n
q )ϕnp

+

∫
QT

η′(ûh,δt)λh,δt · ∇ϕdxdt+

∫
QT

ϕ|∇η′(ûh,δt)|dxdt− e(1)
h,δt − e

(2)
h,δt ≤ 0. (75)

Now, observing that, since ϕ(·, t) = 0 for t ≥ T , we have ϕNp = 0 and therefore

N−1∑
n=0

∑
p∈N

η(un+1
p )− η(unp )

δt
mpϕ

n
p = −

N−1∑
n=0

∑
p∈N

η(un+1
p )mp

ϕn+1
p − ϕnp

δt
−
∑
p∈N

η(u0
p)mp

1

δt
ϕ0
p

we can rewrite (75) as∫
QT

η(ūh,δt)∂tϕdxdt+

∫
QT

Φ(x, t, ūh,δt) · ∇ϕdxdt−
∫
QT

η′(ûh,δt)λh,δt · ∇ϕdxdt

−
∫
QT

ϕ|∇η′(ûh,δt)|dxdt+

∫
Rd

η(u0
h)ϕ(x, 0) dx+ e

(0)
h,δt + e

(1)
h,δt + e

(2)
h,δt + e

(3)
h,δt + e

(4)
h,δt ≥ 0, (76)

where

e
(0)
h,δt :=

∑
p∈N

1

δt

∫ δt

0

∫
Qp

η(u0
p)(ϕ(xp, t)− ϕ(x, 0))dxdt, (77)

e
(3)
h,δt :=

N−1∑
n=0

∑
p∈N

η(un+1
p )

∫ tn+1

tn

∫
Qp

(
ϕ(xp, t+ δt)− ϕ(xp, t)

δt
− ∂tϕ(x, t)

)
dxdt, (78)

e
(4)
h,δt := −

∫
QT

Φ(x, t, ūh,δt) · ∇ϕdxdt−
N−1∑
n=0

∑
p∈N

∑
q∈Np

Φnp,q(u
n
p , u

n
q )ϕnp . (79)

Hence, setting

eh,δt = e
(0)
h,δt + e

(1)
h,δt + e

(2)
h,δt + e

(3)
h,δt + e

(4)
h,δt, (80)

we obtain (64).

Second step: proof of (65)

Study of e
(1)
h,δt: use of the vanishing viscous term

We let, for t ∈ [tn, tn+1[, ψ = ϕ(·, t). Defining χK = 0 if ψ(x) = 0 on K and 1 otherwise, we observe that∫
Rd

λn+1
h · ∇

(
ṽn+1
h − v̂n+1

h

)
dx =

∑
K∈Th

χKλ
n+1
h ·

∫
K

∇
(
ṽn+1
h − v̂n+1

h

)
dx,

and we have ∫
K

∇
(
ṽn+1
h − v̂n+1

h

)
dx =

∑
σ∈EK

∫
σ

(
ṽn+1
h (x)− v̂n+1

h (x)
)

dγ(x).

We use the fact that, for all f ∈ C2(σ) and for all x ∈ σ, we have |f(x) − f̂h(x)| ≤ maxx∈σ |D2f(x)|h2,

denoting by f̂h(x) the affine function equal to f at the vertices of the simplex σ. We apply this inequality to the
function f(x) = ṽn+1

h (x) = η′(ûn+1
h (x))ψ(x). Using that ûn+1

h is affine on σ with tangential gradient bounded

by |∇ûn+1
h|K |, we get, for all x ∈ σ, letting Cη3 be a bound of |η′|, |η′′| and |η′′′| and Cψ2 be a bound of ψ, |∇ψ|

and |D2ψ|,
|ṽn+1
h (x)− v̂n+1

h (x)| ≤ h2Cη3C
ψ
2 (|∇ûn+1

h|K |
2 + 2|∇ûn+1

h|K |+ 1).

Since the above expression is integrated over σ,we get∫
Rd

λn+1
h · ∇

(
ṽn+1
h − v̂n+1

h

)
dx ≤

∑
K∈Th

∑
σ∈EK

χK |σ|h2Cη3C
ψ
2 (|∇ûn+1

h|K |
2 + 2|∇ûn+1

h|K |+ 1).
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Thanks to the geometrical hypotheses and to (42), we get∑
K∈Th

∑
σ∈EK

χK |σ|h2|∇ûn+1
h|K |

2 ≤ Ch
∑
K∈Th

|K||∇ûn+1
h|K |

2 ≤ h

θ(h)
C. (81)

Besides, we have, thanks to (41),∑
K∈Th

∑
σ∈EK

χK |σ|h2|∇ûn+1
h|K | ≤ Ch

∑
K∈Th

|K||∇ûn+1
h|K | ≤ hC.

Finally ∑
K∈Th

∑
σ∈EK

χK |σ|h2 ≤ Ch
∑
K∈Th

χK |K| ≤ Ch|suppψ|.

Hence each of the above terms tends to 0 with h thanks to Hypotheses (HD). Integrating on (tn, tn+1) and

summing on n = 0, . . . , N − 1, this completes the proof that lim
h,δt→0

e
(1)
h,δt = 0.

Study of e
(2)
h,δt: proof that the viscous term is vanishing

We again let, for t ∈ [tn, tn+1[, ψ = ϕ(·, t). Letting Cψ be a Lipschitz constant for ψ, and C a bound for
η′(un+1

p ), we get, thanks to the Cauchy-Schwarz inequality

∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq |un+1
p − un+1

q | |ψ(xp)− ψ(xq)|
η′(un+1

p ) + η′(un+1
q )

2

≤ CCψ

 ∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq (un+1
p − un+1

q )2
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpqχK |xp − xq|2
1/2

.

Thanks to the geometrical hypotheses and to (42), we get

θ(h)
∑
K∈Th

∑
p∈VK

∑
q∈VK

TKpq |un+1
p − un+1

q ||ψ(xp)− ψ(xq)|
η′(un+1

p ) + η′(un+1
q )

2
≤ CCψθ(h)

(
C

θ(h)
C |suppψ|

)1/2

,

which tends to 0 with h thanks to the hypotheses (HD). Again integrating on (tn, tn+1) and summing on

n = 0, . . . , N − 1, we get lim
h,δt→0

e
(2)
h,δt = 0.

Study of e
(0)
h,δt

We observe that, for all x ∈ Qp and t ∈ [0, δt],

|ϕ(xp, t)− ϕ(x, 0)| ≤ h max
(x,t)∈QT

|∇xϕ(x, t)|+ δt max
(x,t)∈QT

|∂tϕ(x, t)|,

hence
lim

h,δt→0
e

(0)
h,δt = 0.

Study of e
(3)
h,δt

We have, for all x ∈ Qp and t ∈ [tn, tn+1],∣∣∣∣ϕ(xp, t+ δt)− ϕ(xp, t)

δt
− ∂tϕ(x, t)

∣∣∣∣ ≤ h max
(x,t)∈QT

|∇x∂tϕ(x, t)|+ δt max
(x,t)∈QT

|∂2
ttϕ(x, t)|,

which proves that

lim
h,δt→0

e
(3)
h,δt = 0.

Study of e
(4)
h,δt
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Since we are using below the BV estimate (41), which only involves values n ≥ 1, we define

I0 :=
∑
p∈N

∑
q∈Np

Φ0
p,q(u

0
p, u

0
q)ϕ

0
p, I :=

N−1∑
n=1

∑
p∈N

∑
q∈Np

Φnp,q(u
n
p , u

n
q )ϕnp ,

and

I∗0 := −
∫ δt

0

∫
Rd

Φ(x, t, ūh,δt) · ∇ϕdxdt, I∗ := −
∫ T

δt

∫
Rd

Φ(x, t, ūh,δt) · ∇ϕdxdt.

We then have e
(4)
h,δt = −I0− I + I∗0 + I∗. We write, as in the proof of Proposition 3.11, again using the property

Φnp,q(u, v) = −Φnq,p(v, u) for all (u, v) ∈ [a0, b0]2,

I0 =
∑
p∈N

∑
q∈Np

(Φ0
p,q(u

0
p, u

0
q)− Φ0

p,q(0, 0))ϕ0
p =

∑
p∈N

∑
q∈Np

(Φ0
p,q(u

0
p, u

0
q)− Φ0

p,q(0, 0))(ϕ0
p −

1

2
(ϕ0
p + ϕ0

q)).

We observe that Proposition 3.10 implies

|Φ0
p,q(u

0
p, u

0
q)− Φ0

p,q(0, 0)| ≤ L′mpq(|u0
p|+ |u0

q|) ≤ 2(b0 − a0)L′mpq,

and that
|ϕ0
p − ϕ0

q| ≤ δt h max
(x,t)∈QT

|∇ϕ(x, t)|χpq,

where we denote by χpq = 0 if ϕ(x, t) = 0 on Qp ∪Qq × [0, T ] and 1 otherwise. This leads to

|I0| ≤ (b0 − a0)L′δt max
(x,t)∈QT

|∇ϕ(x, t)|
∑
p∈N

∑
q∈Np

χpqmpqh,

which leads, thanks to geometrical hypotheses (HD), to

|I0| ≤ Cδt.

We find as well that
|I∗0 | ≤ Cδt.

Let us now turn to the study of I − I∗. From (3.5), it follows
∑
q∈Np

Φnp,q(u, u) = 0 and thus

I =

N−1∑
n=1

∑
p∈N

∑
q∈Np

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(u

n
p , u

n
p )
)
ϕnp = I1 − I2,

where

I1 :=

N−1∑
n=1

∑
(p,q)∈Eh

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(u

n
p , u

n
p )
)
ϕnp , I2 :=

N−1∑
n=1

∑
(p,q)∈Eh

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(u

n
q , u

n
q )
)
ϕnq .

Applying the divergence theorem on each cell in the expression of I∗, we find

I∗ = −
N−1∑
n=1

∑
p∈N

∫ tn+1

tn

∫
∂Qp

Φ(x, t, unp ) · νp,qϕ(x, t) dγ(x)dt

= −
N−1∑
n=1

∑
(p,q)∈Eh

∫ tn+1

tn

∫
σp,q

(
Φ(x, t, unp ) · νp,q − Φ(x, t, unq ) · νp,q

)
ϕ(x, t) dγ(x)dt

= I∗1 − I∗2 ,

where

I∗1 :=

N−1∑
n=1

∑
(p,q)∈Eh

∫ tn+1

tn

∫
σp,q

(
1

mp,q
Φnp,q(u

n
p , u

n
q )− Φ(x, t, unp ) · νp,q

)
ϕ(x, t) dγ(x)dt,

I∗2 :=

N−1∑
n=1

∑
(p,q)∈Eh

∫ tn+1

tn

∫
σp,q

(
1

mp,q
Φnp,q(u

n
p , u

n
q )− Φ(x, t, unq ) · νp,q

)
ϕ(x, t) dγ(x)dt.
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We first rewrite I∗1 as

I∗1 =

N−1∑
n=1

∑
(p,q)∈Eh

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(u

n
p , u

n
p )
) 1

mp,q

∫ tn+1

tn

∫
σp,q

ϕ(x, t) dγ(x)dt

+

N−1∑
n=1

∑
(p,q)∈Eh

∫ tn+1

tn

∫
σp,q

(
1

mp,q
Φnp,q(u

n
p , u

n
p )− Φ(x, t, unp ) · νp,q

)
ϕ(x, t) dγ(x)dt.

Then, the consistency of the family {Φnp,q} with Φ allows us to turn the above equation into

I∗1 =

N−1∑
n=1

∑
(p,q)∈Eh

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(u

n
p , u

n
p )
) 1

mp,q

∫ tn+1

tn

∫
σp,q

ϕ(x, t) dγ(x)dt

+

N−1∑
n=1

∑
(p,q)∈Eh

∫ tn+1

tn

∫
σp,q

Φ(x, t, unp ) · νp,q
1

δtmp,q

∫ tn+1

tn

∫
σp,q

(ϕ(y, s)− ϕ(x, t)) dγ(y)dsdγ(x)dt.

Hence we can now write I1 − I∗1 = A1 +B1 with

A1 :=
N−1∑
n=1

∑
(p,q)∈Eh

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(u

n
p , u

n
p )
) 1

mp,q

∫ tn+1

tn

∫
σp,q

(ϕ(xp, t)− ϕ(x, t)) dγ(x)dt,

B1 :=

N−1∑
n=1

∑
(p,q)∈Eh

∫ tn+1

tn

∫
σp,q

Φ(x, t, unp ) · νp,q
1

δtmp,q

∫ tn+1

tn

∫
σp,q

(ϕ(x, t)− ϕ(y, s)) dγ(y)dsdγ(x)dt,

and similarly I2 − I∗2 = A2 +B2 with

A2 :=

N−1∑
n=1

∑
(p,q)∈Eh

(
Φnp,q(u

n
p , u

n
q )− Φnp,q(u

n
q , u

n
q )
) 1

mp,q

∫ tn+1

tn

∫
σp,q

(ϕ(xq, t)− ϕ(x, t)) dγ(x)dt,

B2 :=

N−1∑
n=1

∑
(p,q)∈Eh

∫ tn+1

tn

∫
σp,q

Φ(x, t, unq ) · νp,q
1

δtmp,q

∫ tn+1

tn

∫
σp,q

(ϕ(x, t)− ϕ(y, s)) dγ(y)dsdγ(x)dt.

From the mean value theorem and the uniform Lipschitz continuity of {Φnp,q}, we thus derive the estimates
|A1| ≤ D, |A2| ≤ D and |B1 −B2| ≤ D, with

D = C(h+ δt)

N−1∑
n=1

∑
(p,q)∈Eh

δtmp,q|unp − unq |.

Using the finite number of neighbours in Dh, hypothesis (HD3), and estimate (41), we obtain the bound

N−1∑
n=1

∑
(p,q)∈Eh

δtmp,q|unp − unq | ≤ C
N−1∑
n=1

∑
K∈Th

δthd|∇ûnh|K | ≤ C
N−1∑
n=1

δt

∫
Rd

|∇ûnh|dx ≤ C. (82)

Finally we deduce the estimate |I − I∗| ≤ C(h+ δt), which yields |e(4)
h,δt| ≤ C(h+ δt).

�

6 Convergence of the approximate solutions

Theorem 6.1: Let us assume Hypotheses (HC). Let (Fhk,δtk)k∈N be a sequence of discretisations which uniformly
satisfies the conditions (HD1)-(HD3) and whose meshsize and time step tend to zero. For any k ∈ N, let
(ūhk,δtk)k∈N, (ûhk,δtk)k∈N and (λhk,δtk)k∈N be a solution to Scheme (26)-(29). Then there exists u ∈ L∞(QT ) ∩
L1(0, T ;BV (Rd)), and λ ∈ L∞(QT )d, with |λ| ≤ 1 almost everywhere on QT , such that, up to a subsequence,

ûhk,δtk → u in L1
loc(QT ), ūhk,δtk → u in L1

loc(QT ), λhk,δtk ⇀ λ weakly-∗ in L∞(QT ). (83)

Moreover, u is the unique entropy solution of (2)-(3), and the whole sequences (ūhk,δtk)k∈N, (ûhk,δtk)k∈N converge
to u in the above sense.
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Proof 1. The estimates (46) and (58) allow us to apply Kolmogorov theorem to the sequence (uhk,δtk)k∈N.
Thus, there exist u ∈ L1

loc(QT ) and a subsequence of (Fhk,δtk)k∈N, again denoted by (Fhk,δtk)k∈N, such that
(uhk,δtk)k∈N converges to u in L1

loc(QT ). Applying (21) and (41), we get that ûhk,δtk → u in L1
loc(QT ) as well.

Furthermore, u ∈ L∞(QT )∩L1(0, T ;BV (Rd)), since the sequence (ûhk,δtk)k∈N is uniformly bounded in L∞(QT )
and L1(0, T ;BV (Rd)).
2. As the sequence (λhk,δtk)k∈N is bounded in L∞(QT ), there exists λ ∈ L∞(QT )d such that, up to a subse-
quence, (λhk,δtk)k∈N converges weakly-∗ to λ in L∞(QT ). Furthermore, |λ| ≤ 1 almost everywhere on QT , since
|λhk,δtk | < 1 on QT .
3. Let us now consider an entropy η and a test function ϕ. Since the sequence (ūhk,δtk)k∈N is bounded and
converges to u in L1

loc(QT ), we have∫
QT

η(ūhk,δtk)∂tϕdxdt+

∫
QT

Φ(x, t, ūhk,δtk) · ∇ϕdxdt→
∫
QT

(
η(u)∂tϕ+ Φ(x, t, u) · ∇ϕ

)
dxdt.

Since ûhk,δtk → u in L1
loc(QT ) and λhk,δtk ⇀ λ weakly-∗ in L∞(QT ),∫

QT

η′(ûhk,δtk)λhk,δtk · ∇ϕdtdx→
∫
QT

η′(u)λ · ∇ϕdtdx.

By lower semi-continuity of the total variation relatively to the L1 convergence, we obtain

lim
k→+∞

inf

∫
QT

ϕ|∇η′(ûhk,δtk)|dtdx ≥
∫
QT

ϕ
∣∣D[η′(u)]

∣∣dt. (84)

From (26), we get that ū0
hk
→ uini in L1

loc(Rd), and thus∫
Rd

η(ū0
h)ϕ(x, 0) dx→

∫
Rd

η(uini)ϕ(x, 0) dx.

Finally, using the above limits and Proposition 5.1, we can pass to the limit in (64) and find∫
QT

(
η(u)∂tϕ+

(
Φ(x, t, u)− λη′(u)

)
· ∇ϕ

)
dxdt−

∫
QT

ϕ
∣∣D[η′(u)]

∣∣dt+

∫
Rd

η(uini)ϕ(x, 0) dx ≥ 0,

which proves that u is the entropy solution. Owing to the uniqueness of the entropy solution (proved in Section
1.4), we conclude that, in fact, the whole sequence (ûhk,δtk)k∈N converges to u. �

Remark 6.2: In the present article, we have proposed a finite volume-finite element approximation of a simplified
scalar model of inviscid Bingham flow and proved its convergence. The convergence analysis relies on L∞(QT )
and L1(0, T ;BV (Rd)) estimates of the discrete solution. The L∞(QT ) estimate is obtained by a maximum
principle in both the hyperbolic flow step and the total variation flow step.
The extension of the finite volume-finite element approximation to the vector-valued inviscid Bingham flow is
quite straightforward. We refer to [22] for the finite volume approximation of hyperbolic systems and [7, 5] for
the approximation of the vectorial total variation flow. However, the convergence analysis in this case seems out
of reach. The difficulties do not come from the vectorial total variation flow: the BV estimate is still valid and,
although there is no longer a maximum principle, a L∞ estimate can still be proven [5]. On the contrary, most
of the tools used to prove the convergence of a finite volume approximation of a nonlinear hyperbolic scalar
equation (maximum principle, L∞ estimate, weak BV estimates) are no longer valid in the vectorial case.

7 Numerical examples

To illustrate the behaviour of the numerical scheme, simulations are performed on two examples: a one-
dimensional problem where the flux function F describes a Burgers flow (we use Scilab for these simulations)
and a two-dimensional problem where the flux function F describes a mere advection (we use FreeFem++
for these simulations). We numerically solve the two-dimensional problem posed on R2 by considering periodic
boundary conditions. Since in this case, an analytical solution is known, a quantitative study of the convergence
is provided. In both cases, we do not implement the additional term in θ(h), which allows for keeping a compact
support for the approximation of u in the numerical tests.
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7.1 Burgers flow and total variation flow in 1D

We consider the equation

∂tu+
1

2
∂x(u2)− g ∂x Sgn(∂xu) = 0, (x, t) ∈ R× (0, T ), (85)

with g = 5 · 10−4. The initial datum is a bump (see Figure 1, left). The computational domain is taken large
enough for the solution not to touch the boundary in the course of the simulation. The finite element and finite
volume meshes, of size h, are staggered. The finite volume step is advanced using the Godunov scheme [24, see,
e.g.,], which is stable under the CFL condition supp |unp |δt ≤ 1

2h, for all n ∈ {0, ..., N − 1}. As in the previous
test case, the finite element step is solved using the lagged diffusivity algorithm
The numerical simulation is performed with h = 0.002, δt = 0.001, ε = 10−8 and 20 iterations at each time step
for the lagged diffusivity algorithm. In Figure 1, the computed solution is represented at different times. As
in a Burgers flow (without total variation flow), a shock wave forms at the right end, while a rarefaction wave
forms at the left end. The main difference introduced by the total variation flow is the progressive clipping of
the solution.
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Fig. 1: Burgers flow and total variation flow. Numerical solution at times t = 0, t = 0.05, and t = 0.15.

7.2 Advection and total variation flow in 2D

We consider the problem

∂tu+ cx∂xu+ cy∂yu− g div Sgn(∇u) = 0, (x, y, t) ∈ R2 × (0, T ), (86)

where cx, cy, and g are constants. The initial condition is

u(x, y, 0) = 1D0(x, y), (x, y) ∈ R2, (87)

where 1D0 denotes the indicator function of D0, the disk of radius r0 centred at point (x0, y0). It is possible
to determine the exact solution to this problem. Indeed, for some bounded sets S of finite perimeter in R2,
including disks, it is proved in [4] that the solution of

∂tu− div Sgn(∇u) = 0, (x, y, t) ∈ R2 × (0, T ),

u(x, y, 0) = 1S(x, y), (x, y) ∈ R2,

is the function u : (x, y, t) 7→ (1− |∂S|/|S|t)+
1S(x, y). The proof can be easily adapted to deal with the

advection and the exact solution of (86)-(87) is found to be

u : (x, y, t) 7→
(

1− 2gt

r0

)+

1D0(x− cxt, y − cyt).

The numerical simulations use the following parameters: (x0, y0) = (0.3, 0.3), r0 = 0.2, cx = 0.8, cy = 0.2,
g = 0.03. To mimick the space R2, square domains with periodic boundary conditions are used for both the
finite volume step and the finite element step. The finite element domain, denoted by Ω, is meshed with squares
of size h divided into two triangles. The finite volume domain, slightly larger than the finite element domain,



7 Numerical examples 25

Fig. 2: Example of meshes used for the two-dimensional simulations. The finite element mesh is in solid line
and the finite volume mesh is in dashed line.

is meshed with square cells of size h, centred at each node of the finite element mesh. Such a pair of meshes is
represented in Figure 2. The advection step is solved using the so-called corner-transport upwind scheme [24,
see, e.g.,], which is slightly more accurate than the standard upwind scheme. This scheme is stable under the

CFL condition δt ≤ min
(
h
cx
, hcy

)
. The finite element step is solved using the lagged diffusivity algorithm, whose

principle is recalled in Appendix A.

Remark 7.1: The corner-transport upwind scheme does not fit exactly into the theoretical framework defined in
Section 3.1 since there is a numerical flux between the cells that touch at corner. However, the well-posedness
and convergence results remain valid (the proofs can be readily adapted).

The first simulation is performed with Ω = (0, 1) × (0, 1), h = 0.01, CFL= 1, ε = 10−6 and 20 iterations at
each time step for the lagged diffusivity algorithm. The numerical solution, represented at different times in
Figure 3, is in good agreement with the exact solution: the contours are sharp and the support is little deformed.
Interestingly, the total variation minimisation in the finite element step limits the diffusion due to the finite
volume scheme; see Figure 4. Table 1 collects the relative error between the exact solution and the discrete
solution in L1-norm for various meshsizes (keeping a CFL equal to 1). Precisely, the relative error is given by
the expression

‖uper − ûh,δt‖L1(Ω×(0,T ))

‖uper‖L1(Ω×(0,T ))

where uper is the periodic version of u and the norms are computed with a second-order accurate quadrature
formula. The results show, as expected, a decrease of the error when the mesh becomes finer. The computed
convergence rate is clearly sublinear (0.28 between the first mesh and the second mesh, 0.21 between the second
mesh and the third mesh). It is probably due to the discontinuity in the solution. Indeed, the optimal L1-norm
convergence rate for a monotone scheme applied to a linear advection problem with discontinuous data is only
O(h

1
2 ) [28]. The convergence rate for the total variation minimisation with finite elements seems also to be

sublinear in the case of a discontinuous source term (the best L2-norm convergence rate proved in the literature

is O(h
1
6 ) [2]).

Fig. 3: Advection and total variation flow. Numerical solution at times t = 0, t = 0.5, t = 1, t = 1.5. The mesh
is warped according to the value of the solution and the color scale goes from blue (0) to red (1).

Remark 7.2: The regularisation parameter ε is taken very small and the number of iterations is relatively large
in order to make negligible the error due to the lagged diffusivity algorithm. It is actually possible to choose a
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Fig. 4: Numerical solution of the advection and total variation flow (left) and numerical solution of the advection
without total variation flow (right) at time t = 1.5. The color scale goes from blue (0) to red (1). The
black circle indicates the support of the exact solution.

h relative error
0.02 0.618
0.01 0.5099
0.005 0.4403

Tab. 1: Relative error between the discrete and exact solutions in L1-norm.

larger regularisation parameter (and thus a smaller number of iterations) without deteriorating the convergence
rate of the finite element step. We refer to [20] for the scaling law relating the meshsize to the regularisation
parameter.
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[17] R. Eymard, D. Hilhorst, and M. Vohraĺık. A combined finite volume–nonconforming/mixed-hybrid finite
element scheme for degenerate parabolic problems. Numer. Math., 105(1):73–131, 2006.
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A Lagged diffusivity algorithm

The lagged diffusivity algorithm is a simple and efficient algorithm for solving the discrete total variation
minimisation problem [29, 12]. Under the notation of Section 3.1, consider the minimisation over Yh of the
functional Jh : Yh → R, defined by

Jh(vh) :=

∫
Rd

(
1

2δt
(vh(x)− zh(x))2 + |∇v̂h(x)|) dx,

where zh ∈ RN is such that zh ∈ L2(Rd), δt > 0 are given and where

Yh = {vh ∈ RN; ∇v̂h ∈ L1(Rd), vh ∈ L2(Rd)}.

The lagged diffusivity algorithm replaces the nondifferentiable functional Jh by the regularised functional Jεh :
Yh → R, defined by

Jεh(vh) :=

∫
Rd

(
1

2δt
(vh(x)− zh(x))2 +

√
ε(x)2 + |∇v̂h(x)|2) dx,

where ε(x) ∈ L1(Rd) is a small positive function on Rd. Then the respective minimisers uh and uεh are the
respective solutions of the following variational inequalities:∫

Rd

(
1

δt
(uh(x)− zh(x))(vh(x)− uh(x)) + |∇v̂h(x)| − |∇ûh(x)|) dx ≥ 0, ∀vh ∈ Yh,

and

∫
Rd

(
1

δt
(uεh(x)− zh(x))(vh(x)− uεh(x)) +

√
ε(x)2 + |∇v̂h(x)|2 −

√
ε(x)2 + |∇ûεh(x)|2) dx ≥ 0, ∀vh ∈ Yh.

Letting vh = uεh in the first one and vh = uh in the second one, adding the resulting equations, using |∇ûεh(x)|−√
ε(x)2 + |∇ûεh(x)|2 ≤ 0, we obtain∫

Rd

(− 1

δt
(uh(x)− uεh(x))2 +

√
ε(x)2 + |∇ûh(x)|2 − |∇ûh(x)|) dx ≥ 0.

We now use
∀a, b ≥ 0,

√
a2 + b2 ≤ a+ b.

We get

δt

∫
Rd

ε(x) dx ≥
∫
Rd

(uh(x)− uεh(x))2dx,

which proves that uεh tends to uh in L2(Rd) as ε → 0 in L1(Rd). We now remark that the minimiser uεh of Jεh
is also solution of the variational problem∫

Rd

(
1

δt
(uεh(x)− zh(x))vh(x) +

∇ûεh(x) · ∇v̂h(x)√
ε(x)2 + |∇ûεh(x)|2

) dx = 0, ∀vh ∈ Yh.

The preceding problem is then computed with a fixed-point algorithm. The algorithm is initialised with u
(0)
h =

zh. At the iteration k+ 1, the approximate solution u
(k+1)
h is computed by solving the linear diffusion problem∫

Rd

(
1

δt
(u

(k+1)
h (x)− zh(x))vh(x) +

∇û(k+1)
h (x) · ∇v̂h(x)√

ε(x)2 + |∇û(k)
h (x)|2

) dx = 0, ∀vh ∈ Yh.

The diffusivity field in the above diffusion problem depends on u
(k)
h , whence the name lagged diffusivity.


