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We deal with a nonlinear hyperbolic scalar conservation law, regularized by the total variation flow op-

erator (or 1-Laplacian). We give an entropy weak formulation, for which we prove the existence and

the uniqueness of the solution. The existence result is established using the convergence of a numerical

approximation (a splitting scheme where the hyperbolic flow is treated with finite volumes and the total

variation flow with finite elements). Some numerical simulations are also presented.
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A Bingham fluid, also called rigid viscoplastic fluid, is a material that behaves as a rigid solid below

a certain stress yield and as a viscous fluid above this yield; a familiar example of such a material is the

tooth paste. For a d-dimensional Bingham fluid, the relation between the stress tensor σ , seen as a d×d

matrix, the pressure p and the velocity u is

σ =−pId +g
D(u)

|D(u)|F
+νD(u), (0.1)

where g and ν are positive constants, Id is the d ×d identity matrix, D(u) is the d ×d matrix such that

D(u)i j := 1
2
(∂iu j + ∂ jui), and | · |F denotes the Frobenius matrix norm. The term g

D(u)
|D(u)|F enforces the

plastic behavior, g being the plasticity yield, while the term νD(u) enforces the viscous behavior, ν
being the viscosity parameter. The mathematical analysis of Bingham fluid flows dates back to the work

of Duvaut & Lions (1976), where the problems are formulated as variational inequalities in Sobolev

spaces. The numerical aproximation of a Bingham fluid flow is usually treated with finite element

techniques; we refer to Dean et al. (2007) for a recent review.

When the viscosity becomes negligible (ν = 0), the analytical and numerical framework described

above is no longer suitable – let us mention however an existence result in 2D obtained by Lions (1972).

Although the study of inviscid Bingham fluids has been initiated in Bouchut et al. (2012) with the case

of an unsteady flow without convection term, the presence of a nonlinear convection term is naturally

issued from the inertial term in the momentum conservation equation. Unfortunately, the study of this

problem seems to be out of reach in the actual state of the art, and we only consider here a simplified

model of unsteady Bingham flow with convection. This simplified model is scalar and consists in
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seeking u : Rd × (0,T )→ R, with compact support in space, such that

∂tu+divF(x, t,u)−div(Sgn(∇u)) = 0, on R
d × (0,T ), (0.2)

u(x,0) = uini(x), on R
d , (0.3)

where d ∈ {1,2,3}, F : Rd × (0,T )×R → R
d is divergence-free with respect to the space variables,

Sgn denotes the vector sign function, and uini is a function with compact support. We recall that the Sgn

function is a set-valued map from R
d to P(Rd) such that

λ ∈ Sgn(µ)⇔
{

|λ |6 1 if µ = 0

λ = µ
|µ| if µ 6= 0

where | · | denotes the euclidean norm in R
d . In equation (0.2), the term divF describes the convection

in the fluid regime, while the term div(Sgn(∇u)) enforces the plastic behavior (the plasticity yield is

taken equal to 1 for simplicity).

Problem (0.2)-(0.3) can be viewed as a nonlinear hyperbolic scalar conservation law regularized by

the total variation flow operator (or the 1-Laplacian). Let Ω be an open subset of Rd , the total variation

of a function u ∈ L1(Ω) is

TVΩ (u) := sup

{

∫

Ω
u divφ dx;φ ∈C1

c (Ω ;Rd) with ‖φ‖L∞(Ω) 6 1

}

.

In particular, the total variation of a function u ∈W 1,1(Ω) is

TVΩ (u) =
∫

Ω
|∇u|dx.

For nonlinear hyperbolic conservation laws, it is well known that the standard weak formulation

fails to ensure the uniqueness of the solution and must be replaced by an entropy formulation; see, e.g.,

Godlewski & Raviart (1991) or Serre (1999). With some types of regularizations, as for instance the

viscous regularization, the uniqueness is recovered. That is not the case with the total variation flow

regularization, which has no spatial smoothing effect and does not prevent the formation of shocks.

Nonlinear hyperbolic problems are usually approximated with finite volumes (Eymard et al., 2000;

Godlewski & Raviart, 1996; LeVeque, 2002). Unfortunately, finite volumes are not suitable for the

approximation of the total variation flow: indeed, if a sequence (uk)k∈N of piecewise constant func-

tions converges to u in L1, the total variation of uk does not converge in general to the total variation

of u (see Bělı́k & Luskin (2003) for an example). The total variation flow must be approximated in

W 1,1-conforming discrete spaces, such as P1 finite element spaces (Bartels, 2012; Feng & Prohl, 2003;

Feng et al., 2005). Numerical schemes combining finite volumes and finite element schemes have al-

ready been considered for scalar conservation laws with a diffusion term (Feistauer et al., 1999) and for

degenerate parabolic equations (Eymard et al., 2006).

In the present article, we first give an entropy formulation for Problem (0.2)-(0.3) and prove the

uniqueness of the entropy solution using the doubling variable technique. Note that our entropy formu-

lation of the total variation term is similar to the one developed in Bellettini et al. (2002) to study the

total variation flow with L1
loc initial data (without hyperbolic term).

The existence of the entropy solution follows from the convergence of a numerical approximation,

based on a splitting scheme. The hyperbolic flow is treated with finite volumes and the total variation
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flow is treated with P1 finite elements. The finite volume mesh is built as a dual mesh of the finite

element mesh, which makes simple the interpolation step between the two meshes. For the hyperbolic

step (or finite volume step), we choose an explicit time discretization for sake of simplicity. For the

total variation flow step (or finite element step), we are led to define an implicit scheme accounting for

the nonregularity of the total variation flow operator. To guarantee the maximum principle, which is

essential for the stability of the scheme, we use a nonobtuse finite element mesh.

The convergence proof of the numerical approximation relies on the Kolmogorov-Riesz compact-

ness theorem, which provides us with the strong convergence in L1(Rd ×(0,T )) of the discrete solutions.

It requires uniform estimates on the space and time translates of the discrete solutions. To establish these

estimates, the total variation term is crucial. For scalar conservation laws without total variation flow

regularization, these estimates are not true and the convergence study of the numerical approximations

must be carried out with other tools (Cockburn et al., 1995; Chainais-Hillairet, 1999; Eymard et al.,

2000).

The article is organized as follows. In section 1, the concept of entropy solution for Problem (0.2)-

(0.3) is defined and its uniqueness is proved. Section 2 describes the numerical approximation and its

first properties (well-posedness, maximum principle). A priori estimates on the discrete solutions are

provided in Section 3 and a discrete entropy formulation is established in Section 4. The convergence of

the numerical approximation (and thus the existence of an entropy solution) is finally proved in Section

5 using the results of the two previous sections. In the last section, some numerical simulations in 1D

and 2D are presented.

1. Entropy formulation for nonlinear hyperbolic equation with total variation flow

1.1 Notation and hypotheses

Let us first recall basic properties concerning the functions with bounded variation. For a comprehensive

presentation, we refer to Ambrosio et al. (2000), Evans & Gariepy (1992) or Ziemer (1989).

• Let Ω be an open subset of Rd . The space of functions over Ω with bounded variation, denoted

by BV (Ω), is the set of functions u ∈ L1(Ω) such that TVΩ (u) < +∞. Equipped with the norm

‖ · ‖BV (Ω) := ‖ · ‖L1(Ω)+TVΩ (·), the space BV (Ω) is a (nonreflexive) Banach space.

• The distributional derivative of u ∈ BV (Ω), denoted by Du, is the vector Radon measure such that

∫

Ω
u divφ dx =−

∫

Ω
φ Du, ∀φ ∈C1

c (Ω ,Rd).

• The norm of the vector measure Du is denoted by |Du|. It is a positive Radon measure and there

is a measurable function h : R→ R
d , with |h(x)|= 1 for all x ∈ R, such that Du = h|Du|.

• The norm of Du is linked to the total variation by the identity |Du|(Ω) = TVΩ (u).

• The total variation is lower semi-continuous relatively to the convergence in L1
loc. In other words,

if (uk)k∈N is a sequence in BV (Ω) converging to u in L1
loc(Ω), then

lim
k→∞

inf |Duk|(Ω)> |Du|(Ω).

• If u ∈ BV (Ω) and f ∈C1(R), then f (u) ∈ BV (Ω).
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• The space L1(0,T ;BV (Ω)) is the set of measurable functions u : (0,T ) → BV (Ω) such that
∫ T

0 ‖u(t)‖BV (Ω) dt < +∞. Equipped with the norm ‖ · ‖L1(0,T ;BV (Ω)) :=
∫ T

0 ‖ · ‖BV (Ω) dt, it is a

(nonreflexive) Banach space. For more information on functions valued in Banach spaces, we

refer for instance to Showalter (1997, Chapter III).

Let us now introduce some notation and specify the hypotheses on the initial datum and the flux

function. We set QT := R
d × (0,T ). The initial datum uini is assumed to belong to BV (Rd)∩L∞(Rd)

and to have a compact support. The essental infimum and supremum of uini are denoted by a0 and b0,

respectively. The flux function F is in C1(QT ×R,Rd) and is assumed to be divergence-free with respect

to the space variables, that is

divxF(x, t,u) :=
d

∑
i=1

∂F

∂xi

(x, t,u) = 0, ∀(x, t,u) ∈ QT ×R. (1.1)

Furthermore, ∂F
∂u

is assumed to be locally Lipschitz continuous and such that, for all compact set K ⊂R,
∣

∣

∣

∂F
∂u

∣

∣

∣6CK a.e. on QT ×K, where CK is a constant depending on K.

1.2 Definition of entropy solutions

In the usual entropy formulations of scalar conservation laws, the admissible entropies are the C1 convex

functions or the so-called Kruzhkov entropies (| · −κ| with κ ∈ R). The entropy formulation of the

problem (0.2)-(0.3), owing to the term divSgn(∇u), requires more regular entropies.

DEFINITION 1.1 An admissible entropy is a convex function η ∈ C2(R). The corresponding entropy

flux is the function Φ ∈C0(QT ×R,Rd) such that

Φ(u,x, t) :=
∫ u

0
η ′(v)

∂F

∂u
(x, t,v)dv.

Since the flux function F is divergence-free with respect to the space variables, the entropy flux is

divergence-free as well.

DEFINITION 1.2 A function u ∈ L∞(QT )∩L1(0,T ;BV (Rd)), with compact support in space, is said to

be an entropy solution of (0.2)-(0.3) if there exists λ ∈ L∞(QT )
d , with |λ | 6 1 almost everywhere on

QT , such that, for all admissible entropy-entropy flux pairs (η ,Φ) in the sense of Definition 1.1 and all

nonnegative test functions ϕ ∈C∞
c (QT ),

∫

QT

(

η(u)∂tϕ +
(

Φ(x, t,u)−λη ′(u)
)

·∇ϕ
)

dxdt −
∫

QT

ϕ
∣

∣D[η ′(u)]
∣

∣dt +
∫

Rd
η(uini(x))ϕ(x,0) dx > 0.

(1.2)

Since η ′ is in C1(R), the function η ′(u) is in L1(0,T ;BV (Rd)). Therefore, the term
∫

QT
ϕ
∣

∣D[η ′(u)]
∣

∣dt

is meaningful. The function λ , which is not necessarily unique, is called a multiplier by analogy with a

Lagrange multiplier.

REMARK 1.1 In the above definition, the entropy solution u is supposed to be in L1(0,T ;BV (Rd)).
Owing to the formal identity (neglecting the terms in ∂F/∂xi)

∂t |Du|+div

(

|Du|∂F

∂u

)

−div(Sgn(∇u)div(Sgn(∇u)))+(div(Sgn(∇u)))2 = 0,
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and the fact that uini ∈ BV (Rd)∩L∞(Rd), we actually expect a better regularity : u ∈ L∞(0,T ;BV (Rd)).
However, our existence proof, based on the convergence of a numerical scheme, does not allow us to

obtain this higher regularity (for general meshes, finite volume schemes are not generally total variation

diminishing).

1.3 Formal derivation of the entropy formulation

In order to enlight the link between the strong formulation and the entropy formulation, we present

below a formal derivation of the entropy formulation by the vanishing viscosity method. Let us consider

a viscous regularization of the equation (0.2):

∂tuε +divF(x, t,uε)−divSgn(∇uε)− ε∆uε = 0, (1.3)

where ε is a positive constant. One can justify that this problem is well-posed and, owing to the term

divSgn(∇uε), we can expect that uε tends to u in L1
loc(QT ) when ε → 0. Multiplying (1.3) by η ′(uε),

we find

∂tη(uε)+div
(

Φ(x, t,uε)−Sgn(∇uε)η
′(uε)

)

+∇η ′(uε) ·Sgn(∇uε)−ε∆η(uε)+ε η ′′(uε)|∇uε |2 = 0.

(1.4)

The entropy η being convex, we have

∇η ′(uε) ·Sgn(∇uε) = η ′′(uε)∇uε ·Sgn(∇uε)> 0,

whence

∇η ′(uε) ·Sgn(∇uε) = |∇η ′(uε)|.
Still by convexity of η , we have

ε η ′′(uε)|∇uε |2 > 0.

Let us now multiply (1.4) by a nonnegative test function ϕ ∈ C∞
c (QT ) and integrate over QT . We thus

obtain

∫

QT

(

η(uε)∂tϕ+
(

Φ(x, t,uε)−Sgn(∇uε)η
′(uε)

)

·∇ϕ−|∇η ′(uε)|ϕ
)

dxdt+
∫

Rd
η(uini(x))ϕ(x,0) dx> 0.

(1.5)

Since uε → u in L1
loc(QT ), it follows from the semicontinuity of the total variation that

lim
ε→0

inf

∫

QT

|∇η ′(uε)|ϕ dxdt >

∫

QT

ϕ
∣

∣D[η ′(u)]
∣

∣dt.

Since the family {Sgn(∇uε)}ε>0 is bounded, there exists λ ∈ L∞(QT )
d such that, up to a subsequence,

Sgn(∇uε)⇀ λ weakly-∗ in L∞(QT )
d .

Finally, letting ε → 0 in (1.5), we obtain (1.2).

1.4 Existence and uniqueness

THEOREM 1.3 There exists one and only one entropy solution of (0.2)-(0.3).
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Proof. The existence of an entropy solution is proved by the convergence of a numerical approximation;

see Theorem 5.3 below. To prove the uniqueness, we use the doubling variable technique.

Step 1. Let u be an entropy solution and λu a corresponding multiplier. We consider the entropy

η(·−κ), where η ∈C2(R) is an even convex function and κ ∈R. Let Φκ be the corresponding entropy

flux. Then, by definition of an entropy solution, for all nonnegative test functions ϕ ∈C∞
c (QT ),

∫

QT

(

η(u(x, t)−κ)∂tϕ +
(

Φκ(x, t,u(x, t))−λu(x, t)η
′(u(x, t)−κ)

)

·∇xϕ
)

dxdt

−
∫

QT

ϕ
∣

∣Dx[η
′(u(x, t)−κ)]

∣

∣dt +
∫

Rd
η(uini(x)−κ)ϕ(x,0)dx > 0. (1.6)

Let v be another entropy solution and λv a corresponding multiplier. Since η is an even function,

η(·−κ) = η(κ −·) and η ′(·−κ) =−η ′(κ −·). Then, denoting by y and s the space and time variables,

for all nonnegative test functions ϕ ∈C∞
c (QT ),

∫

QT

(

η(κ − v(y,s))∂sϕ +
(

Φκ(y,s,v(y,s))+λv(y,s)η
′(κ − v(y,s))

)

·∇yϕ
)

dyds

−
∫

QT

ϕ
∣

∣Dy[η
′(κ − v(y,s))]

∣

∣dt +
∫

Rd
η(uini(y)−κ)ϕ(y,0) dy > 0. (1.7)

Step 2. We now introduce well-chosen test functions. Let {ρε}ε>0 be a family of mollifiers in R
d such

that suppρε ⊂ B(0,ε) and {ρ̄ε}ε>0 be a family of mollifiers in R such that supp ρ̄ε ⊂ [−ε,0]. Let r > 0,

τ > 0, and ψ ∈C∞
c (R,R

+). We define φ : QT ×QT → R
+ such that

φ(x, t,y,s) = ψ(t)ρr(x− y)ρ̄τ(t − s), ∀(x, t,y,s) ∈ QT ×QT . (1.8)

We take κ = v(y,s) and ϕ = φ(·, ·,y,s) in (1.6). Next, integrating with respect to y and s over QT , and

noticing that φ(x,0,y,s) = 0 for all s > 0, we obtain

∫

QT×QT

(

η(u(x, t)− v(y,s))∂tφ +
(

Φv(y,s)(x, t,u(x, t))−λu(x, t)η
′(u(x, t)− v(y,s))

)

·∇xφ
)

dxdtdyds

−
∫

QT×QT

φ
∣

∣Dx[η
′(u(x, t)− v(y,s))]

∣

∣dtdyds > 0. (1.9)

Similarly, taking κ = u(x, t) and ϕ = φ(x, t, ·, ·) in (1.7), then integrating with respect to x and t over QT ,

we obtain

∫

QT×QT

(

η(u(x, t)− v(y,s))∂sφ +
(

Φu(x,t)(y,s,v(y,s))+λv(y,s)η
′(u(x, t)− v(y,s))

)

·∇yφ
)

dxdtdyds

−
∫

QT×QT

φ
∣

∣Dy[η
′(u(x, t)− v(y,s))]

∣

∣dsdxdt +
∫

Rd×QT

η(uini(y)−u(x, t)φ(x, t,y,0)dydxdt > 0.

(1.10)

Adding the above relations (1.9) and (1.10), we find

A1 +A2 +A3 +A4 +A5 +A6 +A7 > 0,
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where

A1 :=
∫

QT×QT

η(u(x, t)− v(y,s))(∂tφ +∂sφ)dxdtdyds,

A2 :=
∫

QT×QT

Φv(y,s)(x, t,u(x, t)) ·∇xφdxdtdyds,

A3 :=
∫

QT×QT

Φu(x,t)(y,s,v(y,s)) ·∇yφ dxdtdyds,

A4 :=
∫

QT×QT

(λu(x, t)−λv(y,s))η
′(u(x, t)− v(y,s)) · (∇xφ +∇yφ)dxdtdyds,

A5 :=
∫

QT×QT

λv(y,s)η
′(u(x, t)− v(y,s)) ·∇xφ dxdtdyds−

∫

QT×QT

φ
∣

∣Dx[η
′(u(x, t)− v(y,s))]

∣

∣dtdyds,

A6 :=
∫

QT×QT

−λu(x, t)η
′(u(x, t)− v(y,s)) ·∇yφ dxdtdyds−

∫

QT×QT

φ
∣

∣Dy[η
′(u(x, t)− v(y,s))]

∣

∣dsdxdt,

A7 :=
∫

Rd×QT

η(uini(y)−u(x, t))φ(x, t,y,0)dydxdt.

Step 3. We now remark that we can get rid of A4, A5 and A6, the terms arising from the total variation.

The term A4 vanishes owing to identity ∇xφ +∇yφ = 0. The term A5 is nonpositive. Indeed, integrating

by parts with respect to x the first term of A5, we obtain

A5 =
∫

QT×QT

−λv(y,s)φ Dx[η
′(u(x, t)− v(y,s))]dtdyds−

∫

QT×QT

φ
∣

∣Dx[η
′(u(x, t)− v(y,s))]

∣

∣dtdyds.

(1.11)

Since |λv(y,s)| 6 1 for all (y,s) ∈ QT , we deduce that A5 6 0. With the same argument, we prove that

A6 6 0.

Step 4. The resulting equation is now

A1 +A2 +A3 +A7 > 0. (1.12)

If we let η tend to the absolute value function, that is, if we let the entropy η(·−κ) tend to the Kruzhkov

entropy | ·−κ|, we obtain

A10 +A20 +A30 +A70 > 0, (1.13)

where

A10 :=
∫

QT×QT

|u(x, t)− v(y,s)|(∂tφ +∂sφ)dxdtdyds,

A20 :=
∫

QT×QT

(F(x, t,u(x, t)⊤v(y,s)−F(x, t,u(x, t)⊥v(y,s)) ·∇xφ dxdtdyds,

A30 :=
∫

QT×QT

(F(y,s,v(y,s)⊤u(x, t)−F(y,s,v(y,s)⊥u(x, t)) ·∇yφ dxdtdyds,

A70 :=
∫

Rd×QT

|uini(y)−u(x, t)|φ(x, t,y,0)dydxdt.

Step 5. The remaining of the proof is identical to the uniqueness proof done in Chainais-Hillairet (1999),

since its starting point is precisely (1.13). �
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2. Numerical approximation

2.1 Notation and hypotheses

The finite element mesh, denoted by Th, is a conforming simplicial mesh of Rd of size h. In order to

ensure the maximum principle, each element of Th is assumed to be nonobtuse; we recall that a simplex

is said to be nonobtuse if the angles between any two facets are less than or equal to π/2. The finite

volume mesh, denoted by Dh, is a polyhedral mesh of Rd such that the interface between two cells is

a finite union of faces. The mesh Dh is a dual mesh of Th in the sense that each cell of Dh contains

one and only one node of Th. The nodes of Th and the corresponding cells of Dh are denoted by

(xp)p∈N and (Qp)p∈N, respectively. Let us introduce some additional notation about Dh: Np is the set

containing the indices of the neighboring cells of Qp, Eh is the set of couples (p,q) such that Qp and Qq

are neighbors, σp,q is the interface between two neighbor cells Qp and Qq, νp,q is the unit normal vector

to σp,q pointing toward Qq, mp is the measure of Qp, mp,q is the measure of σp,q.

REMARK 2.1 Since a square can be divided into two right triangles and a cube can be divided into

six nonobtuse tetrahedra, it is easy to build nonobtuse simplicial meshes of R2 and R
3. In fact, it is

possible to generate nonobtuse simplicial meshes on any polygonal or polyhedral domain; see Brandts

et al. (2009) and references therein.

REMARK 2.2 In R
2, with a general unstructured triangular mesh Th, the dual mesh Dh can always be

built as follows. Let xp a node of Th. For every triangle K ∈Th containing the node xp, join the centroid

of K with the midpoint of the two edges of K incident to xp. This yields a closed polygonal line which

delimits a cell Qp associated to xp. Obviously, the cells (Qp)p∈N built with this method form a mesh of

R
2. In R

3, there is no such general procedure. It is nevertheless quite simple to build a dual mesh for a

structured tetrahedral mesh.

Let us define the discrete functional spaces

Vh := {vh ∈C0(Rd);vh|K is affine for each K ∈ Th},
Mh := {vh ∈ L∞(Rd);vh|Q is constant for each Q ∈ Dh},
Λh := {µh ∈ L∞(Rd)d ; µh|K is constant for each K ∈ Th}.

In our scheme, the multiplier λ is approximated in Λh and the velocity u is approximated alternately

in Vh (finite element step) and in Mh (finite volume step). To handle easily this double discretization,

we define the discrete velocity as a collection of values (up)p∈N, to which we associate the functions

ûh ∈Vh and ūh ∈ Mh such that

ûh(xp) = up, and ūh|Qp
= up ∀p ∈ N.

The time interval [0,T ] is divided into N equal intervals of length δt and the approximate velocity at

time tn := nδt is denoted by (un
p)p∈N. The initial discrete velocity (u0

p)p∈N can be built with various

interpolation procedures, depending on the regularity of uini. For now, we only assume that the initial

discrete velocity has a compact support.

In the finite element step, the Sgn function is approximated by the set-valued map Sgnh : Λh →
P(Λh) such that

λh ∈ Sgnh(µh)⇔
{

|λh|K |6 1 for K ∈ Th such that µh|K = 0

λh|K =
µh|K
|µh|K | for K ∈ Th such that µh|K 6= 0

.



CONVECTION AND TOTAL VARIATION FLOW 9 of 31

Note that, for all µh ∈ Λh and λh ∈ Sgnh(µh),

∫

Rd
λh ·µh dx =

∫

Rd
|µh|dx.

We also need a lumped L2 scalar product on Vh to guarantee the maximum principle. Let (·, ·)h be the

scalar product on Vh defined by

(vh,wh)h := ∑
p∈N

ωpvh(xp)wh(xp),

with ωp := ∑K∈Th,p
|K|/(d +1), Th,p being the set of elements for which xp is a vertex.

REMARK 2.3 In R
2, for a dual mesh built as explained in Remark 2.2, we have ωp = mp. Indeed, for

any node xp of a triangle K ∈ Th, the area of Qp ∩K is equal to the third of the area of K. This follows

from properties of the centroid and medians in a triangle.

For the finite volume step we need to define numerical fluxes between neighbor cells at each time

step. The numerical flux from the cell Qp to the cell Qq at time tn is denoted by Fn
p,q. We require that

the family of numerical fluxes {Fn
p,q} is admissible and consistent with the flux F in the sense of the

two definitions below. The Godunov scheme (see, e.g., LeVeque, 2002) provides, for instance, such

numerical fluxes.

DEFINITION 2.1 A family of numerical fluxes {Fn
p,q} is said to be admissible if

• Fn
p,q ∈C2([a0,b0]

2,R),

• Fn
p,q is monotone, i.e. nondecreasing with respect to its first variable and nonincreasing with

respect to its second variable,

• Fn
p,q is conservative, i.e. Fn

p,q(u,v) =−Fn
q,p(v,u) for all (u,v) ∈ [a0,b0]

2.

DEFINITION 2.2 Let F be a flux function. A family of numerical fluxes {Fn
p,q} is said to be consistent

with F if

Fn
p,q(u,u) =

1

δt

∫ tn+1

tn

∫

σp,q

F(γ, t,u) ·νp,q dγdt, ∀u ∈ [a0,b0]. (2.1)

The following lemma, which is a discrete version of the divergence theorem, will be used in several

places in the rest of the article.

LEMMA 2.1 Let {Fn
p,q} be a family of numerical fluxes consistent with a flux function F . If F is

divergence-free, then

∑
q∈Np

Fp,q(u,u) = 0. (2.2)

To guarantee the stability of the finite volume step, which is explicit, the time step must satisfy a CFL

condition. Let L be a constant such that, for all (p,q) ∈ Eh and for all n ∈ {0, ...,N − 1}, the function

Fn
p,q is Lipschitz continuous with the constant mp,qL with respect to each of its variables. We prescribe

the CFL condition

δt 6
1

2L
inf
p∈N

mp. (2.3)
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2.2 Description of the numerical scheme and well-posedness

The scheme for solving (0.2)-(0.3) is initialized with the velocity (u0
p)n∈N. The velocity (un+1

p )p∈N is

computed in two steps.

• Finite volume step. Seek (u
n+ 1

2
p )p∈N such that

mp

u
n+ 1

2
p −un

p

δt
+ ∑

q∈Np

Fn
p,q(u

n
p,u

n
q) = 0, ∀p ∈ N. (2.4)

• Finite element step. Seek ûn+1
h ∈Vh and λ n+1

h ∈ Λh such that





ûn+1
h − û

n+ 1
2

h

δt
,vh





h

+
∫

Rd
λ n+1

h ·∇vh dx = 0, ∀vh ∈Vh, (2.5)

λ n+1
h ∈ Sgnh(∇ûn+1

h ). (2.6)

The finite volume step, which is explicit, is obviously well-posed, provided that un
p ∈ [a0,b0] for

all p ∈ N. The proposition below proves that the finite element step is also well-posed, provided that

û
n+ 1

2
h ∈ BV (Rd), and gives a variational characterization of ûn+1

h .

PROPOSITION 2.3 Let n ∈ {0, ...,N −1}. Assume û
n+ 1

2
h ∈ BV (Rd). Then, equations (2.5)-(2.6) admit

a solution (ûn+1
h ,λ n+1

h ) ∈ Vh ×Λh. Furthermore, ûn+1
h is unique and is the minimizer of the functional

Jn+1
h : Vh → R defined by

Jn+1
h (vh) :=

1

2δt
∑
p∈N

ωp

(

vh(xp)−u
n+ 1

2
p

)2

+
∫

Rd
|∇vh|dx. (2.7)

Proof. Define the convex-concave function L n+1 : Vh ×Λh → R such that

L
n+1

h (vh,µh) :=
1

2δt
∑
p∈N

ωp

(

vh(xp)−u
n+ 1

2
p

)2

+
∫

Rd
µh ·∇vh dx−χ(µh),

where χ(µh) = 0 if |µh|6 1 and χ(µh) = +∞ otherwise. Equations (2.5)-(2.6) are equivalent to

un+1
h = arg min

vh∈Vh

L
n+1

h (vh,λ
n+1
h ),

λ n+1
h = arg max

µh∈Λh

L
n+1

h (un+1
h ,µh).

Consequently, any solution of (2.5)-(2.6) is a a saddle-point of L n+1, and conversely. Since the function

L n+1 is proper, closed and convex-concave, it admits at least one saddle-point (see, e.g., Rockafellar,

1970), and there exists at least one solution of (2.5)-(2.6). Furthermore, we notice that

arg min
vh∈Vh

L
n+1

h (vh,λ
n+1
h ) = arg min

vh∈Vh

Jn+1
h (vh),

which implies that un+1
h is also the unique minimizer of the strictly convex functional Jn+1

h . �
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REMARK 2.4 Solving the saddle-point problem (2.5)-(2.6) or, which is equivalent, minimizing the

functional Jn+1
h is not an easy task. For instance, if one tries to minimize Jn+1

h (or more precisely

a regularization of Jn+1
h , since Jn+1

h is nondifferentiable) with conventional algorithms, such as the

gradient or Newton algorithms, one obtains very slow convergences. Motivated by the applications in

image denoising where this kind of problem arises, specific algorithms have been developed since the

1990s. Let us mention in particular the lagged diffusivity algorithm (Vogel & Oman, 1996), saddle-point

algorithms (Chambolle & Pock, 2011; Bartels, 2012) or semismooth Newton methods (Hintermüller &

Kunisch, 2004).

The following propositions prove that the finite volume step and the finite element step satisfy the

maximum and minimum principles and that the finite element step does not expand the support of the

solution.

PROPOSITION 2.4 Let n ∈ {0, ...,N −1}. Assume that a0 6 un
p 6 b0, for all p ∈ N. Then, a0 6 u

n+ 1
2

p 6

b0, for all p ∈ N.

Proof. From (2.5) and (2.2), it follows

u
n+ 1

2
p = un

p −
δt

mp
∑

q∈Np,un
p 6=un

q

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)

un
p −un

q

(un
p −un

q).

This relation shows that u
n+ 1

2
p is a convex combination of un

p and (un
q)q∈Np

(the nonnegativity of the coef-

ficients of the combination is ensured by the monotony of the numerical fluxes and the CFL condition).

Therefore, a0 6 u
n+ 1

2
p 6 b0, for all p ∈ N. �

PROPOSITION 2.5 Let n ∈ {0, ...,N −1}. Assume û
n+ 1

2
h ∈ BV (Rd) and a0 6 u

n+ 1
2

p 6 b0 for all p ∈ N.

Then a0 6 ûn+1
h 6 b0.

Proof. Assume that there is at least one p ∈ N such that un+1
p /∈ [a0,b0]. Define vh ∈Vh such that

vh(xp) :=











un+1
p if a0 6 un+1

p 6 b0

b0 if un+1
p > b0

a0 if un+1
p < a0

.

The idea is to prove that Jn+1
h (vh) < Jn+1

h (ûn+1
h ), which is a contradiction since ûn+1

h is defined as the

minimizer of Jn+1
h . Let K ∈ Th. If we denote by {xp}p∈VK

the vertices of K and by {φp}p∈VK
the

corresponding Lagrange basis function, we can write

∇vh|K ·∇ûn+1
h|K = ∑

p∈VK

∑
q∈VK

vh(xp)u
n+1
q ∇φp|K ·∇φq|K . (2.8)

Using the fact that ∑p∈VK
φp|K = 1, and thus ∑p∈VK

∇φp|K = 0, (2.8) can be rewritten as

∇vh|K ·∇ûn+1
h|K = ∑

p∈VK

∑
q∈VK ,q6=p

un+1
q (vh(xp)− vh(xq))∇φp|K ·∇φq|K . (2.9)

Since the simplex K is nonobtuse, we have the standard inequality (see, e.g., Brandts et al., 2009)

∇φp|K ·∇φq|K 6 0, ∀p,q ∈ VK , p 6= q. (2.10)
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Observe that, for all p ∈ N, and for all z ∈ [a0,b0], (u
n+1
p − vh(xp))(z− vh(xp))6 0. In particular,

(un+1
p − vh(xp))(vh(xq)− vh(xp))6 0, ∀p,q ∈ VK . (2.11)

Using (2.10) and (2.11) in (2.9), we find

∇vh|K ·∇un+1
h|K > ∑

p∈VK

∑
q∈VK ,q 6=p

vh(xp)(vh(xq)− vh(xp))∇φp|K ·∇φq|K

= ∑
p∈VK

∑
q∈VK

vh(xp)vh(xq)∇φp|K ·∇φq|K

= |∇vh|K |2

Applying the Cauchy-Schwarz inequality, we obtain |∇vh|K |6 |∇un+1
h|K |. Hence Jn+1

h (vh)< Jn+1
h (ûn+1

h ),

which finishes the proof. �

PROPOSITION 2.6 Let n ∈ {0, ...,N −1}. Assume û
n+ 1

2
h ∈ BV (Rd). Then, supp(ûn+1

h )⊂ supp(û
n+ 1

2
h ).

Proof. Assume that there is at least one p ∈ N such that xp /∈ supp(ûn+ 1
2 ) and un+1

p 6= 0. We define

vh ∈ Vh such that vh(xp) = un+1
p if xp ∈ supp(ûn+ 1

2 ) and vh(xp) = 0 otherwise. Clearly, Jn+1
h (vh) <

Jn+1
h (ûn+1

h ). This contradiction proves that supp(ûn+1
h )⊂ supp(û

n+ 1
2

h ). �

Combining the above results and the fact that a finite volume step keeps the support of the discrete

solution compact, we can conclude that the scheme is globally well-posed and satisfies the maximum

and minimum principles.

PROPOSITION 2.7 For all k ∈
{

0, 1
2
, ...,N − 1

2
,N
}

, the discrete velocity (uk
p)p∈N is well-defined and

satisfies

a0 6 uk
p 6 b0, ∀p ∈ N. (2.12)

3. A priori estimates on the approximate solutions

In this section and the next one, we consider a family of discretizations {Fh,δt} – by discretization, we

mean a finite element mesh Th, a finite volume mesh Dh, a time step δt, a family of numerical fluxes

{Fn
p,q}, and a discrete initial condition (u0

p)p∈N. We assume that the following conditions are satisfied

uniformly by {Fh,δt}.

(C1) There exists α > 0 such that mp > αhd and |∂Qp|6 1
α hd−1 for all p ∈ N.

(C2) There exists a constant β such that diam(Qp)6 βh for all p ∈N, where diam(Qp) is the diameter

of Qp.

(C3) There exists ρ > 0 such that |K|> ρhd , for all K ∈ Th.

(C4) For all R > 0, there exists a constant cR such that, for any vh ∈Vh with support in B(0,R),

∣

∣

∣

∣

∣

∑
p∈N

(ωp −mp)vh(xp)

∣

∣

∣

∣

∣

6 cRh‖vh‖L∞(Rd). (3.1)
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(C5) There exists a constant L such that, for all (p,q) ∈ Eh and for all n ∈ {0, ...,N − 1}, the function

Fn
p,q is Lipschitz continuous with respect to each of its variables with the constant mp,qL.

(C6) There exists ζ > 0 such that δt > ζ h.

(C7) The time step satisfies the CFL condition

δt 6
αhd

2L
. (3.2)

(C8) There exist constants R0 and M0 such that supp(û0
h)⊂ B(0,R0) and

∫

Rd |∇û0
h|dx 6 M0.

For each discretization Fh,δt , we define the approximate solutions ûh,δt : QT → R, ūh,δt : QT → R, and

λh,δt : QT → R such that

ûh,δt(·, t) := ûn+1
h if t ∈ (tn, tn+1],

ūh,δt(·, t) := ūn
h if t ∈ [tn, tn+1),

λh,δt(·, t) := λ n+1
h if t ∈ (tn, tn+1].

A L∞(QT ) estimate on the approximate velocities {ûh,δt} has already been proved in Proposition 2.7.

The aim of this section is to establish additional estimates on {ûh,δt}, namely an estimate on the support

size, a L1(0,T ;BV (Rd)) estimate, and L1(QT ) estimates on the space and time translates. The estimates

on the space and time translates are deduced from the L1(0,T ;BV (Rd)) estimate.

REMARK 3.1 Hypotheses (C1) and (C2) imply that each cell of Dh has a finite number of neighbors (and

this number is bounded independently of Fh,δt ). The inverse CFL condition (C6) is needed to control

the expansion of the support of the discrete solution and, together with (C4), the accumulation of errors

due to the interpolation steps. Observe also that the CFL condition (C7) is slightly more stringent than

the CFL condition (2.3).

REMARK 3.2 Troughout this section and the next one, C denotes a generic constant independent of the

discretization Fh,δt .

3.1 Estimate on the support size

PROPOSITION 3.1 There exists a constant R, independent of Fh,δt , such that, for all k∈
{

0, 1
2
, ...,N − 1

2
,N
}

,

supp ûk
h ⊂ B(0,R). (3.3)

Proof. By hypothesis (C8), supp(û0
h)⊂ B(0,R0). Let n ∈ {0, ...,N −1}. Assume that there is a constant

Rn such that supp(ûn
h)⊂B(0,Rn). Then, a simple computation yields supp(û

n+ 1
2

h )⊂B(0,Rn+(2β +1)h)

and thus supp(ûn+1
h ) ⊂ B(0,Rn + (2β + 1)h), according to Proposition 2.6. By induction, using the

inverse CFL condition (C6), we conclude that there exists a constant R, depending only on R0, T , β and

ζ , such that supp ûk
h ⊂ B(0,R) for all k ∈

{

0, 1
2
, ...,N − 1

2
,N
}

. �
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3.2 L1(0,T ;BV (Rd)) estimate

PROPOSITION 3.2 There exists a constant C, independent of Fh,δt , such that

‖ûh,δt‖L1(0,T ;BV (Rd)) = ‖ûh,δt‖L1(QT )
+

N

∑
n=1

δt

∫

Rd
|∇ûn

h|dx 6C. (3.4)

Proof. 1. We multiply (2.4) by δt un
p and substract ∑q∈Np

Fn
p,q(u

n
p,u

n
p), which is zero according to (2.2).

Then, we sum over all p ∈ N to find

∑
p∈N

mpun
p(u

n+ 1
2

p −un
p)+δt ∑

p∈N
∑

q∈Np

un
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

= 0. (3.5)

We test (2.5) with vh = δt ûn+1
h and, since λ n+1

h ∈ Sgnh(∇un+1
h ), we obtain

∑
p∈N

ωpun+1
p

(

un+1
p −u

n+ 1
2

p

)

+δt

∫

Rd
|∇ûn+1

h | dx = 0. (3.6)

Adding (3.5) and (3.6), then rearranging, we find

∑
p∈N

mp

(

1

2
(un+1

p )2 +
1

2
(un+1

p −u
n+ 1

2
p )2 − 1

2
(u

n+ 1
2

p −un
p)

2 − 1

2
(un

p)
2

)

+δt ∑
p∈N

∑
q∈Np

un
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

+δt

∫

Rd
|∇ûn+1

h | dx+ ∑
p∈N

(ωp−mp)u
n+1
p

(

un+1
p −u

n+ 1
2

p

)

= 0.

(3.7)

Summing (3.7) over n∈ {0, ...,N−1}, and eliminating the positive terms in the left-hand side, we obtain

the inequality

−
N−1

∑
n=0

∑
p∈N

mp

1

2
(u

n+ 1
2

p −un
p)

2 +δt
N−1

∑
n=0

∑
p∈N

∑
q∈Np

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

+
N−1

∑
n=0

δt

∫

Rd
|∇ûn+1

h | dx+
N−1

∑
n=0

∑
p∈N

(ωp −mp)u
n+1
p

(

un+1
p −u

n+ 1
2

p

)

6 ∑
p∈N

mp

1

2
(u0

p)
2. (3.8)

The estimates (2.12) and (3.3), together with hypotheses (C4) and (C6), yield the bound

N−1

∑
n=0

∑
p∈N

(ωp −mp)u
n+1
p

(

un+1
p −u

n+ 1
2

p

)

6

N−1

∑
n=0

Ch 6C. (3.9)

Hence

N

∑
n=1

δt

∫

Rd
|∇ûn

h| dx 6C+
N−1

∑
n=0

∑
p∈N

mp

1

2
(u

n+ 1
2

p −un
p)

2

−δt
N−1

∑
n=0

∑
p∈N

∑
q∈Np

un
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

. (3.10)
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2. Setting E n
h := {(p,q) ∈ Eh; un

p > un
q}, we can write

∑
p∈N

∑
q∈Np

un
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

=

∑
(p,q)∈E n

h

(

un
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

−un
q

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
q,u

n
q)
))

, (3.11)

where the sum over the cells has been turned into a sum over the interfaces. For all (p,q) ∈ Eh, and for

all n ∈ {0, ...,N −1}, we define the function Gn
p,q : R→ R such that

Gn
p,q(x) :=

∫ x

0
s

(

∂Fn
p,q

∂u
(s,s)+

∂Fn
p,q

∂v
(s,s)

)

ds =
∫ x

0
s

d

ds

(

Fn
p,q(s,s)

)

ds, ∀x ∈ [a0,b0]. (3.12)

An integration by parts yields, for all (a,b) ∈ [a0,b0]
2,

Gn
p,q(b)−Gn

p,q(a)= b
(

Fn
p,q(b,b)−Fn

p,q(a,b)
)

−a
(

Fn
p,q(a,a)−Fn

p,q(a,b)
)

−
∫ b

a

(

Fn
p,q(s,s)−Fn

p,q(a,b)
)

ds.

(3.13)

Hence (3.11) becomes

∑
p∈N

∑
q∈Np

un
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

=

∑
(p,q)∈E n

h

(

Gn
p,q(u

n
p)−Gn

p,q(u
n
q)
)

+ ∑
(p,q)∈E n

h

∫ un
p

un
q

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(s,s)
)

ds. (3.14)

From (2.2), it follows

∑
(p,q)∈E n

h

(

Gn
p,q(u

n
p)−Gn

p,q(u
n
q)
)

= ∑
p∈N

∑
q∈Np

Gn
p,q(u

n
p) = ∑

p∈N

∫ x

0
s

d

ds

(

∑
q∈Np

Fn
p,q(s,s)

)

ds = 0, (3.15)

and Lemma 3.1 yields

∑
(p,q)∈E n

h

∫ un
p

un
q

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(s,s)
)

ds >

δt

4L
∑

(p,q)∈E n
h

1

mp,q

(

max
un

q6c6d6un
p

(

Fn
p,q(d,c)−Fn

p,q(d,d)
)2

max
un

q6c6d6un
p

(

Fn
p,q(d,c)−Fn

p,q(c,c)
)2

)

. (3.16)

Collecting (3.14), (3.15) and (3.16), we deduce the inequality

∑
p∈N

∑
q∈Np

un
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

>

δt

4L
∑

(p,q)∈E n
h

1

mp,q

(

max
un

q6c6d6un
p

(

Fn
p,q(d,c)−Fn

p,q(d,d)
)2

+ max
un

q6c6d6un
p

(

Fn
p,q(d,c)−Fn

p,q(c,c)
)2

)

. (3.17)
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3. Using (2.2), the equation (2.4) can be rewritten as

(

u
n+ 1

2
p −un

p

)

=
δt

mp

(

∑
q∈Np

√
mp,q

1
√

mp,q

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

)

. (3.18)

Applying the Cauchy-Schwarz inequality, we obtain

(

u
n+ 1

2
p −un

p

)2

6
δt2

m2
p

(

∑
q∈Np

mp,q

)(

∑
q∈Np

1

mp,q

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)2

)

. (3.19)

Then, the CFL condition (3.2) and hypothesis (C1) yield the bound

(

u
n+ 1

2
p −un

p

)2

6
δt

2L

(

∑
q∈Np

1

mp,q

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)2

)

. (3.20)

We finally sum the above inequality over all p ∈ N and turn the right-hand side into a sum over the

interfaces to find

∑
p∈N

(

u
n+ 1

2
p −un

p

)2

6
δt

2L
∑

(p,q)∈E n
h

1

mp,q

(

max
un

q6c6d6un
p

(

Fn
p,q(d,c)−Fn

p,q(d,d)
)2

+ max
un

q6c6d6un
p

(

Fn
p,q(d,c)−Fn

p,q(c,c)
)2

)

. (3.21)

4. Collecting (3.10), (3.17) and (3.21), we obtain

N

∑
n=1

δt

∫

Rd
|∇ûn

h| dx 6C. (3.22)

The complete estimate (3.4) follows readily from (2.12). �

LEMMA 3.1 Let f : R×R → R. Assume that f is nondecreasing and Lipschitz continuous with a

constant M1 with respect to its first variable and nonincreasing and Lipschitz continuous with a constant

M2 with respect to its second variable. Then, for all (a,b) ∈ R
2 such that a 6 b,

∫ b

a
( f (b,a)− f (s,s)) ds >

1

2(M1 +M2)

(

max
a6c6d6b

( f (d,c)− f (d,d))2 + max
a6c6d6b

( f (d,c)− f (c,c))2

)

.

Proof. See proof of Lemma 25.2 in Eymard et al. (2000). �

3.3 Time translate estimate

PROPOSITION 3.3 There exists a constant C, independent of Fh,δt , such that

∫ T−s

0

∫

Rd

∣

∣ûh,δt(x, t + s)− ûh,δt(x, t)
∣

∣ dxdt 6Cs, ∀s ∈ [0,T ]. (3.23)
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Proof. 1. Let s ∈ [0,T ]. Using the Cauchy-Schwarz inequality, and remembering that supp(ûh,δt) ⊂
B(0,R), we have

∫ T−s

0

∫

Rd

∣

∣ûh,δt(x, t + s)− ûh,δt(x, t)
∣

∣ dxdt 6

(

2πRT

∫ T−s

0

∫

Rd

(

ûh,δt(x, t + s)− ûh,δt(x, t)
)2

dxdt

) 1
2

.

(3.24)

We define the function ν : (0,T )→ N such that ν(t) = n+ 1 if t ∈ (tn, tn+1] and the function χn(t,s) :

(0,T )× (0,T )→{0,1} such that χn(t,s) = 1 if ν(t)6 n < ν(t + s) and χn(t,s) = 0 otherwise; so that

∫ T−s

0

∫

Rd

(

ûh,δt(x, t + s)− ûh,δt(x, t)
)2

dxdt =
∫ T−s

0

∫

Rd

(

û
ν(t+s)
h − û

ν(t)
h

)2

dxdt

=
∫ T−s

0

∫

Rd

(

û
ν(t+s)
h − û

ν(t)
h

)N−1

∑
n=1

χn(t,s)
(

ûn+1
h − ûn

h

)

dxdt. (3.25)

2. We multiply (2.4) by δt u
ν(t+s)
p and sum over all p ∈ N:

∑
p∈N

mpu
ν(t+s)
p

(

u
n+ 1

2
p −un

p

)

+δt ∑
p∈N

∑
q∈Np

u
ν(t+s)
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

. (3.26)

We test (2.5) with vh = δtû
ν(t+s)
h :

∑
p∈N

ωpu
ν(t+s)
p

(

un+1
p −u

n+ 1
2

p

)

+δt

∫

Rd
λ n+1

h ·∇û
ν(t+s)
h dx = 0. (3.27)

Adding the above equalities (3.26) and (3.27), and rearranging, we find

∑
p∈N

mpu
ν(t+s)
p

(

un+1
p −un

p

)

+δt ∑
p∈N

∑
q∈Np

u
ν(t+s)
p

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

+δt

∫

Rd
λ n+1

h ·∇û
ν(t+s)
h dx+ ∑

p∈N
(ωp −mp)u

ν(t+s)
p

(

un+1
p −u

n+ 1
2

p

)

= 0. (3.28)

3. Let p ∈ N, q ∈ Np and K an element of Th for which xp and xq are vertices. In view of (C1) and

(C5),

∣

∣Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
∣

∣6 2mp,qL|un
p −un

q|6 2mp,qLh|∇ûn
h|K |6Chd |∇ûn

h|K |. (3.29)

Therefore, owing to (C3) and the finite number of neighbors in Dh,

∣

∣

∣

∣

∣

∑
p∈N

∑
q∈Np

(

Fn
p,q(u

n
p,u

n
q)−Fn

p,q(u
n
p,u

n
p)
)

∣

∣

∣

∣

∣

6C

∫

Rd
|∇ûn

h|dx. (3.30)

The propoerty |λ n+1
h |6 1 gives immediately

∣

∣

∣

∣

∫

Rd
λ n+1

h ·∇û
ν(t+s)
h dx

∣

∣

∣

∣

6

∫

Rd
|∇û

ν(t+s)
h |dx. (3.31)
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Estimates (2.12) and (3.3), together with hypothesis (C4), yield the bound

∑
p∈N

(ωp −mp)u
ν(t+s)
p

(

un+1
p −u

n+ 1
2

p

)

6Ch. (3.32)

From (3.28), (3.30), (3.31) and (3.32), it follows

∣

∣

∣

∣

∫

Rd
û

ν(t+s)
h

(

ûn+1
h − ûn

h

)

dx

∣

∣

∣

∣

6Ch+

∣

∣

∣

∣

∣

∑
p∈N

mpu
ν(t+s)
p

(

un+1
p −un

p

)

∣

∣

∣

∣

∣

6C

(

h+δt

∫

Rd
|∇ûn

h|dx+δt

∫

Rd
|∇û

ν(t+s)
h |dx

)

. (3.33)

4. Using (C6) and the above estimate (3.33), we have
∣

∣

∣

∣

∣

∫ T−s

0

∫

Rd
û

ν(t+s)
h

N−1

∑
n=1

χn(t,s)
(

ûn+1
h − ûn

h

)

dxdt

∣

∣

∣

∣

∣

6C
N

∑
n=1

δt

(

1+
∫

Rd
|∇ûn

h|dx

)

∫ T−s

0
χn(t,s)dt

For a given n∈N and a given s∈ [0,T ), we note that χn(t,s)= 0 for t /∈ (tn−s, tn], and thus
∫ T−s

0 χn(t,s)dt 6

s. Hence, recalling (3.4),
∣

∣

∣

∣

∣

∫ T−s

0

∫

Rd
û

ν(t+s)
h

N−1

∑
n=1

χn(t,s)
(

ûn+1
h − ûn

h

)

dxdt

∣

∣

∣

∣

∣

6Cs (3.34)

Similarly, we can derive
∣

∣

∣

∣

∣

∫ T−s

0

∫

Rd
û

ν(t)
h

N−1

∑
n=1)

χn(t,s)
(

ûn+1
h − ûn

h

)

dxdt

∣

∣

∣

∣

∣

6Cs. (3.35)

4. Collecting (3.25), (3.34) and (3.35), we obtain the desired estimate (3.23). �

3.4 Space translate estimate

PROPOSITION 3.4 There exists a constant C, independent of Fh,δt , such that

∫ T

0

∫

Rd

∣

∣ûh,δt(x+ y, t)− ûh,δt(x, t)
∣

∣ dtdx 6C|y|, ∀y ∈ R
d . (3.36)

Proof. For a given element K ∈Th and a given couple of points (a,b)∈R
d ×R

d , we denote by χK(a,b)
the length of the segment [a,b]∩K. In particular, if [a,b] does not intersect K, then χK(a,b) = 0. Let

n ∈ {1, ...,N} and (x,y) ∈ R
d ×R

d . By applying the mean value theorem on each element intersected

by the segment [x,x+ y], we find the inequality

|ûn
h(x+ y)− ûn

h(x)|6 ∑
K∈Th

χK(x,x+ y)|∇ûn
h|K |. (3.37)

Next, an integration with respect to x yields
∫

Rd
|ûn

h(x+ y)− ûn
h(x)| dx 6 ∑

K∈Th

|∇ûn
h|K |

∫

Rd
χK(x,x+ y)dx. (3.38)
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For any K ∈ Th, the function x 7→ χK(x,x+y) is bounded by min(h, |y|) and is zero outside a domain of

measure lower than hd−1(h+ |y|). Therefore,
∫

Rd
χK(x,x+ y)dx 6 hd−1(h+ |y|)min(h, |y|)6 2hd |y|, (3.39)

and
∫

Rd
|ûn

h(x+ y)− ûn
h(x)| dx 6C|y| ∑

K∈Th

hd |∇ûn
h|K |. (3.40)

Using the hypothesis (C3), we obtain
∫

Rd
∑

K∈Th

hd |∇ûn
h|K |6C

∫

Rd
|∇ûn

h|dx. (3.41)

Summing the above inequality (3.41) over {1, ...,N}, and using (3.4), we find the desired estimate (3.36).

�

4. Entropy formulation for the approximate solutions

The aim of this section is to establish an entropy formulation, similar to (1.2), for the approximate

solutions. We first prove a discrete entropy inequality for the finite volume step (Proposition 4.1).

Then, we take into account the finite element step to obtain the complete discrete entropy formulation

(Proposition 4.2). Error terms occur in this formulation. Proposition 4.3 ensures that they tend to zero

when the meshsize and the time step tend to zero.

PROPOSITION 4.1 Let (η ,Φ) be an entropy-entropy flux pair. Then, there exists a family {Φn
p,q} of

admissible numerical fluxes, consistent with Φ , such that

η(u
n+ 1

2
p )−η(un

p)

δt
+

1

mp
∑

q∈Np

Φn
p,q(u

n
p,u

n
q)6 0, ∀n ∈ {0, ...,N −1}, ∀p ∈ N. (4.1)

Furthermore, there is a constant L′, depending only on L, η , a0 and b0, such that, for all (p,q) ∈ Eh and

for all n ∈ {0, ...,N −1}, the function Φn
p,q is Lipschitz continuous with respect of each of its variables

with the constant mp,qL′.

Proof. 1. Consider first the Kruzhkov entropies, that is the functions | ·−κ|, with κ ∈ R. The corre-

sponding entropy fluxes are the functions F(·⊤κ)−F(·⊥κ), where a⊤b denotes the maximum of a and

b and a⊥b denotes the minimum of a and b. The derivation of the discrete entropy inequality involving

the Kruzhkov entropies for the finite volume scheme (2.4) is standard and can be found for instance in

Chainais-Hillairet (1999, Lemma 3) or Eymard et al. (2000, Lemma 27.1). This inequality reads

|un+ 1
2

p −κ|− |un
p −κ|

δt
+

1

mp
∑

q∈Np

(

Fn
p,q(u

n
p⊤κ,un

q⊤κ)−Fn
p,q(u

n
p⊥κ,un

q⊥κ)
)

6 0, (4.2)

for all n ∈ {0, ...,N −1} and p ∈ N.

2. Let (η ,Φ) be an entropy-entropy flux pair. Using simply the fact that η ∈C2(R), we have the identity

η(x) =
1

2

∫ b0

a0

η ′′(κ)|x−κ|dκ +
η ′(a0)+η ′(b0)

2
x+ c, ∀x ∈ [a0,b0], (4.3)
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where c is a constant depending on η . Using this identity, together with (4.2) and (2.4), we deduce the

inequality

η(u
n+ 1

2
p )−η(un

p)

δt
+

1

mp
∑

q∈Np

Φ̃n
p,q(u

n
p,u

n
q)6 0, (4.4)

where Φ̃n
p,q is a numerical flux defined by

Φ̃n
p,q(x,y) :=

1

2

∫ b0

a0

η ′′(κ)
(

Fn
p,q(x⊤κ,y⊤κ)−Fn

p,q(x⊥κ,y⊥κ)
)

dκ +
η ′(a0)+η ′(b0)

2
Fn

p,q(x,y). (4.5)

3. We next define the continuous flux Φ̃ such that

Φ̃(x, t,u) :=
1

2

∫ b0

a0

η ′′(κ)(F(x, t,u⊤κ)−F(x, t,u⊥κ)) dκ +
η ′(a0)+η ′(b0)

2
F(x, t,u). (4.6)

After some calculations, we find

Φ̃(x, t,u) =
1

2

∫ u

a0

η ′(κ)
∂F

∂u
(x, t,κ)dκ +

1

2

∫ u

b0

η ′(κ)
∂F

∂u
(x, t,κ)dκ

+
1

2

(

η ′(a0)F(x, t,a0)+η ′(b0)F(x, t,b0)
)

,

and thus ∂Φ̃
∂u

(x, t,u) = η ′(u) ∂F
∂u

(x, t,u). Therefore, by definition of the entropy flux, there is a continuous

function c : Rd × (0,T ) → R such that Φ(x, t,u) = Φ̃(x, t,u) + c(x, t). Let {Φn
p,q} be the family of

numerical fluxes such that

Φn
p,q := Φ̃n

p,q +
1

δt

∫ tn+1

tn

∫

σp,q

c(γ, t) ·νp,q dγdt. (4.7)

It is easy to verify that this family of numerical fluxes is admissible, consistent with Φ , uniformly

Lipschitz continuous and satisfy the entropy inequality (4.1). �

PROPOSITION 4.2 Let (η ,Φ) be an entropy-entropy flux pair. Then, for all nonnegative test functions

ϕ ∈C∞
c (QT ),

∫

QT

η(ūh,δt)∂tϕ dxdt +
∫

QT

Φ(x, t, ūh,δt) ·∇ϕ dxdt −
∫

QT

η ′(ûh,δt)λh,δt ·∇ϕ dxdt

−
∫

QT

ϕ|∇η ′(ûh,δt)|dxdt +
∫

Rd
η(ū0

h)ϕ(x,0)dx+ e1
h,δt + e2

h,δt + e3
h,δt + e4

h,δt > 0, (4.8)

where e1
h,δt

, e2
h,δt

, e3
h,δt

, and e4
h,δt

are defined by the relations (4.15), (4.17), (4.19), and (4.20), respec-

tively.

Proof. 1. Let ψ ∈ C∞
c (R

d ,R+). We set vn+1 := η ′(ûn+1
h )ψ and vn+1

h := Ihvn+1, where Ih denotes the

Lagrange interpolation operator on Vh. We test (2.5) with vn+1
h :

∑
p∈N

ωp

un+1
p −u

n+ 1
2

p

δt
η ′(un+1

p )ψ(xp)+
∫

Rd
λ n+1

h ·∇vn+1
h dx = 0. (4.9)
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Since η is convex,
(

un+1
p −u

n+ 1
2

p

)

η ′(un+1
p )> η(un+1

p )−η(u
n+ 1

2
p ) ∀p ∈ N,

and thus (4.9) becomes

∑
p∈N

ωp

η(un+1
p )−η(u

n+ 1
2

p )

δt
ψ(xp)+

∫

Rd
λ n+1

h ·∇vn+1
h dx 6 0. (4.10)

The second term of (4.10) can be rewritten as

∫

Rd
λ n+1

h ·∇vn+1
h dx =

∫

Rd
λ n+1

h ·∇vn+1 dx+
∫

Rd
λ n+1

h ·∇
(

vn+1
h − vn+1

)

dx

=
∫

Rd
λ n+1

h ·∇
(

η ′(ûn+1
h )

)

ψ dx+
∫

Rd
λ n+1

h ·∇ψ η ′(ûn+1
h )dx+

∫

Rd
λ n+1

h ·∇
(

vn+1
h − vn+1

)

dx (4.11)

By convexity of η ,
∫

Rd
λ n+1

h ·∇
(

η ′(ûn+1
h )

)

ψ dx =
∫

Rd
η ′′(ûn+1

h )λ n+1
h ·∇(ûn+1

h )ψ dx > 0,

whence
∫

Rd
λ n+1

h ·∇
(

η ′(ûn+1
h )

)

ψ dx =
∫

Rd
|∇η ′(ûn+1

h )|ψ dx. (4.12)

Collecting (4.10), (4.11) and (4.12), we obtain

∑
p∈N

ωp

η(un+1
p )−η(u

n+ 1
2

p )

δt
ψ(xp)+

∫

Rd
λ n+1

h ·∇ψη ′(ûn+1
h )dx+

∫

Rd
|∇η ′(ûn+1

h )|ψ dx

+
∫

Rd
λ n+1

h ·∇
(

vn+1
h − vn+1

)

dx 6 0. (4.13)

Taking ψ =ϕ(·, t) in the above inequality, then integrating on (tn, tn+1) and summing over n∈{0, ...,N−
1}, we eventually find

N−1

∑
n=0

∑
p∈N

η(un+1
p )−η(u

n+ 1
2

p )

δt

∫ tn+1

tn
ωpϕ(xp, t)dt +

∫

QT

η ′(ûh,δt)λh,δt ·∇ϕ dxdt

+
∫

QT

ϕ|∇η ′(ûh,δt)|dxdt − e1
h,δt 6 0, (4.14)

where

e1
h,δt :=

∫

QT

∇
(

η ′(ûh,δt)ϕ − Ih(η
′(ûh,δt)ϕ)

)

dxdt. (4.15)

2. Multiplying (4.1) by ϕn
p :=

∫ tn+1

tn

∫

Qp
ϕ(x,s)dxds, then adding to (4.14), we obtain

N−1

∑
n=0

∑
p∈N

η(un+1
p )−η(un

p)

δt
ϕn

p +
N−1

∑
n=0

∑
p∈N

1

mp
∑

q∈Np

Φn
p,q(u

n
p,u

n
q)ϕ

n
p

+
∫

QT

η ′(ûh,δt)λh,δt ·∇ϕ dxdt +
∫

QT

ϕ|∇η ′(ûh,δt)|dxdt − e1
h,δt − e2

h,δt 6 0, (4.16)
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where

e2
h,δt :=

N−1

∑
n=0

∑
p∈N

η(un+1
p )−η(u

n+ 1
2

p )

δt

(

ϕn
p −

∫ tn+1

tn
ωpϕ(xp, t)dt

)

. (4.17)

Now, observing that

∫

QT

η(ūh,δt)∂tϕ dxdt =−
N−1

∑
n=0

∑
p∈N

η(un+1
p )−η(un

p)

δt

∫ tn+1

tn

∫

Qp

ϕ(x, tn+1)dxdt − ∑
p∈N

η(u0
p)
∫

Qp

ϕ(x,0)dx

we can rewrite (4.16) as

∫

QT

η(ūh,δt)∂tϕ dxdt +
∫

QT

Φ(x, t, ūh,δt) ·∇ϕ dxdt −
∫

QT

η ′(ûh,δt)λh,δt ·∇ϕ dxdt

−
∫

QT

ϕ|∇η ′(ûh,δt)|dxdt + ∑
p∈N

η(u0
p)
∫

Qp

ϕ(x,0)dx+ e1
h,δt + e2

h,δt + e3
h,δt + e4

h,δt > 0, (4.18)

where

e3
h,δt :=

N−1

∑
n=0

∑
p∈N

η(un+1
p )−η(un

p)

δt

(

∫ tn+1

tn

∫

Qp

ϕ(x, tn+1)dxdt −ϕn
p

)

, (4.19)

e4
h,δt :=−

∫

QT

Φ(x, t, ūh,δt) ·∇ϕ dxdt −
N−1

∑
n=0

∑
p∈N

1

mp
∑

q∈Np

Φn
p,q(u

n
p,u

n
q)ϕ

n
p. (4.20)

�

PROPOSITION 4.3 There exists a constant C, independent of Fh,δt , such that

|e1
h,δt |+ |e2

h,δt |+ |e3
h,δt |+ |e4

h,δt |6C(h+δt). (4.21)

Proof. 1. Setting w(t) := η ′(ûh(t))ϕ(t), we can write e1
h,δt

=
∫ T

0 |w(t)− Ihw(t)|W 1,1(Rd) dt, where

| · |W 1,1(Rd) denotes the semi-norm of the Sobolev space W 1,1(Rd). A standard interpolation result (see,

e.g., Ern & Guermond, 2004) ensures that there exists c depending only on ρ such that

|w(t)− Ihw(t)|W 1,1(K) 6 ch|w(t)|W 2,1(K), ∀K ∈ Th.

The explicit computation of |w(t)|W 2,1(K) yields

|w(t)− Ihw(t)|W 1,1(K) 6Ch

(

hd +
∫

K
|∇ûh(t)|dx

)

, ∀K ∈ Th,

where the constant C depends only on η , φ , a0, b0 and ρ . Finally, using hypothesis (C3) and estimate

(3.4), we obtain |e1
h,δt

|6Ch.

2. Since η is C1 and the discrete velocity is bounded between a0 and b0, we have

|e2
h,δt |6

N−1

∑
n=0

∑
p∈N

|η(un+1
p )−η(u

n+ 1
2

p )|
∫ tn+1

tn

∫

Qp

|∇xϕ(x, t)|dxdt

6C
N−1

∑
n=0

∑
p∈N

mpδt|un+1
p −u

n+ 1
2

p |.
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Employing the same arguments as in the proof of Proposition 3.3, we can derive the estimate

N−1

∑
n=0

∑
p∈N

mp|un+1
p −u

n+ 1
2

p |6C.

Hence |e2
h,δt

|6Cδt. Similarly, |e3
h,δt

|6Cδt.

3. Set

I :=
N−1

∑
n=0

∑
p∈N

1

mp
∑

q∈Np

Φn
p,q(u

n
p,u

n
q)ϕ

n
p and I∗ :=−

∫

QT

Φ(x, t, ūh,δt) ·∇ϕ dxdt,

so that e4
h,δt

=−I + I∗. From (2.1), it follows ∑q∈Np
Φn

p,q(u,u) = 0 and thus

I =
N−1

∑
n=0

∑
p∈N

1

mp
∑

q∈Np

(

Φn
p,q(u

n
p,u

n
q)−Φn

p,q(u
n
p,u

n
p)
)

ϕn
p = I1 + I2,

where

I1 :=
N−1

∑
n=0

∑
(p,q)∈E n

h

1

mp

(

Φn
p,q(u

n
p,u

n
q)−Φn

p,q(u
n
p,u

n
p)
)

ϕn
p, I2 :=

N−1

∑
n=0

∑
(p,q)∈E n

h

1

mq

(

Φn
p,q(u

n
p,u

n
q)−Φn

p,q(u
n
q,u

n
q)
)

ϕn
q .

Applying the divergence theorem on each cell in the expression of I∗, we find

I∗ =−
N−1

∑
n=0

∑
p∈N

∫ tn+1

tn

∫

∂Qp

Φ(γ, t,un
p) ·νp,qϕ(γ, t)dγdt

=−
N−1

∑
n=0

∑
(p,q)∈E n

h

∫ tn+1

tn

∫

σp,q

(

Φ(γ, t,un
p) ·νp,q −Φ(γ, t,un

q) ·νp,q

)

ϕ(γ, t)dγdt

= I∗1 − I∗2

where

I∗1 :=
N−1

∑
n=0

∑
(p,q)∈E n

h

∫ tn+1

tn

∫

σp,q

(

1

mp,q
Φn

p,q(u
n
p,u

n
q)−Φ(γ, t,un

p) ·νp,q

)

ϕ(γ, t)dγdt,

I∗2 :=
N−1

∑
n=0

∑
(p,q)∈E n

h

∫ tn+1

tn

∫

σp,q

(

1

mp,q
Φn

p,q(u
n
p,u

n
q)−Φ(γ, t,un

q) ·νp,q

)

ϕ(γ, t)dγdt.

Let us now estimate |I1 − I∗1 |. We first rewrite I∗1 as

I∗1 =
N−1

∑
n=0

∑
(p,q)∈E n

h

(

Φn
p,q(u

n
p,u

n
q)−Φn

p,q(u
n
p,u

n
p)
) 1

mp,q

∫ tn+1

tn

∫

σp,q

ϕ(γ, t)dtdγ

+
N−1

∑
n=0

∑
(p,q)∈E n

h

∫ tn+1

tn

∫

σp,q

(

1

mp,q
Φn

p,q(u
n
p,u

n
p)−Φ(γ,s,un

p) ·νp,q

)

ϕ(γ, t)dtdγ.
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Then, the consistency of the family {Φn
p,q} with Φ allows us to turn the above equation into

I∗1 =
N−1

∑
n=0

∑
(p,q)∈E n

h

(

Φn
p,q(u

n
p,u

n
q)−Φn

p,q(u
n
p,u

n
p)
) 1

mp,q

∫ tn+1

tn

∫

σp,q

ϕ(γ, t)dtdγ

+
N−1

∑
n=0

∑
(p,q)∈E n

h

∫ tn+1

tn

∫

σp,q

(

Φ(γ, t,un
p) ·νp,q −

1

mp,q
Φn

p,q(u
n
p,u

n
p)

)

1

δtmp,q

(

∫ tn+1

tn

∫

σp,q

ϕ(γ, t)−ϕ(ξ ,s)dsdξ

)

dtdγ.

Hence

I1−I∗1 =
N−1

∑
n=0

∑
(p,q)∈E n

h

δt
(

Φn
p,q(u

n
p,u

n
q)−Φn

p,q(u
n
p,u

n
p)
) 1

δt2mpmp,q

∫ tn+1

tn

∫

Qp

∫ tn+1

tn

∫

σp,q

ϕ(x, t)−ϕ(γ,s)dtdxdsdγ

+
N−1

∑
n=0

∑
(p,q)∈E n

h

∫ tn+1

tn

∫

σp,q

(

1

mp,q
Φn

p,q(u
n
p,u

n
p)−Φ(γ, t,un

p) ·νp,q

)

1

δtmp,q

(

∫ tn+1

tn

∫

σp,q

ϕ(γ, t)−ϕ(ξ ,s)dsdξ

)

dtdγ.

From the mean value theorem and the uniform Lipschitz continuity of {Φn
p,q}, we thus derive the esti-

mate

|I1 − I∗1 |6C(h+δt)





N−1

∑
n=0

∑
(p,q)∈E n

h

δtmp,q|un
p −un

q|+
N−1

∑
n=0

∑
(p,q)∈E n

h

δt(h+δt)mp,q



 .

Using the finite number of neighbors in Dh, hypotheses (C7) and (C8), and estimate (3.4), we obtain the

bound

N−1

∑
n=0

∑
(p,q)∈E n

h

δtmp,q|un
p −un

q|6C
N−1

∑
n=0

∑
K∈Th

δthd |∇ûn
h|K |6C

N−1

∑
n=0

δt

∫

Rd
|∇ûn

h|dx 6C. (4.22)

Using (C1) and (C7), we also obtain

N−1

∑
n=0

∑
(p,q)∈E n

h

δt(h+δt)mp,q 6C. (4.23)

Finally we deduce the estimate |I1 − I∗1 | 6 C(h+ δt). The term I2 − I∗2 can be treated similarly, which

yields |e4
h,δt

|6C(h+δt). �

5. Convergence of the approximate solutions

The main tool used in the convergence proof of the numerical approximation is the Kolmogorov-Riesz

theorem. This theorem, also called the Fréchet-Kolmogorov theorem, yields a necessary and sufficient

condition for a subset of Lp(Rd) (1 6 p < ∞) to be compact. It can be seen as a generalization and a

consequence of the Arzelà-Ascoli theorem. We state below a version of the Kolmogorov-Riesz theorem

tailored to our case. We refer to Brezis (2011) for a general statement and a proof.

THEOREM 5.1 Let ( fk)k∈N be a sequence of functions of L1(Rd × (0,T )). Assume that

(i) ( fk)k∈N is bounded in L1(Rd × (0,T ));
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(ii) there is a bounded set ω ⊂ R
d such that, for all k ∈ N and for all t ∈ (0,T ), supp fk(·, t)⊂ ω;

(iii) for all ε > 0, there exists δ > 0 such that, for all k ∈ N,

∫ T−s

0

∫

Rd
| fk(x, t + s)− fk(x, t)| dxdt 6 ε, ∀s ∈ [0,δ ), (5.1)

and
∫ T

0

∫

Rd
| fk(x+ y, t)− fk(x, t)| dxdt 6 ε, ∀y ∈ B(0,δ ), (5.2)

where B(0,δ ) denotes the d-dimensional open ball with center 0 and radius δ .

Then, there exists f ∈ L1(Rd × (0,T )) such that, up to a subsequence, fk → f strongly in L1(Rd ×
(0,T )). Furthermore, for all t ∈ (0,T ), supp f (·, t)⊂ ω .

The convergence proof follows a fairly standard path. We consider a sequence of discretizations

(Fhk,δtk
)k∈N whose meshsize and time step tend to zero. In addition, we assume that (Fhk,δtk

)k∈N sat-

isfies uniformly the conditions (C1)-(C8) and that the sequence of initial conditions (ū0
hk
)k∈N converges

to uini in L1(Rd). There is no difficulty to build such a sequence of discretizations. The approximate

solutions on (Fhk,δtk
)k∈N are denoted by (ūhk,δtk

)k∈N, (ûhk,δtk
)k∈N and (λhk,δtk

)k∈N.

In a first step (Proposition 5.2), we extract converging subsequences from the sequences (ūhk,δtk
)k∈N,

(ûhk,δtk
)k∈N and (λhk,δtk

)k∈N, using compactness arguments, notably the Kolmogorov-Riesz theorem. We

then pass to the limit in the discrete entropy formulation (4.8) to deduce the convergence of (ûhk,δtk
)k∈N

toward the entropy solution (Theorem 5.3). We can conclude to the convergence of the whole sequence

(ûhk,δtk
)k∈N by uniqueness of the entropy solution.

PROPOSITION 5.2 There exists u ∈ L∞(QT )∩ L1(0,T ;BV (Rd)), with compact support in space, and

λ ∈ L∞(QT )
d , with |λ |6 1 almost everywhere on QT , such that, up to a subsequence,

ûhk,δtk
→ u in L1(QT ), ūhk,δtk

→ u in L1(QT ), λhk,δtk
⇀ λ weakly-∗ in L∞(QT ).

Proof. 1. The estimates (2.12), (3.3), (3.23) and (3.36) allow us to apply Theorem 5.1 to the sequence

(ûhk,δtk
)k∈N. Thus, there exists u ∈ L1(QT ) such that, up to a subsequence, (ûhk,δtk

)k∈N converges to u

in L1(QT ). By definition of ūhk,δtk
and ûhk,δtk

, it is clear that if ûhk,δtk
→ u in L1(QT ), then ūhk,δtk

→ u

in L1(QT ) as well. Furthermore, u ∈ L∞(QT )∩ L1(0,T ;BV (Rd)), since the sequence (ûhk,δtk
)k∈N is

uniformly bounded in L∞(QT ) and L1(0,T ;BV (Rd)).
2. As the sequence (λhk,δtk

)k∈N is bounded in L∞(QT ), there exists λ ∈ L∞(QT )
d such that, up to a

subsequence, (λhk,δtk
)k∈N converges weakly-∗ to λ in L∞(QT ). Furthermore, |λ |6 1 almost everywhere

on QT , since |λhk,δtk
|< 1 on QT . �

THEOREM 5.3 The sequence (ûhk,δtk
)k∈N converges strongly in L1(QT ) to the entropy solution of (0.2)-

(0.3).

Proof. Fix an entropy η and a test function ϕ . Let (ūhk,δtk
)k∈N, (ûhk,δtk

)k∈N and (λhk,δtk
)k∈N denote the

subsequences extracted in Proposition 5.2, and u and λ denote their limits. The sequence (ūhk,δtk
)k∈N is

bounded, has a compact support and converges in L1(QT ), therefore

∫

QT

η(ūhk,δtk
)∂tϕ dxdt +

∫

QT

Φ(x, t, ūhk,δtk
) ·∇ϕ dxdt →

∫

QT

(

η(u)∂tϕ +Φ(x, t,u) ·∇ϕ
)

dxdt.
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Since ûhk,δtk
→ u in L1(QT ) and λhk,δtk

⇀ λ weakly-∗ in L∞(QT ),

∫

QT

η ′(ûhk,δtk
)λhk,δtk

·∇ϕ dtdx →
∫

QT

η ′(u)λ ·∇ϕ dtdx.

By lower semi-continuity of the total variation relatively to the L1 convergence, we obtain

lim
k→+∞

inf

∫

QT

ϕ|∇η ′(ûhk,δtk
)|dtdx >

∫

QT

ϕ
∣

∣D[η ′(u)]
∣

∣dt.

By hypothesis, ū0
hk
→ uini in L1(Rd), and thus

∫

Rd
η(ū0

h)ϕ(x,0)dx →
∫

Rd
η(uini)ϕ(x,0)dx.

Finally, using the above limits and Proposition 4.3, we can pass to the limit in (4.8) and find

∫

QT

(

η(u)∂tϕ +
(

Φ(x, t,u)−λη ′(u)
)

·∇ϕ
)

dxdt −
∫

QT

ϕ
∣

∣D[η ′(u)]
∣

∣dt +
∫

Rd
η(uini)ϕ(x,0) dx > 0,

which proves that u is the entropy solution. Owing to the uniqueness of the entropy solution (proved in

Section 1.4), we conclude that, in fact, the whole sequence (ûhk,δtk
)k∈N converges to u. �

6. Numerical examples

To illustrate the behavior of the numerical scheme, simulations are performed on two examples: a

two-dimensional problem where the flux fonction F describes a mere advection and a one-dimensional

problem where the flux function F describes a Burgers flow. For the two-dimensional problem, for

which an analytical solution is known, a quantitative study of the convergence is provided. The simu-

lations are performed using FreeFem++ (for the the two-dimensional problem) and Scilab (for the the

one-dimensional problem).

6.1 Advection and total variation flow in 2D

We consider the problem

∂tu+ cx∂xu+ cy∂yu−gdivSgn(∇u) = 0, (x,y, t) ∈ R
2 × (0,T ), (6.1)

where cx, cy, and g are constants. The initial condition is

u(x,y,0) = 1D0
(x,y), (x,y) ∈ R

2, (6.2)

where 1D0
denotes the indicator function of D0, the disk of radius r0 centered at point (x0,y0). It is

possible to determine the exact solution to this problem. Indeed, for some bounded sets S of finite

perimeter in R
2, including disks, it is proved in Bellettini et al. (2002) that the solution of

∂tu−divSgn(∇u) = 0, (x,y, t) ∈ R
2 × (0,T ),

u(x,y,0) = 1S(x,y), (x,y) ∈ R
2,
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is the function u : (x,y, t) 7→ (1−|∂S|/|S|t)+ 1S(x,y). The proof can be easily adapted to deal with the

advection and the exact solution of (6.1)-(6.2) is found to be

u : (x,y, t) 7→
(

1− 2gt

r0

)+

1D0
(x− cxt,y− cyt).

The numerical simulations use the following parameters: (x0,y0) = (0.3,0.3), r0 = 0.2, cx = 0.8,

cy = 0.2, g = 0.03. To mimick the space R
2, square domains with periodic boundary conditions are

used for both the finite volume step and the finite element step. The finite element domain, denoted by

Ω , is meshed with squares of size h divided into two triangles. The finite volume domain, slightly larger

than the finite element domain, is meshed with square cells of size h, centered at each node of the finite

element mesh. Such a pair of meshes is represented in Figure 1. The advection step is solved using the

FIG. 1. Example of meshes used for the two-dimensional simulations. The finite element mesh is in solid line and the finite

volume mesh is in dashed line.

so-called corner-transport upwind scheme (see, e.g., LeVeque, 2002), which is slightly more accurate

than the standard upwind scheme. This scheme is stable under the CFL condition δt 6 min
(

h
cx
, h

cy

)

.

The finite element step is solved using the lagged diffusivity algorithm, whose principle is recalled in

Appendix A.

REMARK 6.1 The corner-transport upwind scheme does not fit exactly into the theoretical framework

defined in Section 2.1 since there is a numerical flux between the cells that touch at corner. However,

the well-posedness and convergence results remain valid (the proofs can be readily adapted).

The first simulation is performed with Ω = (0,1)× (0,1), h = 0.01, CFL= 1, ε = 10−6 and 20

iterations at each time step for the lagged diffusivity algorithm. The numerical solution, represented at

different times in Figure 2, is in good agreement with the exact solution: the contours are sharp and the

support is little deformed. Interestingly, the total variation minimization in the finite element step limits

the diffusion due to the finite volume scheme; see Figure 3. Table 1 collects the relative error between

the exact solution and the discrete solution in L1-norm for various meshsizes (keeping a CFL equal to

1). Precisely, the relative error is given by the expression

‖uper − ûh,δt‖L1(Ω×(0,T ))

‖uper‖L1(Ω×(0,T ))

where uper is the periodized version of u and the norms are computed with a second-order accurate

quadrature formula. The results show, as expected, a decrease of the error when the mesh becomes

finer. The computed convergence rate is clearly sublinear (0.28 between the first mesh and the second
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h relative error

0.02 0.618

0.01 0.5099

0.005 0.4403

Table 1. Relative error between the discrete and exact solutions in L1-norm.

mesh, 0.21 between the second mesh and the third mesh). It is not surprising to obtain a sublinear rate

with a solution presenting a discontinuity.

FIG. 2. Advection and total variation flow. Numerical solution at times t = 0, t = 0.5, t = 1, t = 1.5. The mesh is warped according

to the value of the solution and the color scale goes from blue (0) to red (1).

FIG. 3. Numerical solution of the advection and total variation flow (left) and numerical solution of the advection without total

variation flow (right) at time t = 1.5. The color scale goes from blue (0) to red (1). The black circle indicates the support of the

exact solution.

6.2 Burgers flow and total variation flow in 1D

We consider the equation

∂tu+
1

2
∂x(u

2)−g∂x Sgn(∂xu) = 0, (x, t) ∈ R× (0,T ), (6.3)

with g = 5 ·10−4. The initial datum is a bump (see Figure 4, left). The computational domain is taken

large enough for the solution not to touch the boundary in the course of the simulation. The finite

element and finite volume meshes, of size h, are staggered. The finite volume step is advanced using the
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Godunov scheme (see, e.g., LeVeque, 2002), which is stable under the CFL condition supp |un
p|δt 6 1

2
h,

for all n ∈ {0, ...,N −1}. As in the previous test case, the finite element step is solved using the lagged

diffusivity algorithm

The numerical simulation is performed with h = 0.002, δt = 0.001, ε = 10−8 and 20 iterations at

each time step for the lagged diffusivity algorithm. In Figure 4, the computed solution is represented at

different times. As in a Burgers flow (without total variation flow), a shock wave forms at the right end,

while a rarefaction wave forms at the left end. The main difference introduced by the total variation

flow is the progressive clipping of the solution.
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FIG. 4. Burgers flow and total variation flow. Numerical solution at times t = 0, t = 0.05, and t = 0.15.
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A. Lagged diffusivity algorithm

The lagged diffusivity algorithm is a simple and efficient algorithm for solving the total variation mini-

mization problem (Vogel & Oman, 1996; Dobson & Vogel, 1997). Let us describe this algorithm in a P1

finite element setting, with Neumann boundary conditions. Let Ω be an open bounded set of Rd and Th

a simplicial mesh over Ω , whose nodes are denoted by {xp}16p6Np . The finite element space over Th is

denoted by Vh. The L2 scalar product is lumped using weights {ωp}16p6Np . Consider the minimization

over Vh of the functional Jh : Vh → R, defined by

Jh(vh) :=
Np

∑
p=1

ωp (vh(xp)− zh(xp))
2 +α

∫

Ω
|∇vh|dx,

where zh ∈ Vh and α > 0 are given. The lagged diffusivity algorithm replaces the nondifferentiable

functional Jh by the regularized functional Jε,h : Vh → R, defined by

Jε,h(vh) :=
Np

∑
p=1

ωp (vh(xp)− zh(xp))
2 +α

∫

Ω

√

ε + |∇vh|2 dx,

where ε is a small positive parameter. Since the functional Jε,h is strictly convex and differentiable, its

unique minimizer satisfies an Euler-Lagrange equation, namely

Np

∑
p=1

ωpuh(xp)vh(xp)+α

∫

Ω

∇uh ·∇vh
√

ε + |∇uh|2
dx =

Np

∑
p=1

ωpzh(xp)vh(xp), ∀vh ∈Vh.

The minimizer of Jε,h is then computed with a fixed-point algorithm. The algorithm is intialized with

u
(0)
h = zh. At the iteration k + 1, the approximate solution u

(k+1)
h is computed by solving the linear

diffusion problem

Np

∑
p=1

ωpu
(k+1)
h (xp)vh(xp)+α

∫

Ω

∇u
(k+1)
h ·∇vh

√

ε + |∇u
(k)
h |2

dx =
Np

∑
p=1

ωpzh(xp)vh(xp), ∀vh ∈Vh.

The diffusivity field in the above diffusion problem depends on u(k), whence the name lagged diffusiv-

ity.


